1
|
Ren H, Wang C, Fan W, Zhang B, Li Z, Li D. Effects of Formic or Acetic Acid on the Storage Quality
of Mixed Air-Dried Corn Stover and Cabbage Waste,
and Microbial Community Analysis. Food Technol Biotechnol 2018; 56:71-82. [PMID: 29795999 DOI: 10.17113/ftb.56.01.18.5455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A mixture of air-dried corn stover and cabbage waste was ensiled to preserve lignocellulosic biomass for use as biofuel. Furthermore, the effects of different fresh mass fractions (0.3 and 0.6%) of formic or acetic acid on the mixed silage quality were evaluated to guarantee its quality. The application of formic or acetic acid prior to mixing the silage led to higher water-soluble carbohydrate fractions than the negative control, indicating that both acids contributed to preservation of water-soluble carbohydrates during storage for 170 days. The dry matter content was also increased after storage from 90 to 170 days. It was found that the content of neutral and acid detergent fibre, cellulose and holocellulose (the sum of cellulose and hemicellulose) in mixed silage treated with formic or acetic acid was significantly lower than that obtained in the negative control. The pH and the ratio of ammoniacal nitrogen to total nitrogen in mixed silage treated with acetic acid also significantly decreased. Furthermore, the addition of formic or acetic acid significantly weakened the fermentation intensity of lactic acid, depending on the ratio of lactic to acetic acid, as well as the ratio of lactic acid to total organic acids. The number of bacterial species and their relative abundance shifted during silage mixing, wherein microbial communities at phylum level mainly consisted of Proteobacteria and Firmicutes. The dominant bacteria were also observed to shift from Lactobacillus and Enterobacter in presilage biomass to Lactobacillus and Paralactobacillus. Specifically, Enterobacter disappeared after 130 days of storage. In conclusion, the addition of a low dose of acetic acid to fresh mass (0.3%) could effectively improve the fermentation quality and is conducive to the preservation of the organic components.
Collapse
|
Journal Article |
7 |
16 |
2
|
Peng W, Li X, Wang C, Cao H, Cui Z. Metagenome complexity and template length are the main causes of bias in PCR-based bacteria community analysis. J Basic Microbiol 2018; 58:987-997. [PMID: 30091475 DOI: 10.1002/jobm.201800265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022]
Abstract
Multitemplate PCR is used widely for the study of microbial community diversity. Although such studies have established the abundance of different groups within many natural ecosystems, these reports are limited by uncertainties such as bias and artifacts in the PCR. Bias which is introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. In this study, factors leading to the bias of the multitemplate PCR in bacterial communities were examined and optimized. Comparisons between PCR cycle parameters, DNA polymerases, PCR primer degeneracy, and 16S rRNA gene fragments GC content, revealed that annealing temperatures and DNA structure are predominant factors contributing to the observed bias. Pre-digestion of metagenomic DNA with the restriction enzyme Sau3A I and decreased annealing temperature reduced the bias significantly. The application of these optimized conditions to the ten-species model community in a soil sample verified the validity of these treatments.
Collapse
|
Journal Article |
7 |
11 |
3
|
Dai C, Hou Y, Xu H, Umego EC, Huang L, He R, Ma H. Identification of a thermophilic protease-producing strain and its application in solid-state fermentation of soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2359-2370. [PMID: 34628645 DOI: 10.1002/jsfa.11574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Thermophiles can thrive at 50-80 °C and produce some enzymes with special promise for biocatalysis. A thermophilic protease-producing strain YYC4 was isolated from Yunyan cigarette and employed in solid-state fermentation (SSF) of unsterilized soybean meal (SBM). RESULTS The isolate was identified as Bacillus licheniformis based on appearance of colonies, microscopic observation and 16S rDNA sequencing. After SSF, soluble and crude protein contents in SBM increased from 49.24 to 185.73 g kg-1 and from 404.18 to 479.46 g kg-1 , respectively, under the fermentation conditions of 107 cfu g-1 inoculation of strain YYC4, 1:1.8 (g mL-1 ) SBM to distilled water, 1.2 g kg-1 magnesium sulphate addition, 55 °C and 48 h. During fermentation, pH of the medium increased from 6.30 to 9.09 and protease activity especially neutral protease increased significantly from 13.5 to 181.31 U g-1 . Meanwhile, trypsin inhibitor (TI) activity was decreased from 8.19 to 3.19 mg g-1 . The safety of fermented SBM (FSBM) was verified by acute toxicity animal experiment. Analysis of microbial community in FSBM showed that Bacillus licheniformis YYC4 as a dominant strain inhibited most of the other microorganisms pre-existing in the materials during fermentation. CONCLUSION Increments of soluble and crude protein by 277.19% and 18.63% and decrement of harmful TI by 61.05% in SBM were achieved using thermophilic SSF by Bacillus licheniformis YYC4, providing a basis for the application of thermophiles in fermentation industry in an environmentally friendly and energy-saving way. © 2021 Society of Chemical Industry.
Collapse
|
|
3 |
10 |
4
|
Nazar M, Wang S, Zhao J, Dong Z, Li J, Ali Kaka N, Shao T. Effects of various epiphytic microbiota inoculation on the fermentation quality and microbial community dynamics during the ensiling of sterile Napier grass. J Appl Microbiol 2020; 130:1466-1480. [PMID: 33063914 DOI: 10.1111/jam.14896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
AIM To investigate epiphytic microbiota transformation of forages, their adaptation and contributions to fermentation quality of silage. METHODS AND RESULTS Gamma-irradiated chopped Napier grass were ensiled with distilled water (STR), extracted epiphytic microbiota of Napier grass (NAP), sudan grass (SUD), whole crop corn (WCC) and forage sorghum (FS). Inoculating Napier grass with WCC significantly increased lactic acid (LA) concentrations during the initial ensiling period followed by a decline after 30 days. Relative to other silages (except STR) inoculation with NAP resulted in lower LA and greater pH, ammonia-N and dry matter (DM) losses. Silage inoculated with FS and SUD maintained lower pH as well as higher (P < 0·05) LA concentrations after 60 days of storage. During day 3 of ensilage, WCC, NAP and SUD inoculated silage were dominated by bacterial genera of Lactobacillus, while Lactococcus dominated the FS silage. Final silages were dominated by Lactobacillus in all treatment silages, however Enterobacter (16·3%) in NAP and Acetobacter (25·7%) in WCC silage were also prominent during the final ensiling. CONCLUSION The inoculation of epiphytic microbiota of forage sorghum and sudan grass positively influenced the microbial community and fermentability of sterile Napier grass silage. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time to investigate the effects of various epiphytic microbiota as silage inoculants which can be used as alternative source of environmental friendly and economically feasible silage additives.
Collapse
|
Journal Article |
5 |
7 |
5
|
Ren F, Yan D, Liu Y, Wang C, Guo C. Bacterial and fungal communities of traditional fermented Chinese soybean paste (Doujiang) and their properties. Food Sci Nutr 2021; 9:5457-5466. [PMID: 34646516 PMCID: PMC8498056 DOI: 10.1002/fsn3.2505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean paste (Doujiang) is one of the traditional fermented foods from China, fermented by various microorganisms. However, the microflora of Doujiang keeps little known. In this study, the microbial communities of seven kinds of representative Doujiang samples were investigated by both culture-independent and culture-dependent methods. We found that core OTUs among seven Doujiang samples were mainly from Bacillus, Pseudomonas, Candida, and Aspergillus according to Illumina sequencing. Every type of Doujiang sample harbored a different composition of microbial community. Doujiang LSJ and LBJ had the highest bacterial and fungal richness and diversity, respectively. The structure of microbial community was remarkably correlated with Doujiang properties-pH, and the content of total protein, soluble protein, amino acid, and total sugar (p < .05). Bacillus spp. were most frequently isolated bacterial species. Fungi of Monascus, Candida, and Aspergillus were also isolated. Eleven microbial strains showed high protease activities to degrade corn proteins, which can form obvious transparent hydrolytic circles in corn gluten meal medium plates. Therefore, microbial communities were supposed to tightly connect to Doujiang type and properties. It is possible to apply potential protein-degrading microbial strains to corn byproducts for protein production in the future study.
Collapse
|
research-article |
4 |
5 |
6
|
Zhang L, Yin X, Zhang J, Wei Y, Huo D, Ma C, Chang H, Cai K, Shi H. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves. TREE PHYSIOLOGY 2021; 41:147-161. [PMID: 32857860 DOI: 10.1093/treephys/tpaa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.
Collapse
|
|
4 |
3 |
7
|
Deng JJ, Zhu WX, Zhou YB, Yin Y, Bai XJ, Zhang HZ, Zhang YM, Qin SJ. [Effects of different land use patterns on the soil microbial community diversity in montane region of eastern Liaoning Province, China.]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2018; 29:2269-2276. [PMID: 30039665 DOI: 10.13287/j.1001-9332.201807.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An experiment was conducted to examine the differences of soil microbial diversity across different land use patterns in montane region of eastern Liaoning Province, China. The relationships between soil physicochemical properties and soil microbial diversity in five different land use types, including Quercus mongolic forest, shrubland, Larix gmelinii plantation, Pinus koraiensis plantation, and Zea mays cropland were analyzed by Biolog-Eco method. The results showed that both soil total C and N contents were the highest in the Q. mongolica forest, which were 57.74 and 4.40 g·kg-1, followed by shrubland, but only 17.46 and 1.31 g·kg-1 in the Z. mays cropland, respectively. There were significant differences in microbial utilization rate of different land use types. The carbon utilization capacity by soil microbial communities was following the order of Q. mongolica forest > shrubland > L. gmelinii plantation > P. koraiensis plantation > Z. mays cropland, indicating that soil microbial metabolism and activity in Z. mays cropland were the lowest. The Shannon diversity index (2.997), Simpson diversity index (0.942) and McIntosh diversity index (5.256) of soil microbial community in the Z. mays cropland were significantly lower than those in other ecosystems. The average absorbance value (AWCD) was associated with Simpson diversity index and McIntosh diversity index. Esters, alcohols and amines were the primary carbon sources for the differentiation, which might be due to a joint action of many factors such as litter, soil nutrients, and specific soil microorganisms. The soil nutrient and soil microbial community diversity in forest land after reclamation sharply decreased, causing the loss of soil fertility and productivity. The region should keep the Q. mongolica forest, which could help restore soil fertility.
Collapse
|
|
7 |
2 |
8
|
Li X. [Influence of oil pollution on soil microbial community diversity]. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2017; 33:968-975. [PMID: 28895358 DOI: 10.13345/j.cjb.160467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria, actinomycetes and fungi are the three major groups of soil microbes. Soil microbes play a critical role in ecological and biodegradation processes in petroleum-contaminated soils. Based on the actual situation, this study took the oil polluted soil around the abandoned oil well in Shehong County, Suining City, Sichuan Province as the test soil. First, we determined the physiochemical properties of the tested soil; then we analyzed the changes of physiochemical properties and the three major microbes in petroleum contaminated soils. The number of the three major microbes in contaminated soils was relatively fewer than uncontaminated samples, and the water content of the soil was in positive correlation with the number of microbes. Also we assessed the soil bacteria community diversity and changes therein in petroleum-contaminated soils using 454 pyrosequencing of 16S rRNA genes. No less than 23 982 valid reads and 6 123 operational taxonomic units (OTUs) were obtained from all 4 studied samples. OTU richness was relatively higher in contaminated soils than uncontaminated samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. However, the prokaryotes community abundance of phyla was significantly different in the four samples. The most abundant OTUs associated with petroleum-contaminated soil sample were the sequences related to Acidobacteria, Actinobacteria and Proteobacteria, whereas the most abundance sequences with uncontaminated sample were those related to Actinobacteria, Bacteroidetes and Proteobacteria.
Collapse
|
|
8 |
1 |
9
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
|
|
4 |
1 |
10
|
Meng HS, Hong JP, Yang Y, Wang XY, Li TL, Li L. [Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil.]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2016; 27:3016-3022. [PMID: 29732867 DOI: 10.13287/j.1001-9332.201609.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A located field experiment of applying phosphorus bacteria fertilizer for five years was carried out to study the effects of applying phosphorus bacteria fertilizer on the characteristics of microbial community structure in reclaimed soil. We studied the diversity of bacterial community using 16S rDNA gene sequencing and analyzed the relationship between bacterial community and Olsen-P, alkaline phosphatase. Seven treatments including control, chemical fertilizer, manure, manure and chemical fertilizer, chemical fertilizer and phosphorus bacteria, manure and phosphorus bacteria, and, manure,chemical fertilizer and phosphorus bacteria were conducted. The results showed that the relative abundance of Actinobacteria and Proteobacteria in reclaimed soil was the largest, which was 21.6%-32.2% and 13.8%-28.9%, respectively. Operational taxonomic units (OTU) number and Chao1 index of the treatment of manure, chemical fertilizer and phosphorus bacteria fertilizer was 809 and 26190, which was the highest. Phosphorus bacteria fertilizer could improve the relative abundance of soil Actinomycetes and Proteobacteria and decrease that of soil Acidobacteria, Thermotogae and Nitrospira, and had stimulatory effect on Nocardioides and Flexibacter. The treatment of manure, chemical fertilizer and phosphorus bacteria fertilizer could improve the Olsen-P and alkaline phosphatase activities in reclaimed soil. Correlation coefficients between Proteobacteria and Olsen-P, alkaline phosphatase were the highest (0.900 and 0.955). To a certain extent, Proteobacteria could be used as the sensitivity index of soil phosphorus availability.
Collapse
|
|
9 |
|
11
|
Parrott DL, Baxter BK. Fungi of Great Salt Lake, Utah, USA: a spatial survey. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1438347. [PMID: 39347460 PMCID: PMC11427377 DOI: 10.3389/ffunb.2024.1438347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
The natural system at Great Salt Lake, Utah, USA was augmented by the construction of a rock-filled railroad causeway in 1960, creating two lakes at one site. The north arm is sequestered from the mountain snowmelt inputs and thus became saturated with salts (250-340 g/L). The south arm is a flourishing ecosystem with moderate salinity (90-190 g/L) and a significant body of water for ten million birds on the avian flyways of the western US who engorge themselves on the large biomass of brine flies and shrimp. The sediments around the lake shores include calcium carbonate oolitic sand and clay, and further away from the saltwater margins, a zone with less saline soil. Here a small number of plants can thrive, including Salicornia and Sueda species. At the north arm at Rozel Point, halite crystals precipitate in the salt-saturated lake water, calcium sulfate precipitates to form gypsum crystals embedded in the clay, and high molecular weight asphalt seeps from the ground. It is an ecosystem with gradients and extremes, and fungi are up to the challenge. We have collected data on Great Salt Lake fungi from a variety of studies and present them here in a spatial survey. Combining knowledge of cultivation studies as well as environmental DNA work, we discuss the genera prevalent in and around this unique ecosystem. A wide diversity of taxa were found in multiple microniches of the lake, suggesting significant roles for these genera: Acremonium, Alternaria, Aspergillus, Cladosporium, Clydae, Coniochaeta, Cryptococcus, Malassezia, Nectria, Penicillium, Powellomyces, Rhizophlyctis, and Wallemia. Considering the species present and the features of Great Salt Lake as a terminal basin, we discuss of the possible roles of the fungi. These include not only nutrient cycling, toxin mediation, and predation for the ecosystem, but also roles that would enable other life to thrive in the water and on the shore. Many genera that we discovered may help other organisms in alleviating salinity stress, promoting growth, or affording protection from dehydration. The diverse taxa of Great Salt Lake fungi provide important benefits for the ecosystem.
Collapse
|
brief-report |
1 |
|
12
|
Souza CMM, Bastos TS, Kaelle GCB, Bortolo M, de Oliveira SG, Félix AP. Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36807651 DOI: 10.1111/jpn.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
The objective was to evaluate through three experiments the effects of a fine cassava fibre (CA: 106 µm) on kibble characteristics, coefficients of total tract apparent digestibility (CTTAD) of macronutrients, diet palatability and faecal metabolites and microbiota of dogs. Dietary treatments consisted of a control diet (CO), without an added fibre source and with 4.3% total dietary fibre (TDF), and a diet with 9.6% CA (106 µm), with 8.4% TDF. Experiment I evaluated the physical characteristics of the kibbles. The palatability test was evaluated in experiment II, which compared the diets CO versus CA. In experiment III, 12 adult dogs were randomly assigned to one of the two dietary treatments for 15 days, totalling six replicates/treatment, to assess the CTTAD of macronutrients; faecal characteristics, faecal metabolites and microbiota. The expansion index, kibble size and friability of diets with CA were higher than the CO (p < 0.05). Additionally, the CA diet presented higher palatability than the CO (p < 0.05) but did not affect CTTAD except for those of fibre (p > 0.05). Moreover, a greater faecal concentration of acetate, butyrate and total short-chain fatty acids (SCFA) and a lower faecal concentration of phenol, indole and isobutyrate were observed in dogs fed the CA diet (p < 0.05). Dogs fed with the CA diet presented a greater bacterial diversity and richness and a greater abundance of genera considered to be beneficial for gut health, such as Blautia, Faecalibacterium and Fusobacterium when compared to the CO group (p < 0.05). The inclusion of 9.6% of a fine CA improves the expansion of kibbles and diet palatability without affecting most of the CTTAD of nutrients. Besides, it improves the production of some SCFA and modulates the faecal microbiota of dogs.
Collapse
|
|
2 |
|
13
|
Gu G, Zeeshan Ul Haq M, Sun X, Zhou J, Liu Y, Yu J, Yang D, Yang H, Wu Y. Continuous cropping of Patchouli alters soil physiochemical properties and rhizosphere microecology revealed by metagenomic sequencing. Front Microbiol 2025; 15:1482904. [PMID: 39872816 PMCID: PMC11769982 DOI: 10.3389/fmicb.2024.1482904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Continuous cropping (CC) profoundly impacts soil ecosystems, including changes in soil factors and the structure and stability of microbial communities. These factors are interrelated and together affect soil health and plant growth. In this research, metagenomic sequencing was used to explore the effects of CC on physicochemical properties, enzyme activities, microbial community composition, and functional genes of the rhizosphere soil of patchouli. We found that this can lead to changes in various soil factors, including the continuous reduction of pH andNH 4 + -N and the unstable changes of many factors. In addition, S-PPO enzyme activity increased significantly with the cropping years, but S-NAG increased in the first 2 years and decreased in the third cropping year. Metagenomic sequencing results showed that CC significantly changed the diversity and composition of rhizosphere microbial communities. The relative abundance of Pseudomonas and Bacteroides decreased substantially from the phylum level. At the genus level, the number of microbial genera specific to the zero-year cropping (CK) and first (T1), second (T2), and third (T3) years decreased significantly, to 1798, 172, 42, and 44, respectively. The abundance of many functional genes changed, among which COG0823, a gene with the cellular process and signaling functions, significantly increased after CC. In addition,NH 4 + -N, S-CAT, S-LAP, and SOC were the main environmental factors affecting rhizosphere-dominant microbial communities at the phylum level, while pH, SOC, and AK were the key environmental factors affecting rhizosphere functional genes of Pogostemon cablin. In summary, this study showed the dynamic changes of soil factors and rhizosphere microorganisms during CC, providing a theoretical basis for understanding the formation mechanism and prevention of CC obstacles and contributing to the formulation of scientific soil management and fertilization strategies.
Collapse
|
research-article |
1 |
|
14
|
Ma Q, Wang DL, Lin H, Bai YH. [Enhanced Removal of Pollutants in Constructed Wetlands with Manganese Sands]. HUAN JING KE XUE= HUANJING KEXUE 2021; 42:4304-4310. [PMID: 34414728 DOI: 10.13227/j.hjkx.202101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Manganese (Mn) sands have been widely used in water purification due to their strong oxidation and adsorption abilities. However, there are few reports on the use of manganese sands as filler material in constructed wetlands. Based on previous studies, we speculated that the addition of manganese sands in constructed wetlands would enhance the removal of pollutants from the source water, and the resulting Mn(Ⅱ) could then be oxidized by the rhizosphere and soil microorganisms in the wetlands. To test this hypothesis, this study explored the enhanced removal of pollutants in wetlands constructed with manganese sands as substrates and Phragmites as plants, and also examined the role of Phragmites rhizosphere microorganisms in water purification. By comparing the treatment effects between the wetlands constructed with and without manganese sands (control), we found that the wetland containing manganese sands exhibited significantly improved removal of dissolved organic carbon and total nitrogen, as well as removal of ammonia nitrogen during periods of lower temperature. The 16S rRNA sequencing showed that the addition of manganese sands could increase the richness and diversity of Phragmites rhizosphere microorganisms, but had limited impacts on the microbial community structure, which might be an important factor for enhancing the water treatment performance of constructed wetlands. This study provides a new method for the technological optimization of constructed wetlands.
Collapse
|
|
4 |
|
15
|
Zhang X, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Diversity of Microbial Functional Genes Promotes Soil Nitrogen Mineralization in Boreal Forests. Microorganisms 2024; 12:1577. [PMID: 39203419 PMCID: PMC11355967 DOI: 10.3390/microorganisms12081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Soil nitrogen (N) mineralization typically governs the availability and movement of soil N. Understanding how factors, especially functional genes, affect N transformations is essential for the protection and restoration of forest ecosystems. To uncover the underlying mechanisms driving soil N mineralization, this study investigated the effects of edaphic environments, substrates, and soil microbial assemblages on net soil N mineralization in boreal forests. Field studies were conducted in five representative forests: Larix principis-rupprechtii forest (LF), Betula platyphylla forest (BF), mixed forest of Larix principis-rupprechtii and Betula platyphylla (MF), Picea asperata forest (SF), and Pinus sylvestris var. mongolica forest (MPF). Results showed that soil N mineralization rates (Rmin) differed significantly among forests, with the highest rate in BF (p < 0.05). Soil properties and microbial assemblages accounted for over 50% of the variability in N mineralization. This study indicated that soil environmental factors influenced N mineralization through their regulatory impact on microbial assemblages. Compared with microbial community assemblages (α-diversity, Shannon and Richness), functional genes assemblages were the most important indexes to regulate N mineralization. It was thus determined that microbial functional genes controlled N mineralization in boreal forests. This study clarified the mechanisms of N mineralization and provided a mechanistic understanding to enhance biogeochemical models for forecasting soil N availability, alongside aiding species diversity conservation and fragile ecosystem revitalization in boreal forests.
Collapse
|
research-article |
1 |
|
16
|
Meyer KM, Deines P, Wei Z, Busby PE, Lindow SE, Bohannan BJM. Editorial: The role of dispersal and transmission in structuring microbial communities. Front Microbiol 2022; 13:1054498. [PMID: 36338039 PMCID: PMC9627547 DOI: 10.3389/fmicb.2022.1054498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
|
Editorial |
3 |
|
17
|
Guo L, Li Z, Xu J. Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci. Int J Mol Sci 2023; 24:13588. [PMID: 37686394 PMCID: PMC10488276 DOI: 10.3390/ijms241713588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Heavy metal contamination is among the most prominent environmental problems in China, posing serious threats to both ecosystem and human health. Among the diverse heavy metal contaminants, cadmium is the most serious. The whitefly Bemisia tabaci is a cosmopolitan pest capable of causing severe damage to a broad range of agricultural crops, especially vegetables. At present, little is known about the effects of cadmium stress on B. tabaci, including on its bacterial and fungal communities. In the current study, we investigated the effects of cadmium on bacterial and fungal communities in whiteflies. Meta-barcode sequencing of the 16S rRNA gene revealed that the whitefly bacterial community contained 264 operational taxonomic units (OTUs) belonging to 201 known genera and 245 known species. The top five most frequent bacterial genera were Rickettsia, Rhodococcus, Candidatus Portiera, Candidatus Hamiltonella, and Achromobacter. Meta-barcode sequencing of the fungal ITS locus revealed that the whitefly fungal community contained 357 OTUs belonging to 187 known genera and 248 known species. The top five most frequent fungal genera were Wallemia, unclassified_f_Dipodascaceae, Apiotrichum, Penicillium, and unclassified_o_Saccharomycetales. Cadmium exposure reduced the fungal OTU richness but increased the bacterial Shannon and Simpson diversity indices in whiteflies. In addition, upon exposure to cadmium, the microbial community composition in whiteflies changed significantly, with increased prevalence of the bacterial genera Rhodococcus and Exiguobacterium and fungal genus Wallemia. Our results indicate that the whitefly microbiota likely contributed to their adaptation and resistance to cadmium and suggested that whiteflies may contain microbes that could help remediate cadmium contamination in natural environments and agricultural fields.
Collapse
|
research-article |
2 |
|
18
|
Kang H, Chai A, Lin Z, Shi Y, Xie X, Li L, Fan T, Xiang S, Xie J, Li B. Deciphering Differences in Microbial Community Diversity between Clubroot-Diseased and Healthy Soils. Microorganisms 2024; 12:251. [PMID: 38399655 PMCID: PMC10893227 DOI: 10.3390/microorganisms12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.
Collapse
|
research-article |
1 |
|
19
|
Wang W, Ma S, Wang D, Xu L, Zhang M, Yan M, Ma K, Hu Z, Shang Y, Wei J, Huang X. The Effects of Milk and Posterior Intestinal Microorganisms on the Lactation Performance of Dual-Purpose Cattle ( Bos taurus) Revealed by 16S rRNA Sequencing. Microorganisms 2025; 13:448. [PMID: 40005814 PMCID: PMC11857882 DOI: 10.3390/microorganisms13020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this research was to employ 16S rRNA high-throughput sequencing to thoroughly explore the interplay between milk and hindgut microbial communities and the effects of microorganisms in milk and the hindgut on the dairy quality of XJBC and CSC. In this study, 96 XJBC milk samples, 94 XJBC hindgut samples, 100 CSC milk samples, and 93 CSC hindgut samples were collected for microbial community analysis. The 16S rRNA sequencing data revealed that the microbial species richness in the milk of CSC exceeded that of XJBC, whereas the opposite was true for the hindgut microbial communities. A chi-square test was conducted using SPSS 19.0. The milk and posterior intestinal microbiota between individuals were analyzed with the Pearson chi-square test, maximum likelihood ratio, and Fisher's exact test. Nongenetic factors substantially influenced microbial community dynamics in both milk and the hindgut. In the milk of dairy cows, a significant negative correlation was observed between one genus and milk protein production. Nine genera were significantly negatively correlated with milk fat production, whereas one genus was positively correlated. Additionally, six genera were negatively correlated with lactose production, and two genera exhibited positive correlations. Notably, Phascolarctobacterium and Turicibacter were identified as genera originating from the hindgut, which led to reduced milk quality. In the hindgut microbial community of dairy cows, seven genera were significantly negatively associated with milk fat production, whereas one genus was positively associated with milk fat production. These findings indicate that certain mammary microorganisms may migrate from the hindgut, either endogenously or exogenously, disrupting the equilibrium of the mammary microbial community in dairy cows and potentially leading to inflammation. By enhancing feeding conditions and standardizing production practices, the invasion of harmful flora into mammary tissues can be minimized, reducing the risk of inflammation and thereby preserving the health of dairy cows and enhancing milk quality.
Collapse
|
research-article |
1 |
|
20
|
Dai S, Li P, Peng WQ, Liu YX, Wang Z, He YL, Shen GX, Hu SQ. [Influence of Antibiotics on the Denitrification Process of Antibiotic Resistant Denitrifying Bacteria and the Analysis of Microbial Community Structure]. HUAN JING KE XUE= HUANJING KEXUE 2020; 41:1401-1408. [PMID: 32608642 DOI: 10.13227/j.hjkx.201909175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The removal rate of some antibiotics in urban sewage by conventional treatment is low, which leads to an increase in antibiotic resistant bacteria in natural water environments. To reduce the ecological harm of antibiotics to the water in towns, a risk control technique for degradation of microantibiotics by the co-metabolism of antibiotic resistant denitrifying bacteria was proposed. Using sodium acetate as an electron donor and maintaining the concentration of ofloxacin (OFLX) at 1 μg·g-1, gradually increasing the dominant growth of antibiotic degradation bacteria, denitrifying bacteria (DnB1), trace antibiotics and sodium acetate, and denitrifying bacteria (DnB2) with the presence of sodium acetate and nitrogen elements were cultured. The degradation effect of antibiotics through denitrification and the effects of antibiotics on denitrification of resistant denitrifying bacteria and the changes to the microbial community were investigated. The results showed that DnB2 had a significant degradation effect on OFLX compared to DnB1. The degradation to OFLX by DnB1 and DnB2 was 0.31 μg·g-1 and 16.14 μg·g-1, respectively. Increased OFLX concentration inhibited DnB1 denitrification activity in the short term. The denitrification process of DnB2 was less affected by OFLX. At the same time, high-throughput sequencing using the Illumina MiSeq platform was used. Based on the operational taxonomic unit information formed by the clustering of sequencing results, the diversity of each sample was compared and analyzed. The research results show that the relative abundance and diversity of the microbial community of DnB1 are higher than those of DnB2.
Collapse
|
Journal Article |
5 |
|
21
|
Lu D, Mao Z, Tang Y, Feng B, Xu L. Driving Factors Influencing Soil Microbial Community Succession of Coal Mining Subsidence Areas during Natural Recovery in Inner Mongolia Grasslands. Microorganisms 2023; 12:87. [PMID: 38257914 PMCID: PMC10818900 DOI: 10.3390/microorganisms12010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Soil microorganisms significantly influence the energy flow and material cycle of soil ecosystems, making them highly susceptible to environmental changes, such as those induced by mining activities. Studying the succession of soil microbial communities after mining subsidence is crucial for comprehending the significance of soil microbes in the natural recovery process following subsidence. Therefore, the soil properties, vegetation communities, and soil microbial communities of the subsidence area, as well as unexploited areas, were analyzed during the natural restoration process (1, 2, 5, 10, and 15 years). The results demonstrate that mining subsidence has a significant impact on the aboveground vegetation community, soil properties, and microbiological community. Following an extended period of natural recovery, a new stable state has emerged, which differs from that observed in non-subsidence areas. The total nitrogen, nitrate nitrogen, and ammonium nitrogen amounts may be key factors driving the natural recovery of bacterial communities, and total potassium and available potassium may be key factors driving the natural recovery of fungal communities. The natural recovery mechanism of soil microorganisms was analyzed along with the changes related to vegetation and soil physicochemical properties. The mechanism was explained from three perspectives, namely, plant-led, soil-led, and soil-microbial-led, which could provide a theoretical basis for the natural restoration of grassland ecosystems and provide guidance for the treatment of coal mining subsidence areas.
Collapse
|
research-article |
2 |
|
22
|
Lv S, Zhang Y, Zhang Z, Meng S, Pu Y, Liu X, Liu L, Ma Y, Liu W, Jiang L. Diversity of the fecal microbiota in Chinese ponies. Front Vet Sci 2023; 10:1102186. [PMID: 36777669 PMCID: PMC9909481 DOI: 10.3389/fvets.2023.1102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The gut microbiomes of equine are plentiful and intricate, which plays an important part in the growth. However, there is a relative lack of information on the microbial diversity in the pony's gut. Methods In this article, 118 fecal samples from DeBa pony, NiQi pony and GuZh horse were studied by 16S rRNA amplicon sequencing. Results Diversity analysis was used to determine the difference of gut microbiota composition among different breeds. Alpha diversity analysis showed that the gut microbiota of NiQi ponies were abundant and various. Beta diversity analysis showed that the microorganisms constitution of DeBa ponies was more similar to that of NiQi ponies. LDA Effect Size (LEfSe) analysis result that the microorganism biomarkers for NiQi pony at the genus level were Phascolarctobacterium, Paludibacter, and Fibrobacter; the bacterial biomarker for DeBa pony was Streptococcus and Prevotella; and the bacterial biomarkers for GuZh horses was Treponema, Treponema Mogibacterium, Adlercreutzia, and Blautia. The correlation analysis between genera with >1% abundance and horse height found that Streptococcus (P < 0.01), Treponema (P < 0.01), Coprococcus (P < 0.01), Prevotella (P < 0.01), Phascolarctobacterium (P < 0.01), and Mogibacterium (P < 0.01) were significantly associated with horses' height. The functional prediction results indicated that DeBa pony have a microbiota functional more similar to NiQi pony. Discussion For the first time, our results announce the species composition and structure of the gut microbiota in Chinese ponies. At the same time, our results can provide theoretical reference for further understanding the healthy breeding, feeding management and disease prevention of horses.
Collapse
|
research-article |
2 |
|
23
|
Wang W, Zhang F, Dai X, Liu Y, Mu J, Wang J, Ma Q, Sun J. Changes in vinegar quality and microbial dynamics during fermentation using a self-designed drum-type bioreactor. Front Nutr 2023; 10:1126562. [PMID: 36908901 PMCID: PMC9994180 DOI: 10.3389/fnut.2023.1126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The bioreactor based on solid-state fermentation technology has been developed for vinegar production, standardization of fermentation process and stabilization of vinegar quality. The microbial community diversity, and volatile compounds of six cultivars of vinegar samples fermented in a self-designed solid-state fermentation bioreactors were investigated using Illumina MiSeq platform and gas chromatography mass spectrometry (GC-MS) technology. The correlations between the richness and diversity of microbiota and volatile profiles, organic acids, as well as physicochemical indicators were explored by R software with the coplot package. The findings indicated that Acetobacter, norank-c-Cyanobacteria, and Weissella played key roles during fermentation process. Norank-f-Actinopolyporaceae, norank-c-Cyanobacteria, Pediococcus, and Microbacterium had significant correlations with the physicochemical characteristics. The most common bacterial species were associated with a citric acid content, whereas the least number of bacterial species correlated with malic acid content. Findings could be helpful for the bioreactor optimization, and thus reaching the level of pilot scale and industrialization.
Collapse
|
research-article |
2 |
|
24
|
Jin H, Zhang D, Yan Y, Yang C, Fang B, Li X, Shao Y, Wang H, Yue J, Wang Y, Cheng H, Shi Y, Qin F. Short-term application of chicken manure under different nitrogen rates alters structure and co-occurrence pattern but not diversity of soil microbial community in wheat field. Front Microbiol 2022; 13:975571. [PMID: 36160226 PMCID: PMC9490364 DOI: 10.3389/fmicb.2022.975571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Manure application is an effective way to improve the utilization efficiency of organic resources and alleviate the adverse effects of long-term application of chemical fertilizers. However, the impact of applying manure under different nitrogen rates on soil microbial community in wheat field remains unclear. Treatments with and without chicken manure application under three nitrogen rates (N 135, 180 and 225 kg⋅hm-2) were set in wheat field. Soil organic carbon, available nutrients, and abundance, diversity, structure and co-occurrence pattern of soil microbial community at wheat maturity were investigated. Compared with no manure application, chicken manure application increased the soil organic carbon and available phosphorus, while the effects on soil mineral nitrogen and available potassium varied with different nitrogen rates. Chicken manure application significantly increased soil bacterial abundance under the nitrogen fertilization of 135 and 225 kg⋅hm-2, increased soil fungal abundance under the nitrogen fertilization of 135 kg⋅hm-2, but decreased soil fungal abundance under the nitrogen fertilization of 180 and 225 kg⋅hm-2 (P < 0.05). There was no significant difference in alpha diversity indices of soil microbial communities between treatments with and without chicken manure application under different nitrogen rates (P > 0.05). Chicken manure application and its interaction with nitrogen rate significantly changed soil bacterial and fungal community structures (P < 0.05). There were significantly different taxa of soil microbial communities between treatments with and without chicken manure application. Chicken manure application reduced the ecological network complexity of soil bacterial community and increased that of soil fungal community. In summary, the responses of soil available nutrients and microbial abundance to applying chicken manure varied with different nitrogen rates. One growing season application of chicken manure was sufficient to alter the soil microbial community structure, composition and co-occurrence pattern, whereas not significantly affected soil microbial community diversity.
Collapse
|
research-article |
3 |
|
25
|
Meng WJ, Wen ZL, Kasanen R, Sun H, Asiegbu FO. Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by Heterobasidion. Front Microbiol 2025; 15:1489900. [PMID: 39845034 PMCID: PMC11750781 DOI: 10.3389/fmicb.2024.1489900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Heterobasidion annosum species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability. In this study, using next-generation sequencing technology, we investigated the microbial community in different tree regions (needles, upper stem, and lower stem) of Norway spruce with and without wood decay symptoms. The primary purpose was to uncover signature characteristic microbiome harbored by asymptomatic trees compared to diseased trees. Additionally, the study was to explore the inter-kingdom and intra-kingdom interactions in microbiome (bacteria and fungi) of symptomatic versus asymptomatic trees. The results showed that in upper stem, species richness (Chao1) of fungi and bacteria were both higher in asymptomatic trees than symptomatic trees (P < 0.05). Compared to symptomatic trees, asymptomatic trees harbored a higher abundance of Actinobacteriota, bacterial genera of Methylocella, Conexibacter, Jatrophihabitans, and fungal genera of Mollisia. Fungal communities from the same anatomic region differed between the symptomatic and asymptomatic trees. Bacterial communities from the two stem regions were also distinct between the symptomatic and asymptomatic trees. The symptomatic trees possessed a less stable microbial network with more positive correlations compared to the asymptomatic trees. In the lower stem, at intra-kingdom level, the distribution of correlation numbers was more even in the bacterial network compared to the fungal network. In conclusion, the Heterobasidion attack decreased the microbial community species richness and shifted the community structure and functional structure to varying degrees. The microbial network was enlarged and became more unstable at both inter-kingdom and intra-kingdom level due to the Heterobasidion infection.
Collapse
|
research-article |
1 |
|