1
|
Zhang S, Zhang X, Sun Q, Zhuang C, Li G, Sun L, Wang H. LncRNA NR2F2-AS1 promotes tumourigenesis through modulating BMI1 expression by targeting miR-320b in non-small cell lung cancer. J Cell Mol Med 2018; 23:2001-2011. [PMID: 30592135 PMCID: PMC6378175 DOI: 10.1111/jcmm.14102] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) are attracting wide attention in the field of cancer research because of its important role in cancer diagnosis and prognosis. But studies on the biological effects and relevant mechanisms of lncRNAs in non‐small cell lung cancer (NSCLC) remain few and need to be enriched. Our study discussed the expression and biological effects of LncRNA NR2F2‐AS1, and further explored its possible molecular mechanisms. As a result, elevated expression of NR2F2‐AS1 was detected in NSCLC tissues and cells and was remarkably associated with the tumor, node, metastasis (TNM) stage and the status of lymphatic metastasis of patients. Down‐regulated NR2F2‐AS1 contributed to the promotion of cell apoptosis and the inhibition of cell proliferation and invasion in A549 and SPC‐A‐1 cells in vivo and vitro. Through bioinformatics analysis, NR2F2‐AS1 functions as a ceRNA directly binding to miR‐320b, BMI1 was a direct target of miR‐320b. Combined with the following cellular experiments, the data showed that NR2F2‐AS1 may influence the NSCLC cell proliferation, invasion and apoptosis through regulating miR‐320b targeting BMI1.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
58 |
2
|
Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:163-180. [PMID: 34729394 PMCID: PMC8526502 DOI: 10.1016/j.omto.2021.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
Cancer-cell-released exosomal microRNAs (miRNAs) are important mediators of cell-cell communication in the tumor microenvironment. In this study, we sequenced serum exosome miRNAs from esophageal squamous cell carcinoma (ESCC) patients and identified high expression of miR-320b to be closely associated with peritumoral lymphangiogenesis and lymph node (LN) metastasis. Functionally, miR-320b could be enriched and transferred by ESCC-released exosomes directly to human lymphatic endothelial cells (HLECs), promoting tube formation and migration in vitro and facilitating lymphangiogenesis and LN metastasis in vivo as assessed by gain- and loss-of-function experiments. Furthermore, we found programmed cell death 4 (PDCD4) as a direct target of miR-320b through bioinformatic prediction and luciferase reporter assay. Re-expression of PDCD4 could rescue the effects induced by exosomal miR-320b. Notably, the miR-320b-PDCD4 axis activates the AKT pathway in HLECs independent of vascular endothelial growth factor-C (VEGF-C). Moreover, overexpression of miR-320b promotes the proliferation, migration, invasion, and epithelial-mesenchymal transition progression of ESCC cells. Finally, we demonstrate that METTL3 could interact with DGCR8 protein and positively modulate pri-miR-320b maturation process in an N6-methyladenosine (m6A)-dependent manner. Therefore, our findings uncover a VEGF-C-independent mechanism of exosomal and intracellular miR-320b-mediated LN metastasis and identify miR-320b as a novel predictive marker and therapeutic target for LN metastasis in ESCC.
Collapse
|
|
4 |
40 |
3
|
Tang J, Jin L, Liu Y, Li L, Ma Y, Lu L, Ma J, Ding P, Yang X, Liu J, Yang J. Exosomes Derived from Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Inhibiting Pyroptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3765-3775. [PMID: 32982181 PMCID: PMC7505733 DOI: 10.2147/dddt.s239546] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
Objective Mesenchymal stem cells (MSCs) show unique advantages in cardiomyocyte repairment. Exosomes derived from MSCs can enhance the viability of myocardial cells after ischemia/reperfusion (I/R) injury and regulate inflammation response. The study was designed to ascertain whether MSCs-exo protect the myocardium against I/R injury through inhibiting pyroptosis, and the underlying mechanisms. Methods and Results Experiments were carried out in H/R and I/R model. Cell viability was inhibited and NLRP3 and caspase1 protein levels were upregulated in H/R model. However, MSCs could inhibit cell apoptosis and pyroptosis in H/R model. Moreover, we used MSCs-exo to treated H/R model, and flow cytometric analysis results showed the inhibition function of MSCs-exo on cell apoptosis, and Western blot data suggested that NLRP3 and Caspase-1 expressions were downregulated in H/R model. Furthermore, exosomal miR-320b targeted NLRP3 protein, and MSCs-exo OE could inhibit NLRP3 expression and pyroptosis in H/R. In addition, the inhibition function of MSCs-exo on pyroptosis also was found in I/R model, and HE and Tunel staining also got similar results. Conclusion Exosomes derived from mesenchymal stem cells could protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis.
Collapse
|
Journal Article |
5 |
31 |
4
|
Wang J, Zhao H, Yu J, Xu X, Jing H, Li N, Tang Y, Wang S, Li Y, Cai J, Jin J. MiR-320b/RAD21 axis affects hepatocellular carcinoma radiosensitivity to ionizing radiation treatment through DNA damage repair signaling. Cancer Sci 2020; 112:575-588. [PMID: 33251678 PMCID: PMC7894001 DOI: 10.1111/cas.14751] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and is associated with high mortality. Ionizing radiation (IR)-based therapy causes DNA damage, exerting a curative effect; however, DNA damage repair signaling pathways lead to HCC resistance to IR-based therapy. RAD21 is a component of the cohesion complex, crucial for chromosome segregation and DNA damage repair, while it is still unclear whether RAD21 is implicated in DNA damage and influences IR sensitivity in HCC. The current research explores the effect and upstream regulatory mechanism of RAD21 on IR sensitivity in HCC. In the present study, RAD21 mRNA and protein expression were increased within HCC tissue samples, particularly within IR-insensitive HCC tissues. The overexpression of RAD21 partially attenuated the roles of IR in HCC by promoting the viability and suppressing the apoptosis of HCC cells. RAD21 overexpression reduced the culture medium 8-hydroxy-2-deoxyguanosine concentration and decreased the protein levels of γH2AX and ATM, suggesting that RAD21 overexpression attenuated IR treatment-induced DNA damage to HCC cells. miR-320b targeted RAD21 3'-UTR to inhibit RAD21 expression. In HCC tissues, particularly in IR-insensitive HCC tissues, miR-320b expression was significantly downregulated. miR-320b inhibition also attenuated IR treatment-induced DNA damage to HCC cells; more importantly, RAD21 silencing significantly attenuated the effects of miR-320b inhibition on IR treatment-induced DNA damage, suggesting that miR-320b plays a role through targeting RAD21. In conclusion, an miR-320b/RAD21 axis modulating HCC sensitivity to IR treatment through acting on IR-induced DNA damage was demonstrated. The miR-320b/RAD21 axis could be a novel therapeutic target for further study of HCC sensitivity to IR treatment.
Collapse
|
Journal Article |
5 |
31 |
5
|
Low serum miR-320b expression as a novel indicator of carotid atherosclerosis. J Clin Neurosci 2016; 33:252-258. [PMID: 27460454 DOI: 10.1016/j.jocn.2016.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
We aimed to investigate correlation of carotid plaque with serum microRNA level and provide a potential mechanism for ischemic stroke prevention. Fasting serum was obtained from 177 patients with carotid plaques diagnosed using B ultrasound and 155 healthy subjects for RNA extraction and measurement of glucose, lipid and related biochemical indices. microRNAs level was assayed using microarray, validated using real-time PCR and statistically analyzed for their correlation with relevant clinical information. Statistical analyses showed significant differences between control and plaque groups in age, smoking history, and histories of cerebrovascular diseases, blood pressure, diabetes and coronary diseases. Patients in plaque group had significantly higher LDL-C level but significantly lower miR-320b level than healthy subjects. The P50 (P25-P75) of miR-320b was 2.38 (1.46-3.80) in control group and 1.20 (0.80-2.01) in plaque group (P=0.000), as well as 1.39 (0.83-2.08) in stable plaque group and 0.77 (0.590.99) in vulnerable plaque group (P=0.000). The area under the ROC curve of traditional factors, miR320b with traditional factors, traditional factors with plaque diameter, and traditional factors with IMT for patients with carotid plaques was 0.710, 0.834, 0.826 and 0.808, respectively. This study suggests that miR-320b is a specific serum marker of carotid atherosclerosis and vulnerable plaque, and its combination with traditional factors is the best means for diagnosis of cerebrovascular diseases. The carotid atherosclerosis complicated with vulnerable plaque is a high risk factor for cerebral infarction. B-ultrasound examination combined with serum miR-320b expression and traditional indices could be used to predict subjects with high-risk for ischemic stroke.
Collapse
|
Journal Article |
9 |
27 |
6
|
Tang W, Wang D, Shao L, Liu X, Zheng J, Xue Y, Ruan X, Yang C, Liu L, Ma J, Li Z, Liu Y. LINC00680 and TTN-AS1 Stabilized by EIF4A3 Promoted Malignant Biological Behaviors of Glioblastoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:905-921. [PMID: 32000032 PMCID: PMC7063483 DOI: 10.1016/j.omtn.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Glioblastomas are the most common and malignant intracranial tumors with a low survival rate. Dysregulation of long non-coding RNAs and RNA-binding protein causes various diseases, including cancers. However, the function of LINC00680 and TTN-AS1 in the progression of glioblastomas is still elusive. In this study, we detected that LINC00680 and TTN-AS1 were upregulated in glioblastoma cells. RNA-binding protein EIF4A3 could prolong the half-life of LINC00680 and TTN-AS1. Knockdown of EIF4A3, LINC00680, and TTN-AS1 impaired proliferation, migration, and invasion and inhibited the growth of tumor in vivo and promoted apoptosis of glioblastoma cells. miR-320b was proven to be a target of LINC00680 and TTN-AS1. They interacted with miR-320b as competing endogenous RNAs, which resulted in the reduction of binding between transcriptional factor EGR3 (early growth response 3) mRNA and miR-320b. The accumulation of EGR3 promoted expression of plakophilin (PKP)2, which could activate the epidermal growth factor receptor (EFGR) pathway, leading to the malignant biological behaviors of glioblastoma cells. In summary, LINC00680 and TTN-AS1 promoted glioblastoma cell malignant biological behaviors via the miR-320b/EGR3/PKP2 axis by being stabilized by EIF4A3, which may provide a novel strategy for glioblastoma therapy.
Collapse
|
Journal Article |
6 |
25 |
7
|
Cheng J, Lou Y, Jiang K. Downregulation of long non-coding RNA LINC00460 inhibits the proliferation, migration and invasion, and promotes apoptosis of pancreatic cancer cells via modulation of the miR-320b/ARF1 axis. Bioengineered 2020; 12:96-107. [PMID: 33345740 PMCID: PMC8806231 DOI: 10.1080/21655979.2020.1863035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) ranks among the most lethal cancers worldwide with high mortality. A marked increase in the level of long non-coding RNA LINC00460 was reported in PAAD patients, in comparison with the healthy controls. However, the underlying mechanisms of the above phenomenon are not yet well understood. Hence, the present study was designed to investigate the molecular mechanism underlying the role of LINC00460 in proliferation, migration and invasion of pancreatic cancer (PC) cells. It was found in our study that LINC00460 knockdown inhibited SW1990 cell proliferation, migration and invasion and promoted its apoptosis. Moreover, miR-320b was targeted straight and its expression was downregulated by LINC00460, whose knockdown led to a reduction in ARF1 expression. Interestingly, miR-320b downregulation partly reversed the effect of LINC00460 knockdown on the proliferation, migration, invasion and apoptosis of SW1990 cells, as well as ARF1expression. In conclusion, LINC00460 knockdown inhibited the proliferation, migration and invasion, and promotes the apoptosis of SW1990 cells via modulation of the miR-320b/ARF1 axis. Thus, LINC00460 can be perceived as a promising target in the treatment of PAAD.
Collapse
|
Journal Article |
5 |
16 |
8
|
Zhang H, Zhou Q, Shen W. Circ-FOXM1 promotes the proliferation, migration and EMT process of osteosarcoma cells through FOXM1-mediated Wnt pathway activation. J Orthop Surg Res 2022; 17:344. [PMID: 35799265 PMCID: PMC9261067 DOI: 10.1186/s13018-022-03207-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in adolescents with a high mortality rate and frequent pulmonary metastasis. Emerging evidence has suggested that circular RNAs (circRNAs) are important regulators in multiple biological activities of carcinomas. Nevertheless, the role of circRNAs derived from forkhead box M1 (FOXM1), a well-accepted modulator of OS progression, has not been discussed in OS. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to test circ-FOXM1 (hsa_circ_0025033) expression in OS cell lines. Cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), transwell assays and western blot analysis of epithelial-mesenchymal transition (EMT) markers were conducted to evaluate cell proliferation, apoptosis, migration, and EMT process. Luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were utilized to detect the interaction of circ-FOXM1 and RNAs. RESULTS High expression of circ-FOXM1 was detected in OS cell lines. Functionally, circ-FOXM1 knockdown inhibited the proliferation, migration and EMT process, whereas induced the apoptosis of OS cells. From the aspect of molecular mechanism, circ-FOXM1 was discovered to upregulate FOXM1 expression via sponging miR-320a and miR-320b, therefore activating Wnt signaling pathway. Besides, rescue experiments elucidated that circ-FOXM1 regulated cellular activities of OS cells via FOXM1. Further, in vivo assays supported that loss of circ-FOXM1 restrained OS tumor growth. CONCLUSION Circ-FOXM1 facilitated the malignant phenotypes of OS cells through FOXM1-mediated Wnt pathway activation, revealing circ-FOXM1 as a potential biomarker for OS treatment.
Collapse
|
|
3 |
10 |
9
|
Song QH, Guo MJ, Zheng JS, Zheng XH, Ye ZH, Wei P. Study on Targeting Relationship Between miR-320b and FGD5-AS1 and Its Effect on Biological Function of Osteosarcoma Cells. Cancer Manag Res 2020; 12:13589-13598. [PMID: 33408528 PMCID: PMC7781231 DOI: 10.2147/cmar.s264682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Objective To probe into the expression of FGD5-AS1 in osteosarcoma and its relationship with miR-320b. Methods The tissue and serum samples of 97 patients with osteosarcoma were collected, and the serum samples of 100 healthy subjects who concurrently underwent physical examination were selected as the control. FGD5-AS1 expression in tissues and serum was detected, and osteosarcoma cells were transfected to measure cell behaviors such as proliferation, invasion and apoptosis. Results FGD5-AS1 was highly expressed in osteosarcoma, and its elevated expression indicated poor survival of patients. Serum FGD5-AS1 was related to tumor size and clinical stage and could be used for the diagnosis of osteosarcoma. The study of osteosarcoma cell lines U2OS and SaOS-2 showed that after inhibiting FGD5-AS1, the viability and invasion capacity of osteosarcoma cells decreased statistically compared with the control group (CG), while the apoptosis ability could be improved by further regulating apoptotic proteins (P<0.05). Detection of EMT-related proteins identified that E-cadherin increased while N-cadherin decreased significantly after FGD5-AS1 inhibition (P<0.05). Correlation analysis revealed a negative correlation between miR-320b and FGD5-AS1 (r = −0.410, P<0.001). Overexpression of miR-320b significantly inhibited cell viability, invasion and EMT ability, and increased the apoptosis rate, while inhibiting miR-320b expression produced the opposite results. The targeting relationship between miR-320b and FGD5-AS1 was confirmed through the biological prediction website, luciferase assay and RNA binding protein immunoprecipitation (RIP) assay. Inhibition of miR-320b could reverse the regulatory effect of FGD5-AS1 knockdown on osteosarcoma cells. Conclusion FGD5-AS1 is highly expressed in osteosarcoma and is involved in the biological procession of osteosarcoma by targeting miR-320b.
Collapse
|
Journal Article |
5 |
6 |
10
|
Wu K, Wang X, Yu H, Yu Z, Wang D, Xu X. LINC00460 facilitated tongue squamous cell carcinoma progression via the miR-320b/IGF2BP3 axis. Oral Dis 2021; 28:1496-1508. [PMID: 33660359 DOI: 10.1111/odi.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We aimed to explore the role of long intergenic non-protein coding RNA 460 (LINC00460) in tongue squamous cell carcinoma (TSCC). METHODS We enrolled 27 TSCC patients to explore LINC00460 expression in clinical TSCC samples. RT-qPCR measured expression of molecules in this research. Loss-of-function assays explored biological function of LINC00460 in TSCC cells. RNA pull-down assay, luciferase reporter assay, and RIP assay investigated mechanism of LINC00460 underlying TSCC cells. RESULTS TSCC tissues and cell lines both showed high expression of LINC00460. Functionally, LINC00460 downregulation inhibited TSCC cell growth and promoted TSCC cell apoptosis. Additionally, LINC00460 silencing suppressed tumor growth in vivo. Mechanistically, LINC00460 bound with microRNA 320b (miR-320b) in TSCC cells. MiR-320b overexpression suppressed TSCC cell growth and promoted TSCC cell apoptosis. Moreover miR-320b targeted insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) 3'untranslated region in TSCC cells. Furthermore, IGF2BP3 silencing suppressed TSCC cell growth and promoted TSCC cell apoptosis. IGF2BP3 upregulation countervailed effects of silenced LINC00460 on TSCC cells. The LINC00460/miR-320b/IGF2BP3 axis was associated with lymph node metastasis of TSCC patients. CONCLUSION Our research illustrated that LINC00460 facilitated TSCC progression via the miR-320b/IGF2BP3 axis, highlighting a potential insight for the treatment of TSCC.
Collapse
|
Journal Article |
4 |
5 |
11
|
Duan J, Cai H, Huang Y, Shi L. SNAI2-Induced CircMTO1 Promotes Cell Proliferation and Inhibits Apoptosis Through the miR-320b/MCL1 Axis in Human Granulosa-Like Tumor Cells. Front Genet 2021; 12:689916. [PMID: 34413875 PMCID: PMC8369758 DOI: 10.3389/fgene.2021.689916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), one of the most common types of endocrine diseases, is characterized by a high prevalence among women of reproductive-age. However, its pathogenesis and molecular mechanisms remain unclear. CircMTO1 has been reported to participate in numerous biological processes, but, its role in PCOS progression remains unknown. In the current study, we elucidated the expression and circRNA characterization of circMTO1 in human granulosa-like tumor cells. We found that circMTO1 knockdown promoted human granulosa-like tumor cell proliferation and inhibited its apoptosis rate. Next, we explored the underlying molecular mechanisms by using a series of experiments. Our results revealed the effect of the novel circMTO1/miR-320b/MCL1 axis in human granulosa-like tumor cells. Furthermore, we found that the expression of circMTO1 was induced by Snail family transcriptional repressor 2 (SNAI2) in human granulosa-like tumor cells. Our results may provide potential targets for PCOS research and a novel direction for the diagnosis and treatment of PCOS.
Collapse
|
|
4 |
5 |
12
|
Gonzalez-Martinez A, Bose G, Lokhande H, Saxena S, Healy BC, Polgar-Turcsanyi M, Weiner HL, Chitnis T. Early miR-320b and miR-25-3p miRNA levels correlate with multiple sclerosis severity at 10 years: a cohort study. J Neuroinflammation 2023; 20:136. [PMID: 37264432 DOI: 10.1186/s12974-023-02816-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder which may cause long-term disability. MicroRNA (miRNA) are stable, non-coding molecules that have been identified in our Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB)-cohort, as well as other international cohorts, as potential disease biomarkers in MS. However, few studies have evaluated the association of miRNA expression early in the MS disease course with long-term outcomes. Therefore, we aimed to evaluate the potential role of three candidate serum miRNAs previously correlated with MS disability in patients with MS, miR-320b, miR-25-3p and miRNA 486-5p, as early biomarkers of MS disability at 10-year follow-up. MAIN BODY We included 144 patients with serum obtained within three years of MS onset. miRNA expression was measured by RNA extraction followed by RT-PCR. Demographic, clinical, brain MRI and other biomarkers were collected. The primary outcome was the association between early miRNA expression and retaining benign MS, defined as EDSS ≤ 2 at 10-year follow-up. Among the 144 patients, 104 were benign and 40 were not benign at 10-year follow-up. 89 (62%) were women, with mean age at onset 37.7 (SD: 9.6) years. Patients who retained benign MS had lower values of miR-25-3p (p = 0.047) and higher miR-320b (p = 0.025) values. Development of SPMS was associated with higher miR-320b (p = 0.002) levels. Brain parenchymal fraction at year 10 was negatively correlated with miR-25-3p (p = 0.0004) and positively correlated with miR-320b (p = 0.006). No association was found between miR-486-5p and any outcome, and 10-year T2-lesion volume was not associated with any miRNA. CONCLUSIONS Our results show that miR-320b and miR-25-3p expression are early biomarkers associated with MS severity and brain atrophy. This study provides class III evidence of that miR-320b and miR-25-3p are associated with long-term MS disability which may be a potential tool to risk-stratify patients with MS for early treatment decisions.
Collapse
|
|
2 |
5 |
13
|
Xu D, Yang F, Fan Y, Jing W, Wen J, Miao W, Ding X, Yang H. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol 2021; 11:640276. [PMID: 34113562 PMCID: PMC8185642 DOI: 10.3389/fonc.2021.640276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.
Collapse
|
Journal Article |
4 |
3 |
14
|
Martins JRB, Moraes LN, Cury SS, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama POM. MiR-125a-3p and MiR-320b Differentially Expressed in Patients with Chronic Myeloid Leukemia Treated with Allogeneic Hematopoietic Stem Cell Transplantation and Imatinib Mesylate. Int J Mol Sci 2021; 22:ijms221910216. [PMID: 34638557 PMCID: PMC8508688 DOI: 10.3390/ijms221910216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.
Collapse
|
|
4 |
2 |
15
|
Circ_NNT suppresses the apoptosis and inflammation in glucose-induced human retinal pigment epithelium by regulating miR-320b/TIMP3 axis in diabetic retinopathy. Clin Immunol 2022; 238:109023. [PMID: 35477026 DOI: 10.1016/j.clim.2022.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a frequent complication of diabetes. Recent reports have showed that circular RNAs (circRNAs) play important roles in DR progression. Herein, the aim of this study was to explore the role and molecular mechanism of circ_NNT in DR process. METHODS Human retinal pigment epithelial cells ARPE-19 were treated with high glucose (HG) in experimental group. The expression of circ_NNT, miR-320b, and TIMP3 (TIMP Metallopeptidase Inhibitor 3) were determined using quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were conducted by 5-ethynyl-2'-deoxyuridine (EdU) assay, MTT assay, flow cytometry, Western blot, and ELISA. The binding interaction was confirmed using dual-luciferase reporter and pull-down assays. RESULTS HG stimulation led to a decrease of circ_NNT and TIMP3 expression, and an increase of miR-320b expression in ARPE-19 cells. Functionally, circ_NNT up-regulation reversed HG-evoked apoptosis and inflammation in ARPE-19 cells. Mechanistically, circ_NNT acted as a sponge for miR-320b to elevate TIMP3 expression. Further rescue experiments showed that miR-320b elevation attenuated the protective effects of circ_NNT on HG-induced ARPE-19 cells. Moreover, inhibition of miR-320b protected ARPE-19 cells against HG-evoked apoptosis and inflammation, which were abolished by TIMP3 knockdown. CONCLUSION Circ_NNT protected ARPE-19 cells against HG-evoked apoptosis and inflammation via elevating TIMP3 through sequestering miR-320b, indicating that up-regulation of circ_NNT might contribute to the inhibition of DR process.
Collapse
|
|
3 |
|
16
|
Wang J, Tao R, Hu H, Gao J, Liu Y, Xia J, Lan X, Di Y. miR-320b, a Future Expected New Biomarker for Type 2 Diabetes Mellitus Induces Dysglycemia by Targeting PTEN. Int J Endocrinol 2024; 2024:5540062. [PMID: 39502509 PMCID: PMC11535181 DOI: 10.1155/2024/5540062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) has emerged as a global epidemic issue, with high rates of disability and fatality. Traditional diagnostic biomarkers are typically detected once a metabolic imbalance has already occurred, thus the development of early diagnostic biomarkers is crucial for T2DM. Metabolomics studies have identified several predictive biomarkers for T2DM, including miR-320. Our previous research found that miR-320b was significantly downregulated in T2DM patients, but the underlying mechanism remains unclear. Therefore, this study was designed to investigate the significance of miR-320b for T2DM diagnosis and to explore the involved molecular mechanism. Methods: A total of 50 patients with T2DM and 80 sex- and age-matched healthy subjects were selected. The plasma miR-320b of all participations was detected by qRT-PCR and its correlations with other biomarkers of T2DM were analyzed. Besides, the expression of miR-320b in HepG2 cells was suppressed by miRNA inhibitors. Then the glucose consumption of HepG2 cells was measured. The target gene of miR-320b was predicted by four bioinformatics tools and intersected these prediction results by Venny method. The T2DM relevant target genes were identified by the GeneCards database. To ensure disease relevance, these T2DM relevant target genes were subsequently intersected with the target genes of miR-320b. Protein-protein analysis (PPI) was used to screening the gene with the most connections in these target genes. Finally, the target gene of miR-320b specific to T2DM was confirmed directly by luciferase reporter assay. The expression of target gene in HepG2 cell culture supernatant and plasma of all participations was detected. Results: Our results showed that the expression level of miR-320b was significantly lower in T2DM patients compared to the healthy controls. It was negatively correlated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1C), and homeostasis model assessment of insulin resistance (HOMA-IR), but positively with HOMA-β. The glucose consumption of HepG2 cells in the miR-320b inhibitor group was significantly lower compared to inhibitor-NC and blank control group. We predicted and confirmed that phosphatase and tensin homolog (PTEN) was the direct target gene of miR-320b using Bioinformation tools and luciferase reporter assay. Moreover, the concentration of PTEN was significantly higher in the HepG2 cell culture supernatant and plasma of T2DM patients. Conclusions: Our research demonstrated a negative correlation between miR-320b and FPG, HbA1C, and HOMA-IR, while exhibiting a positive correlation with HOMA-β. Suppressing miR-320b expression would impair glucose consumption of HepG2 cells through PI3K pathway by targeting PTEN. These results suggest that miR-320b may be a potential biomarker for diagnosing T2DM and a promising target for therapeutic intervention.
Collapse
|
research-article |
1 |
|
17
|
Wang X, Gong H, Li X, Chen X. Analysis of Abnormal Expression of MiR-320b in Serum of Patients with Hypertension and its Clinical Value. TOHOKU J EXP MED 2024; 263:239-247. [PMID: 38479892 DOI: 10.1620/tjem.2024.j021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Studies have found that miRNAs can participate in the progression of hypertension by affecting the function of endothelial cells and inflammatory response. This study was to investigate the clinical value of miR-320b in patients with hypertension and its potential effect on Angiotensin (Ang) II-induced endothelial cells. Real-time quantitative PCR (RT-qPCR) was used to detect the differential expression of miR-320b in all subjects, and the diagnostic value of miR-320b in hypertension was further evaluated by the receiver operating characteristic (ROC) curve. Ang II-induced human umbilical vein endothelial cells (HUVECs) were established as a model of hypertension injury. The possible downstream target gene AKT serine/threonine kinase 3 (AKT) of miR-320b was predicted through TargetScan, and the interaction between miR-320b and AKT3 was verified by luciferase reporter gene. The results showed that serum miR-320b was reduced in patients with hypertension compared with healthy people (P < 0.001). With the increase of hypertension grade, the serum miR-320b level of patients gradually decreased (P < 0.001). ROC analysis showed that miR-320b had the ability to distinguish patients from healthy people. Cell analysis proved that Ang II induced the decrease of HUVECs viability and the activation of apoptosis and inflammation, while overexpression of miR-320b inhibited Ang II-induced apoptosis and inflammation and promoted cell growth (P < 0.05). Luciferase reporter gene showed that AKT3 was the downstream target gene of miR-320b. In summary, this study suggests that miR-320b alleviates Ang II-induced apoptosis, inflammation and the inhibition of cell viability by targeting AKT3 expression, and may be involved in the pathogenesis of hypertension.
Collapse
|
|
1 |
|
18
|
Li Q, Zhang B, Lu J, Wa Q, He M, Xie L, Zhang L. SNHG1 functions as a ceRNA in hypertrophic scar fibroblast proliferation and apoptosis through miR-320b/CTNNB1 axis. Arch Dermatol Res 2023; 315:1593-1601. [PMID: 36754869 DOI: 10.1007/s00403-022-02516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023]
Abstract
Hypertrophic scar (HS) is a fibrotic disease caused by skin injury. Competing endogenous RNA (ceRNA) has been demonstrated to implicate in the regulation of cell malignant phenotypes. This research aims to reveal the effect of catenin beta 1 (CTNNB1) on the functions of hypertrophic scar fibroblasts (HSFBs) and its role in a ceRNA network. RNA expression level was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The proliferation and apoptosis of HSFB was detected via Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. Mechanism experiments included RNA pull down assay, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were applied to analyze the upstream molecular mechanism of CTNNB1. CTNNB1 was highly expressed in HSFB. CTNNB1 depletion repressed malignant growth of HSFB. Mechanically, CTNNB1 was targeted by microRNA-320b (miR-320b) in HSFB. Small nucleolar RNA host gene 1 (SNHG1) aced as a ceRNA to upregulate CTNNB1 expression via sponging miR-320b in HSFB. CTNNB1 overexpression could reverse the impact of SNHG1 depletion on the proliferation and apoptosis of HSFB. SNHG1 acts as a ceRNA in modulating HSFB proliferation and apoptosis through miR-320b/CTNNB1 axis. SNHG1 act as a ceRNA to promote HSFB growth by sponging miR-320b to upregulate CTNNB1.
Collapse
|
|
2 |
|
19
|
Li J, Ke J, Qin CL, Zhu X. LINC00680 modulates docetaxel resistance in breast cancer via the miR-320b/CDKL5 axis. Int J Immunopathol Pharmacol 2022; 36:3946320221105608. [PMID: 35667653 PMCID: PMC9178731 DOI: 10.1177/03946320221105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Increasing evidence has indicated that LINC00680 represents an oncogenic factor in cancer; however, the mechanism by which LINC00680 contributes to breast cancer (BC) remains unknown. Methods: A dual-luciferase reporter assay was used to explore the relationship between LINC00680, miR-320b, and cyclin-dependent kinase 5 (CDKL5). A CCK-8 assay and transwell assay were utilized to evaluate the proliferation and invasion in docetaxel-resistant BC cells, respectively. Results: LINC00680 and CDKL5 protein levels were both upregulated when induced by different concentrations of docetaxel. LINC00680 knockdown decreased the expression level of drug resistance-related genes, proliferation, and invasion of BC cells. Bioinformatics prediction and dual-luciferase assays revealed that miR-320b targeted the 3′-unstranslated regions (UTR) of both LINC00680 and CDKL5, suggesting that the modulation of LINC00680 on CDKL5 occurred via sequestering miR-320b. Conclusion: Overall, this study highlights the important role of LINC00680 in docetaxel resistance through the miR-320b/CDKL5 pathway and provides a novel therapeutic strategy for BC drug resistance.
Collapse
|
|
3 |
|
20
|
Wang Y, Yuan Y, Shen S, Ge Z, Zhu D, Bi Y. Placenta-derived exosomes exacerbate beta cell dysfunction in gestational diabetes mellitus through delivery of miR-320b. Front Endocrinol (Lausanne) 2024; 14:1282075. [PMID: 38260139 PMCID: PMC10800463 DOI: 10.3389/fendo.2023.1282075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Recent studies have shown placenta-derived exosome (pdE) acts as an important mediator of organ-to-organ interplay regulating maternal metabolic alterations, however, the function and mechanisms of placental exosomes on pancreatic β-cell maladaptation in gestational diabetes mellitus (GDM) remain unclear. The purpose of this investigation was to ascertain how placental exosomes affected the β-cell dysfunction associated with the onset of GDM. Exosomes were isolated from chorionic villi explants of pregnant mice and humans with normal glucose tolerance (NGT) and GDM. The effects of pdE from GDM on glucose tolerance in vivo and islets function in vitro were determined. Isolated islets from mice fed on the chow diet displayed an increase in apoptosis and observed their glucose-stimulated insulin secretion (GSIS) greatly diminished by PdE from GDM mice. Mice that accepted PdE from mice with GDM possessed glucose intolerance.Based on miRNA microarray assay and bioinformatics analysis from human placental exosomes, we identified miR-320b selectively enriched in PdE secreted in GDM compared with NGT. Importantly, the level of placental miR-320b was positively correlated with the 1h-glucose and 2-h glucose of a 75 g oral glucose tolerance test (OGTT) during human pregnancies. Furthermore, miR-320 overexpression attributed to impaired insulin secretion and increased apoptosis in MIN6 cells and islets obtained from mice with normal insulin sensitivity. This study firstly proposed that altered miRNAs in pdE contribute to defective adaptation of β cells during pregnancy, which expands the knowledge of GDM pathogenesis. Exosomes from the placenta may be an emerging therapeutic target for GDM.
Collapse
|
research-article |
1 |
|
21
|
Chen F, Gao K, Li Y, Li Y, Wu Y, Dong L, Yang Z, Shi J, Guo K, Gao Q, Lu H, Zhang S. ST3GAL1 Promotes Malignant Phenotypes in Intrahepatic Cholangiocarcinoma. Mol Cell Proteomics 2024; 23:100821. [PMID: 39069074 PMCID: PMC11385758 DOI: 10.1016/j.mcpro.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.
Collapse
|
research-article |
1 |
|