Albareda M, Buchanan G, Sargent F. Identification of a stable complex between a [NiFe]-hydrogenase catalytic subunit and its maturation protease.
FEBS Lett 2017;
591:338-347. [PMID:
28029689 PMCID:
PMC5299533 DOI:
10.1002/1873-3468.12540]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/11/2022]
Abstract
Salmonella enterica serovar Typhimurium has the ability to use molecular hydrogen as a respiratory electron donor. This is facilitated by three [NiFe]‐hydrogenases termed Hyd‐1, Hyd‐2, and Hyd‐5. Hyd‐1 and Hyd‐5 are homologous oxygen‐tolerant [NiFe]‐hydrogenases. A critical step in the biosynthesis of a [NiFe]‐hydrogenase is the proteolytic processing of the catalytic subunit. In this work, the role of the maturation protease encoded within the Hyd‐5 operon, HydD, was found to be partially complemented by the maturation protease encoded in the Hyd‐1 operon, HyaD. In addition, both maturation proteases were shown to form stable complexes, in vivo and in vitro, with the catalytic subunit of Hyd‐5. The protein–protein interactions were not detectable in a strain that could not make the enzyme metallocofactor.
Collapse