Liao L, Chen J, Peng S. hsa_circ_0000047 targeting
miR-6720-5p/CYB5R2 axis alleviates inflammation and angiogenesis in diabetic retinopathy.
Arch Physiol Biochem 2024;
130:537-545. [PMID:
36971486 DOI:
10.1080/13813455.2023.2190055]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Context: Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). Circular RNAs (circRNAs) act as key regulators of DR development by regulating inflammation and angiogenesis.Objective: This study aimed to elucidate the function and mechanism of hsa_circ_0000047 in DR.Materials and methods: High glucose (HG) was used to induce human retinal microvascular endothelial cells (hRMECs) to construct a DR model in vitro. Qualitative real-time polymerase chain reaction (qRT-PCR) or western blotting were used to detected the levels of hsa_circ_0000047, miR-6720-5p, and CYB5R2 in DR and HG-indeced hRMECs. Cell functional experiments were performed to detect the change of viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Besides, the correlation between miR-6720-5p and hsa_circ_0000047/CYB5R2 was confirmed by luciferase assay and Pearson correlation analysis.Results: hsa_circ_0000047 and CYB5R2 were downregulated in DR, whereas miR-6720-5p was upregulated in DR. Cell functional experiments showed that hsa_circ_0000047 overexpression restrained viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Regarding mechanism, hsa_circ_0000047 could sponge miR-6720-5p to regulate CYB5R2 expression in hRMECs. Additionally, CYB5R2 knockdown reversed the effects of hsa_circ_0000047 overexpression on HG-induced hRMECs.Conclusion: Our study revealed that hsa_circ_0000047 alleviated inflammation and angiogenesis in HG-induced hRMECs by targeting the miR-6720-5p/CYB5R2 axis, which may be a novel biomarker for DR therapy.
Collapse