1
|
Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L, Liu H, Zhong J, Sluijter JPG, Li X, Rosenzweig A, Xiao J. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Am J Cancer Res 2017; 7:664-676. [PMID: 28255358 PMCID: PMC5327641 DOI: 10.7150/thno.15162] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/04/2016] [Indexed: 12/28/2022] Open
Abstract
Limited microRNAs (miRNAs, miRs) have been reported to be necessary for exercise-induced cardiac growth and essential for protection against pathological cardiac remodeling. Here we determined members of the miR-17-92 cluster and their passenger miRNAs expressions in two distinct murine exercise models and found that miR-17-3p was increased in both. miR-17-3p promoted cardiomyocyte hypertrophy, proliferation, and survival. TIMP-3 was identified as a direct target gene of miR-17-3p whereas PTEN was indirectly inhibited by miR-17-3p. Inhibition of miR-17-3p in vivo attenuated exercise-induced cardiac growth including cardiomyocyte hypertrophy and expression of markers of myocyte proliferation. Importantly, mice injected with miR-17-3p agomir were protected from adverse remodeling after cardiac ischemia/reperfusion injury. Collectively, these data suggest that miR-17-3p contributes to exercise-induced cardiac growth and protects against adverse ventricular remodeling. miR-17-3p may represent a novel therapeutic target to promote functional recovery after cardiac ischemia/reperfusion.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
173 |
2
|
Wang Y, Chen X, Tian B, Liu J, Yang L, Zeng L, Chen T, Hong A, Wang X. Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer. Theranostics 2017; 7:1360-1372. [PMID: 28435471 PMCID: PMC5399599 DOI: 10.7150/thno.16532] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Small interfering RNAs (siRNA)/microRNAs (miRNA) have promising therapeutic potential, yet their clinical application has been hampered by the lack of appropriate delivery systems. Herein, we employed extracellular vesicles (EVs) as a targeted delivery system for small RNAs. EVs are cell-derived small vesicles that participate in cell-to-cell communication for protein and RNA delivery. We used the aptamer AS1411-modified EVs for targeted delivery of siRNA/microRNA to breast cancer tissues. Tumor targeting was facilitated via AS1411 binding to nucleolin, which is highly expressed on the surface membrane of breast cancer cells. This delivery vesicle targeted let-7 miRNA delivery to MDA-MB-231 cells in vitro as confirmed with fluorescent microscopic imaging and flow cytometry. Also, intravenously delivered AS1411-EVs loaded with miRNA let-7 labeled with the fluorescent marker, Cy5, selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Importantly, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response. Thus, the RNAi nanoplatform is versatile and can deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo. Our results suggest that the AS1411-EVs have a great potential as drug delivery vehicles to treat cancers.
Collapse
|
research-article |
8 |
146 |
3
|
Zhang Y, Xia R, Kuang H, Meyers BC. The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them. Mol Biol Evol 2016; 33:2692-705. [PMID: 27512116 PMCID: PMC5026261 DOI: 10.1093/molbev/msw154] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High expression of plant nucleotide binding site leucine-rich repeat (NBS-LRR) defense genes is often lethal to plant cells, a phenotype perhaps associated with fitness costs. Plants implement several mechanisms to control the transcript level of NBS-LRR defense genes. As negative transcriptional regulators, diverse miRNAs target NBS-LRRs in eudicots and gymnosperms. To understand the evolutionary benefits of this miRNA-NBS-LRR regulatory system, we investigated the NBS-LRRs of 70 land plants, coupling this analysis with extensive small RNA data. A tight association between the diversity of NBS-LRRs and miRNAs was found. The miRNAs typically target highly duplicated NBS-LRRs In comparison, families of heterogeneous NBS-LRRs were rarely targeted by miRNAs in Poaceae and Brassicaceae genomes. We observed that duplicated NBS-LRRs from different gene families periodically gave birth to new miRNAs. Most of these newly emerged miRNAs target the same conserved, encoded protein motif of NBS-LRRs, consistent with a model of convergent evolution for these miRNAs. By assessing the interactions between miRNAs and NBS-LRRs, we found nucleotide diversity in the wobble position of the codons in the target site drives the diversification of miRNAs. Taken together, we propose a co-evolutionary model of plant NBS-LRRs and miRNAs hypothesizing how plants balance the benefits and costs of NBS-LRR defense genes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
139 |
4
|
Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M. Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics 2017; 7:3461-3477. [PMID: 28912888 PMCID: PMC5596436 DOI: 10.7150/thno.20657] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced. The effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling. Moreover, SFN stimulated energy stress as judged by decreased pools of ATP and AMPK activation, and autophagy induction. Anticancer effects of SFN were mediated by global DNA hypomethylation, decreased levels of DNA methyltransferases (DNMT1, DNMT3B) and diminished pools of N6-methyladenosine (m6A) RNA methylation. SFN (10 µM) also affected microRNA profiles, namely SFN caused upregulation of sixty microRNAs and downregulation of thirty two microRNAs, and SFN promoted statistically significant decrease in the levels of miR-23b, miR-92b, miR-381 and miR-382 in three breast cancer cells. Taken together, we show for the first time that SFN is an epigenetic modulator in breast cancer cells that results in cell cycle arrest and senescence, and SFN may be considered to be used in epigenome-focused anticancer therapy.
Collapse
|
research-article |
8 |
138 |
5
|
Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital heart disease: the crossroads of genetics, epigenetics and environment. Curr Genomics 2014; 15:390-9. [PMID: 25435801 PMCID: PMC4245698 DOI: 10.2174/1389202915666140716175634] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023] Open
Abstract
Congenital heart diseases (CHDs) are recognized as the most common type of birth malformations. Although recent advances in pre- and neonatal diagnosis as well as in surgical procedures have reduced the morbidity and mortality for many CHD, the etiology for CHD remains undefined. In non-syndromic and isolated (without a familial history or a Mendelian inheritance) forms of CHDs, a multifactorial pathogenesis with interplay between inherited and non-inherited causes is recognized. In this paper, we discuss the current knowledge of the potential molecular mechanisms, mediating abnormal cardiac development in non-syndromic and isolated CHD, including mutations in cardiac transcription factors, the role of somatic mutations and epigenetic alterations as well as the influence of gene-environment interactions. In the near future, the advent of high-throughput genomic technologies with the integration of system biology will expand our understanding of isolated, non-syndromic CHDs for their prevention, early diagnosis and therapy.
Collapse
|
Journal Article |
11 |
71 |
6
|
Iqbal J, Al Qarni A, Hawwari A, Alghanem AF, Ahmed G. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr Diabetes Rev 2018; 14:427-433. [PMID: 28677496 DOI: 10.2174/1573399813666170705161039] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic syndrome is associated with increased risk for both type 2 diabetes and cardiovascular disease. Development of these pathologies is associated with the disorders of lipid and lipoprotein metabolism. Dyslipidemia leads to the overproduction of potentially atherogenic lipid and lipoproteins. Furthermore, there is a decrease in the levels of high-density lipoproteins and an increase in the levels of remnant and small dense LDL particles. CONCLUSION In the current review, we have discussed the pathophysiology of lipoprotein biosynthesis and metabolism in the metabolic syndrome. Finally, we describe regulation of lipoprotein metabolism which may be used as a potential target for treating dyslipidemia in metabolic syndrome.
Collapse
|
Review |
7 |
62 |
7
|
Wang N, Tan HY, Li S, Feng Y. Atg9b Deficiency Suppresses Autophagy and Potentiates Endoplasmic Reticulum Stress-Associated Hepatocyte Apoptosis in Hepatocarcinogenesis. Theranostics 2017; 7:2325-2338. [PMID: 28740555 PMCID: PMC5505064 DOI: 10.7150/thno.18225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the mechanism underlying autophagy deficiency during hepatic carcinogenesis. For this purpose, we used choline-deficient, amino acid-defined (CDAA) hepatocarcinogenesis model in mice. miRNA microarrays combined with computational target predictions and GO analysis were used to identify molecular processes involved in carcinogenesis. PCR profiler array was employed to detect the dysregulated autophagy-related genes during carcinogenesis. We observed induction of hepatic tumours with increased inflammation, DNA damage, and cell death. These cellular processes were particularly detected upon oncogenic transformation of hepatocytes in which ER stress was excessively induced. Microarray combined with GO analysis showed that transformation of hepatocytes resulted in dysregulated events associated with cytoplasmic vesicle formation, which, in turn, was related to ER stress-induced autophagy. Defects of autophagy were observed in livers harbouring tumours and suffered a loss of expression of autophagy-related protein 9b (Atg9b). Hepatocytes lacking Atg9b were vulnerable to cell death induced by ER stress stimulus mainly caused by accumulation of ubiquitinated proteins. Loss of Atg9b also blocked recruitment of p62-associated ubiquitinated protein for autophagosome-lysosome degradation as Atg9b-driven phagophores may facilitate docking of both LC3 and p62 to initiate autophagy-associated degradation. miR-3091-3p from tumour-derived exosomes, which were internalised by hepatocytes, could suppress Atg9b expression. Observations from this study advance our knowledge about the regulation of autophagy during hepatocarcinogenesis.
Collapse
|
research-article |
8 |
49 |
8
|
Blavier L, Yang RM, DeClerck YA. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers (Basel) 2020; 12:E2912. [PMID: 33050533 PMCID: PMC7599920 DOI: 10.3390/cancers12102912] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
The contribution of the tumor microenvironment (TME) to cancer progression has been well recognized in recent decades. As cancer therapeutic strategies are increasingly precise and include immunotherapies, knowledge of the nature and function of the TME in a tumor becomes essential. Our understanding of the TME in neuroblastoma (NB), the second most common solid tumor in children, has significantly progressed from an initial focus on its Schwannian component to a better awareness of its complex nature, which includes not only immune but also non-immune cells such as cancer-associated fibroblasts (CAFs), the contribution of which to inflammation and interaction with tumor-associated macrophages (TAMs) is now recognized. Recent studies on the TME landscape of NB tumors also suggest significant differences between MYCN-amplified (MYCN-A) and non-amplified (MYCN-NA) tumors, in their content in stromal and inflammatory cells and their immunosuppressive activity. Extracellular vesicles (EVs) released by cells in the TME and microRNAs (miRs) present in their cargo could play important roles in the communication between NB cells and the TME. This review article discusses these new aspects of the TME in NB and the impact that information on the TME landscape in NB will have in the design of precise, biomarker-integrated clinical trials.
Collapse
|
Review |
5 |
48 |
9
|
Rager JE, Moeller BC, Miller SK, Kracko D, Doyle-Eisele M, Swenberg JA, Fry RC. Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol Sci 2013; 138:36-46. [PMID: 24304932 DOI: 10.1093/toxsci/kft267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains unknown regarding their changes resulting from environmental exposures as they influence cellular signaling across various tissues. We set out to investigate miRNA responses to formaldehyde, a critical air pollutant and known carcinogen that disrupts miRNA expression profiles. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde for 7, 28, or 28 days followed by a 7-day recovery. Genome-wide miRNA expression profiles were assessed within the nasal respiratory epithelium, circulating white blood cells (WBC), and bone marrow (BM). miRNAs showed altered expression in the nose and WBC but not in the BM. Notably in the nose, miR-10b and members of the let-7 family, known nasopharyngeal carcinoma players, showed decreased expression. To integrate miRNA responses with transcriptional changes, genome-wide messenger RNA profiles were assessed in the nose and WBC. Although formaldehyde-induced changes in miRNA and transcript expression were largely tissue specific, pathway analyses revealed an enrichment of immune system/inflammation signaling in the nose and WBC. Specific to the nose was enrichment for apoptosis/proliferation signaling, involving let-7a, let-7c, and let-7f. Across all tissues and time points assessed, miRNAs were predicted to regulate between 7% and 35% of the transcriptional responses and were suggested to play a role in signaling processes including immune/inflammation-related pathways. These data inform our current hypothesis that formaldehyde-induced inflammatory signals originating in the nose may drive WBC effects.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
10
|
Shen E, Zou J, Hubertus Behrens F, Chen L, Ye C, Dai S, Li R, Ni M, Jiang X, Qiu J, Liu Y, Wang W, Zhu QH, Chalhoub B, Bancroft I, Meng J, Cai D, Fan L. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7241-53. [PMID: 26357884 PMCID: PMC4765792 DOI: 10.1093/jxb/erv420] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.
Collapse
|
research-article |
10 |
38 |
11
|
Zamani S, Sohrabi A, Hosseini SM, Rahnamaye-Farzami M, Akbari A. Deregulation of miR-21 and miR-29a in Cervical Cancer Related to HPV Infection. Microrna 2019; 8:110-115. [PMID: 30332981 DOI: 10.2174/2211536607666181017124349] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Early diagnosis is an important factor to improve the survival of Invasive Cervical Cancer (ICC) patients. Molecular biomarkers such as micro RNA (miRNA) can be used in the early detection of ICC. The expression of miR-21 and miR-29a are deregulated in many types of human cancers. OBJECTIVE The aim of this study was to investigate the differences in miR-21 and miR-29a expression patterns in the Human Papilloma Virus (HPV) infection and various grades of cervical cancer among Iranian women. METHODS Small RNAs were extracted from positive for HPV, cervical cancer and healthy samples from 43, 50 and 46 individuals, respectively. Expression levels of miR-21 and miR-29a were analyzed by SYBR Green real-time RT-PCR using specific primers, and 5s rRNA as the internal reference gene. RESULTS Results have shown a significant increase in miR-21 and decrease in miR-29 in cancerous samples in comparison with the control groups (P < 0.0001). CONCLUSION This study illustrated that miR-21 and miR-29a could be operated as an oncogene and tumor-suppressor in cervical cancer progression. More studies are needed to demonstrate the role of miR-21 and miR-29a as potential biomarkers for the diagnosis of cervical cancer in future investigations.
Collapse
|
|
6 |
33 |
12
|
Chen X, Liu X, Li B, Zhang Q, Wang J, Zhang W, Luo W, Chen J. Cold Inducible RNA Binding Protein Is Involved in Chronic Hypoxia Induced Neuron Apoptosis by Down-Regulating HIF-1α Expression and Regulated By microRNA-23a. Int J Biol Sci 2017; 13:518-531. [PMID: 28529459 PMCID: PMC5436571 DOI: 10.7150/ijbs.17800] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/27/2017] [Indexed: 11/05/2022] Open
Abstract
Background: Neuron apoptosis mediated by hypoxia inducible factor 1α (HIF-1α) in hippocampus is one of the most important factors accounting for the chronic hypobaric hypoxia induced cognitive impairment. As a neuroprotective molecule that is up-regulated in response to various environmental stress, CIRBP was reported to crosstalk with HIF-1α under cellular stress. However, its function under chronic hypobaric hypoxia remains unknown. Objective: In this study, we tried to identify the role of CIRBP in HIF-1α mediated neuron apoptosis under chronic hypobaric hypoxia and find a possible method to maintain its potential neuroprotective in long-term high altitude environmental exposure. Methods: We established a chronic hypobaric hypoxia rat model as well as a tissue culture model where SH-SY5Y cells were exposed to 1% hypoxia. Based on these models, we measured the expressions of HIF-1α and CIRBP under hypoxia exposure and examined the apoptosis of neurons by TUNEL immunofluorescence staining and western blot analysis of apoptosis related proteins. In addition, by establishing HIF-1α shRNA and pEGFP-CIRBP plasmid transfected cells, we confirmed the role of HIF-1α in chronic hypoxia induced neuron apoptosis and identified the influence of CIRBP over-expression upon HIF-1α and neuron apoptosis in the process of exposure. Furthermore, we measured the expression of the reported hypoxia related miRNAs in both models and the influence of miRNAs' over-expression/knock-down upon CIRBP in the process of HIF-1α mediated neuron apoptosis. Results: HIF-1α expression as well as neuron apoptosis was significantly elevated by chronic hypobaric hypoxia both in vivo and in vitro. CIRBP was induced in the early stage of exposure (3d/7d); however as the exposure was prolonged (21d), CIRBP level of the hypoxia group became significantly lower than that of control. In addition, HIF-1α knockdown significantly decreased neuron apoptosis under hypoxia, suggesting HIF-1α may be pro-apoptotic in the process of exposure. CIRBP over-expression significantly suppressed HIF-1α up-regulation in hypoxia and inhibited HIF-1α mediated neuron apoptosis. Interestingly, miR-23a was also induced by hypoxia exposure and showed the same changing tendency with CIRBP (increasing in 3d/7d, decreasing in 21d). In addition, over-expressing miR-23a up-regulated CIRBP, down-regulated HIF-1α and attenuated neuron apoptosis. Conclusion: Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression, and MiR-23a may be an important tool to maintain CIRBP level and function.
Collapse
|
research-article |
8 |
33 |
13
|
Ji Q, Wang X, Cai J, Du X, Sun H, Zhang N. MiR-22-3p Regulates Amyloid β Deposit in Mice Model of Alzheimer's Disease by Targeting Mitogen-activated Protein Kinase 14. Curr Neurovasc Res 2020; 16:473-480. [PMID: 31713484 DOI: 10.2174/1567202616666191111124516] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Propose: To investigate whether miR-22-3p is able to regulate AD development and its molecular mechanism. METHODS Morris water maze test was performed to test the spatial memory. Quantitative polymerase chain reaction (qPCR) was used to assess the expression level of miR-22-3p. The enzymelinked immunosorbent assay (ELISA) was used to assess the levels of Aβ40 and Aβ42. Immunoblotting analysis was performed to detect the protein expression levels of amyloid precursor protein (APP), mitogen-activated protein kinase 14 (MAPK14) and beta-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1). Luciferase assay was used to identify the interaction between miR- 22-3p and MAPK14. The tetrazolium dye (MTT) colorimetric assay was used to test the influence of miR-22-3p overexpression on cell viability. Flow cytometry analysis was performed to evaluate the effect of miR-22-3p overexpression on cell apoptosis. RESULTS Morris water maze test showed that mice model of AD had impaired spatial memory, which was able to be ameliorated by miR-22-3p overexpression. Immunoblotting analysis revealed that the protein expression levels of APP, MAPK14 and BACE1 were enhanced in AD model, which could be prevented by miR-22-3p overexpression. ELISA showed that Aβ40 and Aβ42 levels were dramatically increased in AD model, which were inhibited by miR-22-3p overexpression. Luciferase assay and immunoblotting analysis indicated that miR-22-3p targeted and regulated MAPK14 expression. CONCLUSION MiR-22-3p overexpression reduced Aβ deposit and alleviated AD symptoms by targeting and regulating MAPK14 expression, which ameliorated AD symptoms.
Collapse
|
Journal Article |
5 |
32 |
14
|
Grossi I, Salvi A, Baiocchi G, Portolani N, De Petro G. Functional Role of microRNA-23b-3p in Cancer Biology. Microrna 2018; 7:156-166. [PMID: 29962353 DOI: 10.2174/2211536607666180629155025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/28/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of short non coding RNAs that have crucial biological roles by acting mainly as negative regulators of gene expression. The alteration of miRNAs expression has been frequently demonstrated in cancer. Furthermore, miRNAs expression data clearly revealed their possible use as diagnostic, prognostic and predictive biomarkers. In this review, we focus on the biological role of human miR-23b-3p in cancer. Several data demonstrated that miR-23b-3p targeted different genes involved in cancer aggressive properties such as proliferation, migration, invasion, and metastasis. In this context, it is known that miR-23b-3p, as other miRNAs, can target either tumor-suppressor genes or oncogenes in different types of tumors. Therefore, its net biological effect can be tumor-specific, mainly depending on the consequent alterations on the downstream effects of the altered pathways. MiR-23b-3p has been found down-regulated or up-regulated in primary tumors and dysregulated in plasma and serum of cancer patients. Its expression levels correlate with the overall survival, disease-free survival and prognosis in several malignancies, thus assuming a remarkable role as molecular biomarker with clinical relevance. Finally, miR-23b-3p is generally considered a responsive molecular therapeutic target as reported in several in vitro and in vivo studies. This suggests that the ectopic modulation of its expression may potentially be important for translational medicine approaches.
Collapse
|
Review |
7 |
31 |
15
|
Liu MM, Chan CC, Tuo J. Epigenetics in ocular diseases. Curr Genomics 2013; 14:166-72. [PMID: 24179439 PMCID: PMC3664466 DOI: 10.2174/1389202911314030002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 01/23/2023] Open
Abstract
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.
Collapse
|
Journal Article |
12 |
28 |
16
|
Chernyy V, Pustylnyak V, Kozlov V, Gulyaeva L. Increased expression of miR-155 and miR-222 is associated with lymph node positive status. J Cancer 2018; 9:135-140. [PMID: 29290778 PMCID: PMC5743720 DOI: 10.7150/jca.22181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Identification of prognostic molecular markers of breast cancer is extremely important. The spreading out of the primary breast tumour cells to the lymphatic system is at the forefront of symbolising the first signs of distant organ metastasis. Deregulated genes in breast cancer tissues that spread to lymph nodes may show early predictive molecular markers. In the present study, we selected five microRNAs, which play a key function in the invasion-metastasis cascade. We investigated the levels of microRNAs in 80 paired samples of BC and matched adjoining tissues, and we examined the potential relationships between microRNA levels and positive lymph node status. Our results attest that three microRNAs (miR-21, miR-155, miR-222) were significantly up-regulated, whilst miR-205 was substantially down-regulated in BC tissues in relation to normal adjoining tissues in a heterogeneous patient cohort. The high levels of two microRNAs, miR-155 and miR-222, showed a statistical relation with the positive lymph node status, especially in patients that had triple negative BC. Conversely, miR-155 was substantially down-regulated in tumour tissues of patients who received preoperative neoadjuvant chemotherapy (NAC) compared with tumour tissues of patients without NAC in cohorts sub-classified to lymph node positive status. Our findings show evidence that the miR-155 and the miR-222 can be defined as molecular markers in regards to cancer patients to prognosticate spread to the lymph node. They also showed that the miR-155 could have crucial significances in BC treatment.
Collapse
|
Journal Article |
7 |
24 |
17
|
de Gonzalo-Calvo D, Martínez-Camblor P, Bär C, Duarte K, Girerd N, Fellström B, Schmieder RE, Jardine AG, Massy ZA, Holdaas H, Rossignol P, Zannad F, Thum T. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics 2020; 10:8665-8676. [PMID: 32754270 PMCID: PMC7392028 DOI: 10.7150/thno.46123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
Rationale: To test whether novel biomarkers, such as microribonucleic acids (miRNAs), and nonstandard predictive models, such as decision tree learning, provide useful information for medical decision-making in patients on hemodialysis (HD). Methods: Samples from patients with end-stage renal disease receiving HD included in the AURORA trial were investigated (n=810). The study included two independent phases: phase I (matched cases and controls, n=410) and phase II (unmatched cases and controls, n=400). The composite endpoint was cardiovascular death, nonfatal myocardial infarction or nonfatal stroke. miRNA quantification was performed using miRNA sequencing and RT-qPCR. The CART algorithm was used to construct regression tree models. A bagging-based procedure was used for validation. Results: In phase I, miRNA sequencing in a subset of samples (n=20) revealed miR-632 as a candidate (fold change=2.9). miR-632 was associated with the endpoint, even after adjusting for confounding factors (HR from 1.43 to 1.53). These findings were not reproduced in phase II. Regression tree models identified eight patient subgroups with specific risk patterns. miR-186-5p and miR-632 entered the tree by redefining two risk groups: patients older than 64 years and with hsCRP<0.827 mg/L and diabetic patients younger than 64 years. miRNAs improved the discrimination accuracy at the beginning of the follow-up (24 months) compared to the models without miRNAs (integrated AUC [iAUC]=0.71). Conclusions: The circulating miRNA profile complements conventional risk factors to identify specific cardiovascular risk patterns among patients receiving maintenance HD.
Collapse
|
Clinical Trial, Phase I |
5 |
19 |
18
|
O Leary KR, Glynn CL. Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. Microrna 2018; 7:187-194. [PMID: 29714155 DOI: 10.2174/2211536607666180430153821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/06/2017] [Accepted: 04/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The discovery of forensic DNA typing evolved molecular biology far beyond what could have been expected in terms of its forensic application, and now there exists other developments in molecular biology which are ready for application to forensic challenges. One such challenge is the identification of the body fluid source of stains recovered from evidence items and crime scenes. Currently, there are significant efforts in the research field to develop novel methods for the molecular identification of body fluids, with microRNAs (miRNAs) revealing great potential. MiRNAs have been shown to have high tissue specificity and are less susceptible to degradation as a result of their small size, which infers great advantages to their potential role for identifying forensically relevant body fluids. OBJECTIVE This study investigated the isolation and amplification of miRNAs from forensically relevant body fluids. METHOD Venous blood, menstrual blood, semen, saliva, and vaginal material samples were extracted using; miRNeasy® mini kit (Qiagen), mirVana™ miRNA isolation kit (Ambion), and a modified mir- Vana™ method, and the quality/quantity of isolated miRNA was determined. miRNAs previously identified to show specificity for particular forensically relevant body fluids were examined. Real Time-Quantitative PCR (RT-qPCR) was performed targeting 5 miRNAs of interest, miR-451, miR- 412, miR-891a, miR-205 and miR-124a. RESULTS This study identified the miRNeasy® mini kit as the optimal method of the three methods investigated for the extraction of miRNAs from body fluids and further validates a selection of miRNAs previously suggested as potential biomarkers. CONCLUSION This research highlights the potential of miRNAs as novel markers for the identification of forensically relevant body fluids.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
19
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Seifi S, Parizadeh SMR, Moetamani-Ahmadi M, Hassanian SM, Khazaei M, Ghayour-Mobarhan M, Ferns GA, Avan A. Epigenetic Drug Therapy in the Treatment of Colorectal Cancer. Curr Pharm Des 2019; 24:2701-2709. [PMID: 30062956 DOI: 10.2174/1381612824666180730151904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
Abstract
Colorectal Cancer (CRC) is one of the most common cancers with a high rate of morbidity and mortality worldwide. It has been demonstrated that epigenetic alterations which may cause changes in the expression of microRNA, DNA methylation and histone acetylation that results in inheritable modifications in gene expression in colorectal epithelial cells, plays a crucial role in the development of CRC. Recently, targeting epigenetic modification has emerged as a potentially important treatment approach in CRC. The US Food and Drug Association has approved the use of some epigenetic drugs that may be able to inhibit or reverse these alterations and also enhance sensitivity to chemotherapeutic agents and radiotherapy in CRC. In this review we have summarized the recent pre-clinical and clinical trial studies investigating the therapeutic value of using epigenetic drugs as novel therapeutic approach in CRC treatment.
Collapse
|
Review |
6 |
9 |
20
|
Curtaz CJ, Schmitt C, Blecharz-Lang KG, Roewer N, Wöckel A, Burek M. Circulating MicroRNAs and Blood-Brain-Barrier Function in Breast Cancer Metastasis. Curr Pharm Des 2020; 26:1417-1427. [PMID: 32175838 PMCID: PMC7475800 DOI: 10.2174/1381612826666200316151720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Brain metastases are a major cause of death in breast cancer patients. A key event in the metastatic progression of breast cancer in the brain is the migration of cancer cells across the blood-brain barrier (BBB). The BBB is a natural barrier with specialized functions that protect the brain from harmful substances, including anti-tumor drugs. Extracellular vesicles (EVs) sequestered by cells are mediators of cell-cell communication. EVs carry cellular components, including microRNAs that affect the cellular processes of target cells. Here, we summarize the knowledge about microRNAs known to play a significant role in breast cancer and/or in the BBB function. In addition, we describe previously established in vitro BBB models, which are a useful tool for studying molecular mechanisms involved in the formation of brain metastases.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
21
|
Cui S, Zhang Z, Cheng C, Tang S, Zhai M, Li L, Wei F, Ding G. Small Extracellular Vesicles from Periodontal Ligament Stem Cells Primed by Lipopolysaccharide Regulate Macrophage M1 Polarization via miR-433-3p Targeting TLR2/TLR4/NF-κB. Inflammation 2023; 46:1849-1858. [PMID: 37351818 PMCID: PMC10567992 DOI: 10.1007/s10753-023-01845-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Lipopolysaccharide (LPS) is regarded as the main pathogenic factor of periodontitis. Mesenchymal stem cell-derived small extracellular vesicles (sEVs) play a key role in a variety of physiological and pathological processes. This study investigated the effects of sEVs derived from periodontal ligament stem cells (PDLSCs) pretreated with LPS on macrophage polarization and the underlying mechanisms. PDLSCs were treated with LPS (1 µg/mL) for 24 h, and sEVs were harvested by gradient centrifugation method. Macrophages were incubated with sEVs for 24 h, followed by examination of the expression profiles of inflammatory and anti-inflammatory cytokines, and polarization markers. Furthermore, microarray analysis, western blot test, and microRNA inhibitor transfection experiments were used to elucidate the molecular signaling pathway responsible for the process. The results showed that sEVs derived from LPS-preconditioning PDLSCs could significantly increase the expression of M1 markers and inflammatory cytokines, whereas decreased the expression of M2 markers and anti-inflammatory cytokines. Mechanistic analysis showed that TLR2/TLR4/NF-κB p65 pathway was involved in M1 polarization of macrophages, and microRNA-433-3p played a role, at least in part, in the course. Collectively, LPS could promote the macrophages into M1 status via TLR2/TLR4/NF-κB p65 signaling pathway partly by sEV-mediated microRNA-433-3p, which could be a potential therapeutic target for periodontitis.
Collapse
|
research-article |
2 |
3 |
22
|
Huang A, Guo DZ, Wang YP, Yang GH, Sun QM, Zhang X, He YF, Song K, Huang XW, Yang XR, Fan J, Zhou J, Hu J. Plasma MicroRNA Panel Predicts Early Tumor Recurrence in Patients with Hepatocellular Carcinoma after Liver Transplantation. J Cancer 2021; 12:7190-7200. [PMID: 34729120 PMCID: PMC8558660 DOI: 10.7150/jca.59612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed to evaluate the role of plasma microRNA panel (miR-122, miR-192, miR-21, miR-223, miR-26a, miR-27a and miR-801) for prediction and surveillance of early tumor recurrence in hepatocellular carcinoma (HCC) patients who had undergone liver transplantation (LT). Methods: The expression of plasma microRNA panel was assayed in 193 HCC patients (training cohort, n =151; validation cohort, n = 42). Sensitivity and specificity for detecting post-transplant HCC recurrence, and the relationship of microRNA panel expression with clinical characteristics were analyzed accordingly. The prognostic value of microRNA panel was compared with that of AFP (alpha-fetoprotein) and DCP (Des-gamma-carboxyprothrombin). Cox regression analyses were used to evaluate independent prognostic factors. Results: In the training cohort, the rate of positive plasma microRNA panel status at 7-14 days after LT (late phase; 44.2%) decreased than that before (76.2%, P < 0.001) and 1-6 days after LT (early phase; 78.5%, P < 0.001). At late phase, positive microRNA panel status correlated with higher early tumor recurrence rate (one year after LT) than negative status (45.9% vs 10.7%; P < 0.001). Patients with persistent positive microRNA panel status both before and after LT had the highest early tumor recurrence rate in this cohort (54.9%, P < 0.001). The results were consistent in the validation cohort. Cox regression analysis found that positive plasma microRNA panel status at late phase was the only independent risk factor for early recurrence (HR: 4.903, 95% CI = 2.195 - 10.951; P < 0.001). Dynamic monitoring demonstrated plasma microRNA panel status changed from negative to positive earlier than AFP and DCP upon recurrence, and the median time between positivity of plasma microRNA and imaging evidence of recurrence was 2.4 (0.5-10.0) months. Conclusions: Plasma microRNA panel could be a noninvasive biomarker for prediction and surveillance of early tumor recurrence in HCC patients who have undergone LT.
Collapse
|
research-article |
4 |
2 |
23
|
de Araújo Melo L, da Silveira MMBM, de Vasconcellos Piscoya IC, Brasileiro VAE, Farias ICC, do Ó KP, Roncal CGP, Lima RE, Filho DCS, Vasconcelos LRS. Expression of microRNAs (133b and 138) and Correlation with Echocardiographic Parameters in Patients with Alcoholic Cardiomyopathy. Microrna 2019; 9:112-120. [PMID: 31333145 DOI: 10.2174/2211536608666190716151900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alcoholic Cardiomyopathy (ACM) is a disease with a difficult diagnosis. The real mechanisms related to its pathophysiology are not fully understood. OBJECTIVE The aims of this study were to investigate whether miR-133b and miR-138 could be associated with ACM. METHODS Forty-four patients were included comprising 24 with ACM and 20 with cardiomyopathies of different etiologies (control group). Real-time PCR was performed to verify the relative expression among the studied groups. In the statistical analysis, the quantitative variables t-student Mann- Whitney and correlation of Pearson tests were carried out, while the qualitative variable comprised the chi-square test, with p<0.05 being considered statistically significant. RESULTS There was no association between clinical and sociodemographic characteristics of the groups. The patients with ACM presented downregulation of miR-133b in comparison with control patients (p=0.004). On the other hand, for the miR-138, there was no association when the ACM group was compared with the control group. The presence of miR-133b among cases and controls was not correlated with any of the echocardiographic parameters. However, the increase in the expression of miR-138 was correlated with an increase in the ejection fraction (r=0.28, p=0.01) and the diameter of the left atrium (r=0.23, p=0.04) in patients with ACM. CONCLUSION The downregulation of miR-133b might be a marker for ACM and, in addition, miR- 138 could be used to correlate the increase in ejection fraction with and normalization of the diameter of the left atrium diameter in patients with this disease.
Collapse
|
|
6 |
1 |
24
|
Rais N, Ved A, Ahmad R, Parveen A. Research-based Analytical Procedures to Evaluate Diabetic Biomarkers and Related Parameters: In Vitro and In Vivo Methods. Curr Diabetes Rev 2024; 20:e201023222417. [PMID: 37867271 DOI: 10.2174/0115733998252495231011182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The degenerative tendency of diabetes leads to micro- and macrovascular complications due to abnormal levels of biochemicals, particularly in patients with poor diabetic control. Diabetes is supposed to be treated by reducing blood glucose levels, scavenging free radicals, and maintaining other relevant parameters close to normal ranges. In preclinical studies, numerous in vivo trials on animals as well as in vitro tests are used to assess the antidiabetic and antioxidant effects of the test substances. Since a substance that performs poorly in vitro won't perform better in vivo, the outcomes of in vitro studies can be utilized as a direct indicator of in vivo activities. OBJECTIVE The objective of the present study is to provide research scholars with a comprehensive overview of laboratory methods and procedures for a few selected diabetic biomarkers and related parameters. METHOD The search was conducted on scientific database portals such as ScienceDirect, PubMed, Google Scholar, BASE, DOAJ, etc. Conclusion: The development of new biomarkers is greatly facilitated by modern technology such as cell culture research, lipidomics study, microRNA biomarkers, machine learning techniques, and improved electron microscopies. These biomarkers do, however, have some usage restrictions. There is a critical need to find more accurate and sensitive biomarkers. With a few modifications, these biomarkers can be used with or even replace conventional markers of diabetes.
Collapse
|
Review |
1 |
|