Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2.
J Cell Biochem 2014;
115:232-42. [PMID:
24038201 DOI:
10.1002/jcb.24655]
[Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
miRNAs are expressed in many mammalian cells, acting specific roles in regulating gene expression or mediating special mRNAs cleavage by targeting their 3'-untranslated region (3'UTR). Some miRNAs are essential and important for animal development. However, it is still unclear what the relationship is between miR-34c and mammalian spermatogonial stem cells (SSCs). We found that a conserved microRNA-34c through its target-Nanos2, regulating SSCs' differentiation in mouse. Immunohistochemistry analysis of Nanos2 and miR-34c FISH results revealed the opposite expression trends between them. Seven bioinformatics websites and programs predicted that miR-34c has interaction sites in Nanos2's 3'UTR. Dual-luciferase reporter vector and mutated dual-luciferase reporter vector analysis validated that they are interacted. After transfection miR-34c mimics into mouse SSCs, or miR-34c lentiviral vector in vitro co-cultivation with seminiferous tubules, and Western blot analysis demonstrated that miR-34c over-expression could suppress Nanos2 expression in post-transcription level. Our experiments identified that miR-34c may promote meiosis process by interacting with Nanos2 leading up-regulation of Stra8 in mouse spermatogonial stem cells.
Collapse