1
|
Yang H, Chen J. Bone marrow mesenchymal stem cell-derived exosomes carrying long noncoding RNA ZFAS1 alleviate oxidative stress and inflammation in ischemic stroke by inhibiting microRNA-15a-5p. Metab Brain Dis 2022; 37:2545-2557. [PMID: 35907132 DOI: 10.1007/s11011-022-00997-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND/AIM Bone marrow mesenchymal stem cell (BMSC)-derived exosomes can prevent oxidative stress and inflammation in cerebral ischemia-reperfusion injury. This study intended to assess influences of BMSC-released exosomes on oxidative stress and inflammation following ischemic stroke. METHODS In vitro and in vivo models were developed using oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO), respectively. After exosome isolation, co-culture experiments of BMSCs or BMSC-derived exosomes and OGD/R-treated BV-2 cells were implemented to evaluate the impacts of BMSCs or BMSC-secreted exosomes on proliferation, inflammation, oxidative stress, and apoptosis. The gain-of-function experiments of ZFAS1 or microRNA (miR)-15a-5p were conducted to investigate the associated mechanisms. Besides, MCAO mice were injected with exosomes from BMSCs overexpressing ZFAS1 for in vivo verification. The binding of ZFAS1 to miR-15a-5p was assessed through dual-luciferase reporter gene assay. RESULTS Co-culture with BMSCs accelerated proliferation and downregulated IL-1β, IL-6, and TNF-α in OGD/R-exposed BV-2 cells, accompanied by increased SOD level and decreased MDA level and apoptosis, all of which were nullified by inhibiting exosome secretion. Mechanistically, ZFAS1 bound to miR-15a-5p to negatively orchestrate its expression. In addition, BMSC-released exosomes or BMSC-secreted exosomal ZFAS1 augmented proliferation but reduced oxidative stress, apoptosis, and inflammation in OGD/R-exposed BV-2 cells, whereas these impacts of BMSC-released exosomal ZFAS1 were nullified by overexpressing miR-15a-5p. Moreover, BMSC-derived exosomal ZFAS1 diminished MCAO-induced oxidative stress, cerebral infarction, and inflammation in mice. CONCLUSIONS Conclusively, BMSC-released exosomes might carry long noncoding RNA ZFAS1 to curb oxidative stress and inflammation related to ischemic stroke, which was possibly realized through miR-15a-5p inhibition.
Collapse
|
2
|
Wang X, Zhang M, Jiang L, Fang X, Zhang T. Exosomal AFAP1-AS1 binds to microRNA-15a-5p to promote the proliferation, migration, and invasion of ectopic endometrial stromal cells in endometriosis. Reprod Biol Endocrinol 2022; 20:77. [PMID: 35513844 PMCID: PMC9069797 DOI: 10.1186/s12958-022-00942-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/12/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Endometriosis (EMS) remains a major challenge to reproductive health due to multifactorial etiology, disease heterogeneity, and the lack of appropriate diagnostic markers and treatment. Eexosome (Exo) has become a major factor in progression of a variety of diseases. However, the mechanisms directing their role in the pathophysiology of EMS are ill-defined. Here, we aimed to investigate the clinical implications of actin filament associated protein 1-Antisense RNA 1 (AFAP1-AS1) in EMS. METHODS Bioinformatics analysis was used to predict the expression and interaction of AFAP1-AS1, miR-15a-5p and BCL9 in EMS, and dual luciferase reporter assay was used to verify the targeted relationship of AFAP1-AS1, miR-15a-5p, and BCL9. The Exo from endometrial stromal cells (ESCs) was isolated and characterized by transmission electron microscopy (TEM) and Nanoparticle tracking analysis (NTA). Exosome uptake studies were performed. For in vitro assay, ectopic ESCs (EcESCs) proliferation, migration, and invasion were assessed by CCK-8 and Transwell assays. In vivo assay was performed by establishment of EMS mice to validate the result derived from in vitro assay. RESULTS The Exo was successfully isolated from ESCs and we observed high expression of AFAP1-AS1 and BCL9 but low expression of miR-15a-5p in EMS. Moreover, Exo derived from EcESCs could deliver AFAP1-AS1 to EcESCs and thus promoting proliferation, migration, and invasion of ESCs. AFAP1-AS1 bound to BCL9, which was targeted by miR-15a-5p in EMS. In vivo experiments in nude mice revealed that inhibition of Exosomal AFAP1-AS1 suppressed migration and invasion of EcESCs through miR-15a-5p/BCL9. CONCLUSIONS Collectively, these findings suggested that ESCs-derived Exo carrying AFAP1-AS1 contributed to EMS pathogenesis. This study might help us realize the etiology of EMS and improve the treatment of the related complications.
Collapse
|
3
|
Zhang J, Zhang D, Yan X, Jiang F. The expression level and prognostic value of microRNA-15a-5p in endometrial carcinoma. Transl Cancer Res 2021; 10:4838-4844. [PMID: 35116336 PMCID: PMC8798199 DOI: 10.21037/tcr-21-2079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent studies have shown that the microRNA-15a-5p (miR-15a-5p) plays varying roles in different malignancies. However, to date, the role and prognostic value of miR-15a-5p in patients with endometrial cancer has not been explored. This study investigated the expression level of miR-15a-5p in endometrial carcinoma and its prognostic value. METHODS A total of 108 patients with endometrial cancer treated in our hospital from January 2015 to January 2016 were enrolled in this study. The patients were followed up for 5 years. Patients who experienced recurrence or metastasis after surgery were assigned into the recurrence and metastasis group (n=45) and the remaining patients were assigned into the control group (n=63). The expression level of microRNA-15a-5p in endometrial cancer was analyzed. Furthermore, the correlation between the expression of miR-15a-5p and the pathological features and prognosis was examined. RESULTS The expression of miR-15a-5p in endometrial carcinoma was significantly lower than that in adjacent healthy tissues (2.22±0.75 vs. 2.59±0.91, P=0.000). Furthermore, the expression of miR-15a-5p in the endometrial cancer tissues of patients in the recurrence and metastasis group was significantly lower than that observed in patients in the control group (1.91±0.62 vs. 2.45±0.75, P=0.000). The receiver operating characteristic curve was used to analyze the predictive value of miR-15a-5p in endometrial cancer tissue for postoperative recurrence or metastasis in endometrial cancer patients. The area under the curve was 0.690 [95% confidence interval (CI): 0.601 to 0.798, P=0.000], the best cut-off value of diagnosis was 2.325, the sensitivity was 0.619, and the specificity was 0.733. Multivariate logistic regression analysis showed that miR-15a-5p expression <2.325 was a risk factor for postoperative recurrence or metastasis of endometrial cancer [odds ratio (OR) =3.544 (95% CI: 1.489 to 8.436), P=0.004]. Furthermore, the expression of miR-15a-5p in endometrial carcinoma was correlated with lymph node metastasis, TNM stage, and patient mortality. CONCLUSIONS The expression of miR-15a-5p in endometrial carcinoma is related to lymph node metastasis, TNM stage, and mortality. Furthermore, the expression of miR-15a-5p was significantly decreased in endometrial cancer patients with recurrence or metastasis and thus, miR-15a-5p may have certain value in predicting postoperative recurrence or metastasis in such patients.
Collapse
|
4
|
Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:177. [PMID: 34039401 PMCID: PMC8152341 DOI: 10.1186/s13046-021-01973-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Background Hepatocellular carcinoma (HCC) cells-secreted exosomes (exo) could stimulate M2 macrophage polarization and promote HCC progression, but the related mechanism of long non-coding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) with HCC-exo-mediated M2 macrophage polarization is largely ambiguous. Thereafter, this research was started to unearth the role of DLX6-AS1 in HCC-exo in HCC through M2 macrophage polarization and microRNA (miR)-15a-5p/C-X-C motif chemokine ligand 17 (CXCL17) axis. Methods DLX6-AS1, miR-15a-5p and CXCL17 expression in HCC tissues and cells were tested. Exosomes were isolated from HCC cells with overexpressed DLX6-AS1 and co-cultured with M2 macrophages. MiR-15a-5p/CXCL17 down-regulation assays were performed in macrophages. The treated M2 macrophages were co-cultured with HCC cells, after which cell migration, invasion and epithelial mesenchymal transition were examined. The targeting relationships between DLX6-AS1 and miR-15a-5p, and between miR-15a-5p and CXCL17 were explored. In vivo experiment was conducted to detect the effect of exosomal DLX6-AS1-induced M2 macrophage polarization on HCC metastasis. Results Promoted DLX6-AS1 and CXCL17 and reduced miR-15a-5p exhibited in HCC. HCC-exo induced M2 macrophage polarization to accelerate migration, invasion and epithelial mesenchymal transition in HCC, which was further enhanced by up-regulated DLX6-AS1 but impaired by silenced DLX6-AS1. Inhibition of miR-15a-5p promoted M2 macrophage polarization to stimulate the invasion and metastasis of HCC while that of CXCL17 had the opposite effects. DLX6-AS1 mediated miR-15a-5p to target CXCL17. DLX6-AS1 from HCC-exo promoted metastasis in the lung by inducing M2 macrophage polarization in vivo. Conclusion DLX6-AS1 from HCC-exo regulates CXCL17 by competitively binding to miR-15a-5p to induce M2 macrophage polarization, thus promoting HCC migration, invasion and EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01973-z.
Collapse
|
5
|
Wang H, Yang Q, Li J, Chen W, Jin X, Wang Y. MicroRNA-15a-5p inhibits endometrial carcinoma proliferation, invasion and migration via downregulation of VEGFA and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2021; 21:310. [PMID: 33732386 PMCID: PMC7905532 DOI: 10.3892/ol.2021.12570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common malignant gynecological tumors. Dysregulation of microRNAs (miRNAs/miRs) is frequently identified in human tumors, playing key regulatory roles in tumor growth and metastasis. The present study aimed to explore the functions and potential mechanisms of miR-15a-5p in EC progression. RT-qPCR was used to detect the expression levels of miR-15a-5p and vascular endothelial growth factor A (VEGFA) mRNA. Western blot analysis was performed to examine the expression of related proteins. Functional assays, including proliferation and Transwell assays were performed to determine the roles of miR-15a-5p in EC progression. TargetScan and luciferase reporter assays were used to explore the potential target genes of miR-15a-5p. The results revealed that miR-15a-5p was underexpressed in EC tissue samples in comparison with that in matched normal tissue samples. The expression level of miR-15a-5p was associated with the clinicopathologic characteristics of EC patients. Notably, both in vitro and in vivo assays revealed that miR-15a-5p upregulation significantly inhibited EC growth and metastasis. Furthermore, bioinformatics analysis and dual luciferase reporter assay indicated that VEGFA was a candidate target of miR-15a-5p. Mechanistic investigation revealed that miR-15a-5p inhibited EC development via regulation of Wnt/β-catenin pathway and targeting of VEGFA. In summary, the present results demonstrated that miR-15a-5p could inhibit EC development and may serve as a promising therapeutic biomarker in EC.
Collapse
|
6
|
Yun Z, Meng F, Li S, Zhang P. Long non-coding RNA CERS6-AS1 facilitates the oncogenicity of pancreatic ductal adenocarcinoma by regulating the microRNA-15a-5p/FGFR1 axis. Aging (Albany NY) 2021; 13:6041-6054. [PMID: 33581689 PMCID: PMC7950275 DOI: 10.18632/aging.202540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
The long non-coding RNA CERS6 antisense RNA 1 (CERS6-AS1) has critical regulatory roles in breast cancer progression. Here, we determined CERS6-AS1 expression in pancreatic ductal adenocarcinoma (PDAC) and the roles of CERS6-AS1 in PDAC carcinogenesis. The mechanisms underlying the regulatory actions of CERS6-AS1 in PDAC cells were elucidated in detail. CERS6-AS1 expression was evidently increased in PDAC tissues and cell lines. Patients with PDAC having high CERS6-AS1 expression had shorter overall survival periods than those having low CERS6-AS1 expression. Functionally, the knockdown of CERS6-AS1 attenuated the proliferation, migration, and invasion and stimulated apoptosis of PDAC cells in vitro. Additionally, CERS6-AS1 depletion decreased PDAC tumor growth in vivo. Mechanistically, CERS6-AS1 could competitively bind to microRNA-15a-5p (miR-15a-5p) and effectively work as a molecular sponge in PDAC cells, resulting in the upregulation of fibroblast growth factor receptor 1 (FGFR1), a direct target of miR-15a-5p. Rescue experiments revealed that miR-15a-5p downregulation or FGFR1 restoration rescued the effects of CERS6-AS1 knockdown on the behaviors of PDAC cells. In conclusion, CERS6-AS1 promoted the oncogenicity of PDAC by serving as a competing endogenous RNA to sequester miR-15a-5p and increase FGFR1 expression, which highlights the potential of the CERS6-AS1/miR-15a-5p/FGFR1 pathway as an effective target for cancer therapy.
Collapse
|
7
|
Kong F, Li X, Li S, Sheng D, Li W, Song M. MicroRNA-15a-5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncol Lett 2020; 21:103. [PMID: 33376536 PMCID: PMC7751353 DOI: 10.3892/ol.2020.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a type of malignant tumor occurring in the brain that severely influences the life of affected individuals. GBM cells are highly infiltrative, which is one of the main obstacles in the treatment of the disease. Numerous microRNAs (miRNAs/miRs) are associated with the development of GBM. However, the effects of miR-15a-5p on GBM remain elusive. In the present study, reverse transcription-quantitative PCR and western blot analysis were applied for the detection of RNA and protein levels, respectively. Cell Counting Kit-8 and Transwell assays were performed to examine cell proliferation and invasion, respectively. TargetScan 7.1 and dual-luciferase reporter assay were utilized for the prediction and verification of the association between miRNAs and mRNAs. The present study revealed that miR-15a-5p expression was upregulated in the GBM T98G cell line. The results further demonstrated that, through the inhibition of cell adhesion molecule 1 expression and the promotion of Akt phosphorylation, miR-15a-5p was able to promote GBM cell proliferation and invasion. Overall, the present findings revealed a novel mechanism responsible for the development of GBM and provided an experimental basis for the diagnosis and treatment of GBM.
Collapse
|
8
|
Zhou F, Liu Z, Cai H, Miao Z, Wei F, Song C. Role of microRNA-15a-5p/TNFAIP3-interacting protein 2 axis in acute lung injury induced by traumatic hemorrhagic shock. Exp Ther Med 2020; 20:2. [PMID: 32934667 PMCID: PMC7471858 DOI: 10.3892/etm.2020.9130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-15a-5p in the pathogenesis of acute lung injury induced by traumatic hemorrhagic shock (THS), and to explore the underlying molecular mechanism. The expression level of miR-15a-5p was detected using reverse transcription-quantitative (RT-qPCR) and the association between miR-15a-5p and TNFAIP3-interacting protein 2 (TNIP2) was revealed using TargetScan and dual luciferase reporter assays. To investigate the effect of miR-15a-5p on THS-induced acute lung injury, a THS rat model was established. Lung capillary permeability and lung edema were then determined. Moreover, proinflammatory factors in the bronchoalveolar lavage fluid (BALF) and serum of the THS rat model were detected using ELISA. In addition, protein levels in the current study were measured via western blotting. It was revealed that miR-15a-5p was significantly upregulated in both patients with THS and samples from the THS rat model. TNIP2 represents a direct target of miR-15a-5p, and it was downregulated in both patients with THS and the THS rat model. Further analyses indicated that downregulation of miR-15a-5p significantly relieved acute lung injury induced by THS, evidenced by a decreased ratio of Evan's blue dye (EBD) in the BALF to EBD in plasma of THS rats, decreased lung permeability index and reduced lung wet/dry ratio. Inhibition of miR-15a-5p also decreased THS-induced upregulation of pro-inflammatory factors. Furthermore, the data revealed that THS-induced NF-κB activation in the lung tissues of rats was inhibited by miR-15a-5p knockdown. Moreover, it was demonstrated that all the effects of miR-15a-5p on THS rats were ablated following TNIP2 silencing. Taken together, the data of the current study indicate that miR-15a-5p downregulation serves a protective role in THS-induced acute lung injury via directly targeting TNIP2.
Collapse
|
9
|
Liu S, Meng X. LINC00662 Long Non-Coding RNA Knockdown Attenuates the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Regulating the microRNA-15a-5p/Notch2 Axis. Onco Targets Ther 2020; 13:7517-7530. [PMID: 32848412 PMCID: PMC7429411 DOI: 10.2147/ott.s256464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is a frequently occurring malignancy in children and adolescents. In this study, we aimed to investigate the effects of the long non-coding RNA (lncRNA) LINC00662 (LINC00662) in OS and the underlying molecular mechanism. Methods The expression of LINC00662, microRNA-15a-5p (miR-15a-5p), and Notch2 in OS was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, and invasion of OS cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assay. The interactions among LINC00662, miR-15a-5p, and Notch2 were determined by dual-luciferase reporter assays. A tumor xenograft model was established in mice for evaluating tumor growth in vivo. Results The expression of LINC00662 and Notch2 was found to be upregulated in OS, but the expression of miR-15a-5p was downregulated. The results demonstrated that LINC00662 knockdown attenuated the proliferation, migration, and invasion of OS cells and suppressed tumor growth in mice. The study further demonstrated that LINC00662 directly interacted with miR-15a-5p, and that Notch2 was a target of miR-15a-5p. The inhibition of miR-15a-5p or Notch2 overexpression markedly reversed the suppressive effect of sh-LINC00662 on the proliferation, migration, and invasion of OS cells. Conclusion The study demonstrated that LINC00662 could be a potential biomarker for OS therapy, and LINC00662 knockdown suppressed the proliferation, migration, and invasion of OS cells by regulating the miR-15a-5p/Notch2 axis.
Collapse
|
10
|
Lou Y, Huang Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp Ther Med 2020; 19:3060-3068. [PMID: 32256793 PMCID: PMC7086208 DOI: 10.3892/etm.2020.8547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
The mortality rate for patients experiencing sepsis is decreasing; however, an effective therapeutic strategy requires further investigation. Increasing evidence has supported the idea that dysregulated microRNAs (miR) participate in the development of sepsis. Meanwhile, macrophages are crucial players in various inflammatory responses and diseases. The objective of the current study was to investigate the associated molecular mechanisms of action of miR-15a-5p on inflammatory responses in lipopolysaccharide (LPS)-stimulated mouse macrophages and the macrophage cell line RAW264.7. RAW264.7 macrophages were stimulated with LPS for 4 h, and ELISAs were subsequently used to measure the expression levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, in RAW264.7 macrophages. The expression levels of miR-15a-5p in RAW264.7 macrophages were detected after the stimulation of LPS using reverse transcription quantitative-PCR. The results indicated that the IL-1β, IL-6, TNF-α and miR-15a-5p levels were significantly increased compared with the control group. The Target gene prediction database (TargetScan) and dual-luciferase reporter assays were subsequently employed, and TNF-α induced protein 3-interacting protein 2 (TNIP2) was confirmed as a direct target for miR-15a-5p. Additionally, it was found that the TNIP2 expression levels were decreased in RAW264.7 macrophages following LPS treatment compared with controls. The present study also examined the effects of miR-15a-5p inhibitor on inflammatory cytokine expression levels and the activation of the NF-κ signaling pathway. These results demonstrated that miR-15a-5p inhibitor reduced the secretion of inflammatory cytokines and inhibited NF-κ pathway activation by targeting TNIP2. This may be associated with the progression of sepsis. Meanwhile, a LPS-induced mouse model of sepsis was established to examine the regulation of TNIP2 and miR-15a-5p during inflammation. In the animal model, miR-15a-5p inhibitor significantly suppressed the secretion of inflammatory factors. The levels of creatin, blood urea nitrogen, aspartate aminotransferase and alanine aminotransferase in the serum of LPS-treated mice were also found to be decreased in the miR-15a-5p inhibitor treatment group, while the protective effects of miR-15a-5p inhibitor on sepsis were eliminated by TNIP2-small interfering RNA combination therapy. In conclusion, the present findings indicated that miR-15a-5p may be involved in the inflammatory process during sepsis by activating the NF-κ pathway and targeting TNIP2. This suggests that miR-15a-5p inhibitor may be a novel anti-inflammatory agent and therapeutic strategy for sepsis.
Collapse
|