1
|
Rennaker RL, Chen CFF, Ruyle AM, Sloan AM, Wilson DA. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J Neurosci 2007; 27:1534-42. [PMID: 17301162 PMCID: PMC2291208 DOI: 10.1523/jneurosci.4072-06.2007] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/18/2006] [Accepted: 01/08/2007] [Indexed: 11/21/2022] Open
Abstract
Despite a remarkably precise spatial representation of odorant stimuli in the early stages of olfactory processing, the projections to the olfactory (piriform) cortex are more diffuse and show characteristics of a combinatorial array, with extensive overlap of afferent inputs and widespread intracortical association connections. Furthermore, although there is increasing evidence for the importance of temporal structure in olfactory bulb odorant-evoked output, little is known about how this temporal patterning is translated within cortical neural ensembles. The present study used multichannel electrode arrays and paired single-unit recordings in rat anterior piriform cortex to test several predictions regarding ensemble coding in this system. The results indicate that odorants evoke activity in a spatially scattered ensemble of anterior piriform cortex neurons, and the ensemble activity includes a rich temporal structure. The most pronounced discrimination between different odorants by cortical ensembles occurs during the first inhalation of a 2 s stimulus. The distributed spatial and temporal structure of cortical activity is present at both global and local scales, with neighboring single units contributing to coding of different odorants and active at different phases of the respiratory cycle. Finally, cross-correlogram analyses suggest that cortical unit activity reflects not only afferent input from the olfactory bulb but also intrinsic activity within the intracortical association fiber system. These results provide direct evidence for predictions stemming from anatomical- and theoretical-based models of piriform cortex.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
145 |
2
|
Qi D, Liu Z, Liu Y, Jiang Y, Leow WR, Pal M, Pan S, Yang H, Wang Y, Zhang X, Yu J, Li B, Yu Z, Wang W, Chen X. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702800. [PMID: 28869690 DOI: 10.1002/adma.201702800] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Polymeric microelectrode arrays (MEAs) are emerging as a new generation of biointegrated microelectrodes to transduce original electrochemical signals in living tissues to external electrical circuits, and vice versa. So far, the challenge of stretchable polymeric MEAs lies in the competition between high stretchability and good electrode-substrate adhesion. The larger the stretchability, the easier the delamination of electrodes from the substrate due to the mismatch in their Young's modulus. In this work, polypyrrole (PPy) electrode materials are designed, with PPy nanowires integrated on the high conductive PPy electrode arrays. By utilizing this electrode material, for the first time, stretchable polymeric MEAs are fabricated with both high stretchability (≈100%) and good electrode-substrate adhesion (1.9 MPa). In addition, low Young's modulus (450 kPa), excellent recycling stability (10 000 cycles of stretch), and high conductivity of the MEAs are also achieved. As a proof of concept, the as-prepared polymeric MEAs are successfully used for conformally recording the electrocorticograph signals from rats in normal and epileptic states, respectively. Further, these polymeric MEAs are also successful in stimulating the ischiadic nerve of the rat. This strategy provides a new perspective to the highly stretchable and mechanically stable polymeric MEAs, which are vital for compliant neural electrodes.
Collapse
|
|
8 |
95 |
3
|
Jun SB, Hynd MR, Dowell-Mesfin N, Smith KL, Turner JN, Shain W, Kim SJ. Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays. J Neurosci Methods 2007; 160:317-26. [PMID: 17049614 PMCID: PMC2767260 DOI: 10.1016/j.jneumeth.2006.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 08/07/2006] [Accepted: 09/08/2006] [Indexed: 11/21/2022]
Abstract
Synaptic activity recorded from low-density networks of cultured rat hippocampal neurons was monitored using microelectrode arrays (MEAs). Neuronal networks were patterned with poly-l-lysine (PLL) using microcontact printing (microCP). Polydimethysiloxane (PDMS) stamps were fabricated with relief structures resulting in patterns of 2 microm-wide lines for directing process growth and 20 microm-diameter circles for cell soma attachment. These circles were aligned to electrode sites. Different densities of neurons were plated in order to assess the minimal neuron density required for development of an active network. Spontaneous activity was observed at 10-14 days in networks using neuron densities as low as 200 cells/mm(2). Immunocytochemistry demonstrated the distribution of dendrites along the lines and the location of foci of the presynaptic protein, synaptophysin, on neuron somas and dendrites. Scanning electron microscopy demonstrated that single fluorescent tracks contained multiple processes. Evoked responses of selected portions of the networks were produced by stimulation of specific electrode sites. In addition, the neuronal excitability of the network was increased by the bath application of high K(+) (10-12 mM). Application of DNQX, an AMPA antagonist, blocked all spontaneous activity, suggesting that the activity is excitatory and mediated through glutamate receptors.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
70 |
4
|
Zachek MK, Takmakov P, Moody B, Wightman RM, McCarty GS. Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal Chem 2009; 81:6258-65. [PMID: 19552423 PMCID: PMC2846216 DOI: 10.1021/ac900790m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfabricated structures utilizing pyrolyzed photoresist have been shown to be useful for monitoring electrochemical processes. These previous studies, however, were limited to constant-potential measurements and slow-scan voltammetry. The work described in this paper utilizes microfabrication processes to produce devices that enable multiple fast-scan cyclic voltammetry (FSCV) waveforms to be applied to different electrodes on a single substrate. This enabled the simultaneous, decoupled detection of dopamine and oxygen. In this paper we describe the fabrication process of these arrays and show that pyrolyzed photoresist electrodes possess surface chemistry and electrochemical properties comparable to PAN-type, T-650, carbon fiber microelectrodes using background-subtracted FSCV. The functionality of the array is discussed in terms of the degree of cross talk in response to flow injections of physiologically relevant concentrations of dopamine and oxygen. Finally, other applications of pyrolyzed photoresist microelectrode arrays are shown, including spatially resolved detection of analytes and combining FSCV with amperometry for the detection of dopamine.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
66 |
5
|
Desai SA, Rolston JD, Guo L, Potter SM. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. FRONTIERS IN NEUROENGINEERING 2010; 3:5. [PMID: 20485478 PMCID: PMC2871717 DOI: 10.3389/fneng.2010.00005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 04/07/2010] [Indexed: 12/03/2022]
Abstract
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes.
Collapse
|
Journal Article |
15 |
59 |
6
|
Desbiolles BXE, de Coulon E, Bertsch A, Rohr S, Renaud P. Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays. NANO LETTERS 2019; 19:6173-6181. [PMID: 31424942 DOI: 10.1021/acs.nanolett.9b02209] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Micronanotechnology-based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recording of excitable cells. However, providing long-term optoporation- or electroporation-free intracellular access remains a considerable challenge. In this study, a novel type of nanopatterned volcano-shaped microelectrode (nanovolcano) is described that spontaneously fuses with the cell membrane and permits stable intracellular access. The complex nanostructure was manufactured following a simple and scalable fabrication process based on ion beam etching redeposition. The resulting ring-shaped structure provided passive intracellular access to neonatal rat cardiomyocytes. Intracellular action potentials were successfully recorded in vitro from different devices, and continuous recording for more than 1 h was achieved. By reporting transmembrane action potentials at potentially high spatial resolution without the need to apply physical triggers, the nanovolcanoes show distinct advantages over multielectrode arrays for the assessment of electrophysiological characteristics of cardiomyocyte networks at the transmembrane voltage level over time.
Collapse
|
|
6 |
57 |
7
|
Hughes CL, Flesher SN, Weiss JM, Downey JE, Boninger M, Collinger JL, Gaunt RA. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J Neural Eng 2021; 18. [PMID: 34320481 DOI: 10.1088/1741-2552/ac18ad] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/28/2021] [Indexed: 01/12/2023]
Abstract
Objective.Intracortical microstimulation (ICMS) in somatosensory cortex can restore sensation to people with spinal cord injury. However, the recording quality from implanted microelectrodes can degrade over time and limitations in stimulation longevity have been considered a potential barrier to the clinical use of ICMS. Our objective was to evaluate recording stability of intracortical electrodes implanted in the motor and somatosensory cortex of one person. The electrodes in motor cortex had platinum tips and were not stimulated, while the electrodes in somatosensory cortex had sputtered iridium oxide film (SIROF) tips and were stimulated. Additionally, we measured how well ICMS was able to evoke sensations over time.Approach. We implanted microelectrode arrays with SIROF tips in the somatosensory cortex (SIROF-sensory) of a human participant with a cervical spinal cord injury. We regularly stimulated these electrodes to evoke tactile sensations on the hand. Here, we quantify the stability of these electrodes in comparison to non-stimulated platinum electrodes implanted in the motor cortex (platinum-motor) over 1500 days with recorded signal quality and electrode impedances. Additionally, we quantify the stability of ICMS-evoked sensations using detection thresholds.Main results. We found that recording quality, as assessed by the number of electrodes with high-amplitude waveforms (>100µV peak-to-peak), peak-to-peak voltage, noise, and signal-to-noise ratio, decreased over time on SIROF-sensory and platinum-motor electrodes. However, SIROF-sensory electrodes were more likely to continue to record high-amplitude signals than platinum-motor electrodes. Interestingly, the detection thresholds for stimulus-evoked sensations decreased over time from a median of 31.5μA at day 100-10.4μA at day 1500, with the largest changes occurring between day 100 and 500.Significance. These results demonstrate that ICMS in human somatosensory cortex can be provided over long periods of time without deleterious effects on recording or stimulation capabilities. In fact, the sensitivity to stimulation improved over time.
Collapse
|
Journal Article |
4 |
54 |
8
|
Ferguson M, Sharma D, Ross D, Zhao F. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Adv Healthc Mater 2019; 8:e1900558. [PMID: 31464094 PMCID: PMC6786932 DOI: 10.1002/adhm.201900558] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Though neural interface systems (NISs) can provide a potential solution for mitigating the effects of limb loss and central nervous system damage, the microelectrode array (MEA) component of NISs remains a significant limiting factor to their widespread clinical applications. Several strategies can be applied to MEA designs to increase their biocompatibility. Herein, an overview of NISs and their applications is provided, along with a detailed discussion of strategies for alleviating the foreign body response (FBR) and abnormalities seen at the interface of MEAs and the brain tissue following MEA implantation. Various surface modifications, including natural/synthetic surface coatings, hydrogels, and topography alterations, have shown to be highly successful in improving neural cell adhesion, reducing gliosis, and increasing MEA longevity. Different MEA surface geometries, such as those seen in the Utah and Michigan arrays, can help alleviate the resultant FBR by reducing insertion damage, while providing new avenues for improving MEA recording performance and resolution. Increasing overall flexibility of MEAs as well as reducing their stiffness is also shown to reduce MEA induced micromotion along with FBR severity. By combining multiple different properties into a single MEA, the severity and duration of an FBR postimplantation can be reduced substantially.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
45 |
9
|
Carli S, Bianchi M, Zucchini E, Di Lauro M, Prato M, Murgia M, Fadiga L, Biscarini F. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Adv Healthc Mater 2019; 8:e1900765. [PMID: 31489795 DOI: 10.1002/adhm.201900765] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Indexed: 01/12/2023]
Abstract
Microelectrode arrays are used for recording and stimulation in neurosciences both in vitro and in vivo. The electrodeposition of conductive polymers, such as poly(3,4-ethylene dioxythiophene) (PEDOT), is widely adopted to improve both the in vivo recording and the charge injection limit of metallic microelectrodes. The workhorse of conductive polymers in the neurosciences is PEDOT:PSS, where PSS represents polystyrene-sulfonate. In this paper, the counterion is the fluorinated polymer Nafion, so the composite PEDOT:Nafion is deposited onto a flexible neural microelectrode array. PEDOT:Nafion coated electrodes exhibit comparable in vivo recording capability to the reference PEDOT:PSS, providing a large signal-to-noise ratio in a murine animal model. Importantly, PEDOT:Nafion exhibits a minimized polarization during electrical stimulation, thereby resulting in an improved charge injection limit equal to 4.4 mC cm-2 , almost 80% larger than the 2.5 mC cm-2 that is observed for PEDOT:PSS.
Collapse
|
|
6 |
45 |
10
|
Yang H, Rahman T, Du D, Panat R, Lin Y. 3-D Printed Adjustable Microelectrode Arrays for Electrochemical Sensing and Biosensing. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 230:600-606. [PMID: 27019550 PMCID: PMC4802967 DOI: 10.1016/j.snb.2016.02.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Printed Electronics has emerged as an important fabrication technique that overcomes several shortcomings of conventional lithography and provides custom rapid prototyping for various sensor applications. In this work, silver microelectrode arrays (MEA) with three different electrode spacing were fabricated using 3-D printing by the aerosol jet technology. The microelectrodes were printed at a length scale of about 15 μm, with the space between the electrodes accurately controlled to about 2 times (30 μm, MEA30), 6.6 times (100 μm, MEA100) and 12 times (180 μm, MEA180) the trace width, respectively. Hydrogen peroxide and glucose were chosen as model analytes to demonstrate the performance of the MEA for sensor applications. The electrodes are shown to reduce hydrogen peroxide with a reduction current proportional to the concentration of hydrogen peroxide for certain concentration ranges. Further, the sensitivity of the current for the three electrode configurations was shown to decrease with an increase in the microelectrode spacing (sensitivity of MEA30: MEA100: MEA180 was in the ratio of 3.7: 2.8: 1), demonstrating optimal MEA geometry for such applications. The noise of the different electrode configurations is also characterized and shows a dramatic reduction from MEA30 to MEA100 and MEA180 electrodes. Further, it is shown that the response current is proportional to MEA100 and MEA180 electrode areas, but not for the area of MEA30 electrode (the current density of MEA30 : MEA100 : MEA180 is 0.25 : 1 : 1), indicating that the MEA30 electrodes suffer from diffusion overlap from neighboring electrodes. The work thus establishes the lower limit of microelectrode spacing for our geometry. The lowest detection limit of the MEAs was calculated (with S/N = 3) to be 0.45 μM. Glucose oxidase was immobilized on MEA100 microelectrodes to demonstrate a glucose biosensor application. The sensitivity of glucose biosensor was 1.73 μAmM-1 and the calculated value of detection limit (S/N = 3) was 1.7 μM. The electrochemical response characteristics of the MEAs were in agreement with the predictions of existing models. The current work opens up the possibility of additive manufacturing as a fabrication technique for low cost custom-shaped MEA structures that can be used as electrochemical platforms for a wide range of sensor applications.
Collapse
|
research-article |
9 |
42 |
11
|
Jungblut M, Knoll W, Thielemann C, Pottek M. Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording. Biomed Microdevices 2009; 11:1269-78. [PMID: 19757074 PMCID: PMC2776171 DOI: 10.1007/s10544-009-9346-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multi-unit recording from neuronal networks cultured on microelectrode arrays (MEAs) is a widely used approach to achieve basic understanding of network properties, as well as the realization of cell-based biosensors. However, network formation is random under primary culture conditions, and the cellular arrangement often performs an insufficient fit to the electrode positions. This results in the successful recording of only a small fraction of cells. One possible approach to overcome this limitation is to raise the number of cells on the MEA, thereby accepting an increased complexity of the network. In this study, we followed an alternative strategy to increase the portion of neurons located at the electrodes by designing a network in confined geometries. Guided settlement and outgrowth of neurons is accomplished by taking control over the adhesive properties of the MEA surface. Using microcontact printing a triangular two-dimensional pattern of the adhesion promoter poly-D-lysine was applied to the MEA offering a meshwork that at the same time provides adhesion points for cell bodies matching the electrode positions and gives frequent branching points for dendrites and axons. Low density neocortical networks cultivated under this condition displayed similar properties to random networks with respect to the cellular morphology but had a threefold higher electrode coverage. Electrical activity was dominated by periodic burst firing that could pharmacologically be modulated. Geometry of the network and electrical properties of the patterned cultures were reproducible and displayed long-term stability making the combination of surface structuring and multi-site recording a promising tool for biosensor applications.
Collapse
|
research-article |
16 |
42 |
12
|
Joucla S, Glière A, Yvert B. Current approaches to model extracellular electrical neural microstimulation. Front Comput Neurosci 2014; 8:13. [PMID: 24600381 PMCID: PMC3928616 DOI: 10.3389/fncom.2014.00013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS) areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include (1) the computation of the electrical potential field created by the stimulation in the tissue, and (2) the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron's response in a cable equation framework (compartmentalized neuron models). Then, we present a “whole finite element” approach allowing the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation.
Collapse
|
Journal Article |
11 |
40 |
13
|
Noda T, Takahashi H. Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex. Eur J Neurosci 2015; 42:2298-311. [PMID: 26118739 DOI: 10.1111/ejn.13007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022]
Abstract
Since its discovery nearly four decades ago, sequential microelectrode mapping using hundreds of recording sites has been able to reveal a precise tonotopic organization of the auditory cortex. Despite concerns regarding the effects that anesthesia might have on neuronal responses to tones, anesthesia was essential for these experiments because such dense mapping was elaborate and time-consuming. Here, taking an 'all-at-once' approach, we investigated how isoflurane modifies spatiotemporal activities by using a dense microelectrode array. The array covered the entire auditory cortex in rats, including the core and belt cortices. By comparing neuronal activity in the awake state with activity under isoflurane anesthesia, we made four observations. First, isoflurane anesthesia did not modify the tonotopic topography within the auditory cortex. Second, in terms of general response properties, isoflurane anesthesia decreased the number of active single units and increased their response onset latency. Third, in terms of tuning properties, isoflurane anesthesia shifted the response threshold without changing the shape of the frequency response area and decreased the response quality. Fourth, in terms of population activities, isoflurane anesthesia increased the noise correlations in discharges and phase synchrony in local field potential (LFP) oscillations, suggesting that the anesthesia made neuronal activities redundant at both single-unit and LFP levels. Thus, while isoflurane anesthesia had little effect on the tonotopic topography, its profound effects on neuronal activities decreased the encoding capacity of the auditory cortex.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
14
|
Caprettini V, Huang J, Moia F, Jacassi A, Gonano CA, Maccaferri N, Capozza R, Dipalo M, De Angelis F. Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800560. [PMID: 30581692 PMCID: PMC6299714 DOI: 10.1002/advs.201800560] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/31/2018] [Indexed: 05/14/2023]
Abstract
3D nanostructures are widely exploited in cell cultures for many purposes such as controlled drug delivery, transfection, intracellular sampling, and electrical recording. However, little is known about the interaction of the cells with these substrates, and even less about the effects of electroporation on the cellular membrane and the nuclear envelope. This work exploits 3D plasmonic nanoelectrodes to study, by surface-enhanced Raman scattering (SERS), the cell membrane dynamics on the nanostructured substrate before, during, and after electroporation. In vitro cultured cells tightly adhere on 3D plasmonic nanoelectrodes precisely in the plasmonic hot spots, making this kind of investigation possible. After electroporation, the cell membrane dynamics are studied by recording the Raman time traces of biomolecules in contact or next to the 3D plasmonic nanoelectrode. During this process, the 3D plasmonic nanoelectrodes are intracellularly coupled, thus enabling the monitoring of different molecular species, including lipids, proteins, and nucleic acids. Scanning electron microscopy cross-section analysis evidences the possibility of nuclear membrane poration compatible with the reported Raman spectra. These findings may open a new route toward controlled intracellular sampling and intranuclear delivery of genic materials. They also show the possibility of nuclear envelope disruption which may lead to negative side effects.
Collapse
|
research-article |
7 |
36 |
15
|
Black BJ, Atmaramani R, Kumaraju R, Plagens S, Romero-Ortega M, Dussor G, Price TJ, Campbell ZT, Pancrazio JJ. Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. J Neurophysiol 2018; 120:1374-1385. [PMID: 29947589 DOI: 10.1152/jn.00158.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following inflammation or injury, sensory neurons located in the dorsal root ganglia (DRG) may exhibit increased spontaneous and/or stimulus-evoked activity, contributing to chronic pain. Current treatment options for peripherally mediated chronic pain are highly limited, driving the development of cell- or tissue-based phenotypic (function-based) screening assays for peripheral analgesic and mechanistic lead discovery. Extant assays are often limited by throughput, content, use of tumorigenic cell lines, or tissue sources from immature developmental stages (i.e., embryonic or postnatal). Here, we describe a protocol for culturing adult mouse DRG neurons on substrate-integrated multiwell microelectrode arrays (MEAs). This approach enables multiplexed measurements of spontaneous as well as stimulus-evoked extracellular action potentials from large populations of cells. The DRG cultures exhibit stable spontaneous activity from 9 to 21 days in vitro. Activity is readily evoked by known chemical and physical agonists of sensory neuron activity such as capsaicin, bradykinin, PGE2, heat, and electrical field stimulation. Most importantly, we demonstrate that both spontaneous and stimulus-evoked activity may be potentiated by incubation with the inflammatory cytokine interleukin-6 (IL-6). Acute responsiveness to IL-6 is inhibited by treatment with a MAPK-interacting kinase 1/2 inhibitor, cercosporamide. In total, these findings suggest that adult mouse DRG neurons on multiwell MEAs are applicable to ongoing efforts to discover peripheral analgesic and their mechanisms of action. NEW & NOTEWORTHY This work describes methodologies for culturing spontaneously active adult mouse dorsal root ganglia (DRG) sensory neurons on microelectrode arrays. We characterize spontaneous and stimulus-evoked adult DRG activity over durations consistent with pharmacological interventions. Furthermore, persistent hyperexcitability could be induced by incubation with inflammatory cytokine IL-6 and attenuated with cercosporamide, an inhibitor of the IL-6 sensitization pathway. This constitutes a more physiologically relevant, moderate-throughput in vitro model for peripheral analgesic screening as well as mechanistic lead discovery.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
32 |
16
|
Zips S, Grob L, Rinklin P, Terkan K, Adly NY, Weiß LJK, Mayer D, Wolfrum B. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32778-32786. [PMID: 31424902 DOI: 10.1021/acsami.9b11774] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m-1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s-1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
Collapse
|
|
6 |
29 |
17
|
Wagner FB, Truccolo W, Wang J, Nurmikko AV. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy. J Neurophysiol 2014; 113:2321-41. [PMID: 25552645 DOI: 10.1152/jn.01040.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022] Open
Abstract
Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unclear whether epileptiform events induced by rhythmic stimulation (e.g., sensory/electrical) mimic actual spontaneous seizures, especially regarding their spatiotemporal dynamics. In this study, we used a novel combination of intracortical optogenetic stimulation and microelectrode array recordings in freely moving WAG/Rij rats, a model of absence epilepsy with a cortical focus in the somatosensory cortex (SI). We report three main findings: 1) Brief rhythmic bursting, evoked by optical stimulation of neocortical excitatory neurons at frequencies around 10 Hz, induced seizures consisting of self-sustained spike-wave discharges (SWDs) for about 10% of stimulation trials. The probability of inducing seizures was frequency-dependent, reaching a maximum at 10 Hz. 2) Local field potential power before stimulation and response amplitudes during stimulation both predicted seizure induction, demonstrating a modulatory effect of brain states and neural excitation levels. 3) Evoked responses during stimulation propagated as cortical waves, likely reaching the cortical focus, which in turn generated self-sustained SWDs after stimulation was terminated. Importantly, SWDs during induced and spontaneous seizures propagated with the same spatiotemporal dynamics. Our findings demonstrate that local rhythmic bursting of excitatory neurons in neocortex at particular frequencies, under susceptible ongoing brain states, is sufficient to trigger primary generalized seizures with stereotypical spatiotemporal dynamics.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
29 |
18
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
27 |
19
|
Cools J, Jin Q, Yoon E, Alba Burbano D, Luo Z, Cuypers D, Callewaert G, Braeken D, Gracias DH. A Micropatterned Multielectrode Shell for 3D Spatiotemporal Recording from Live Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700731. [PMID: 29721420 PMCID: PMC5908352 DOI: 10.1002/advs.201700731] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/12/2017] [Indexed: 05/18/2023]
Abstract
Microelectrode arrays (MEAs) have proved to be useful tools for characterizing electrically active cells such as cardiomyocytes and neurons. While there exist a number of integrated electronic chips for recording from small populations or even single cells, they rely primarily on the interface between the cells and 2D flat electrodes. Here, an approach that utilizes residual stress-based self-folding to create individually addressable multielectrode interfaces that wrap around the cell in 3D and function as an electrical shell-like recording device is described. These devices are optically transparent, allowing for simultaneous fluorescence imaging. Cell viability is maintained during and after electrode wrapping around the cel and chemicals can diffuse into and out of the self-folding devices. It is further shown that 3D spatiotemporal recordings are possible and that the action potentials recorded from cultured neonatal rat ventricular cardiomyocytes display significantly higher signal-to-noise ratios in comparison with signals recorded with planar extracellular electrodes. It is anticipated that this device can provide the foundation for the development of new-generation MEAs where dynamic electrode-cell interfacing and recording substitutes the traditional method using static electrodes.
Collapse
|
research-article |
7 |
25 |
20
|
He C, Tao M, Zhang C, He Y, Xu W, Liu Y, Zhu W. Microelectrode-Based Electrochemical Sensing Technology for in Vivo Detection of Dopamine: Recent Developments and Future Prospects. Crit Rev Anal Chem 2020; 52:544-554. [PMID: 32852227 DOI: 10.1080/10408347.2020.1811946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Dopamine (DA) is an essential type of neurotransmitter in the central nervous system. DA neurons usually exist as nuclei which are mainly found in the ventral tegmental area (VTN) and substantia nigra pars compacta (SNc). Parkinson's disease, epilepsy, schizophrenia and other diseases are all related to the abnormal metabolism of DA. Compared with traditional DA detection methods such as spectrophotometry and electrophoresis, electrochemical sensing technology has high detection efficiency, high sensitivity, fast and convenient real-time detection, which is recognized as the most effective method for measuring neurotransmitters in vivo. The working electrode of an electrochemical sensor can be generally divided into the conventional electrode and the microelectrode according to its size. The microelectrode shows excellent properties such as high sensitivity, high temporal resolution, and high spatial resolution while detecting DA, which makes it possible to detect neurotransmitters in vivo. In order to further investigate the role of DA in regulating action, emotion, and cognition, and to further clarify the relationship between DA abnormalities or lack and neurological diseases such as Parkinson, more and more researchers apply microelectrode-based electrochemistry sensing technology to detect DA in vivo. This article reviews recent applications of microelectrodes and the latest researches in DA detection in vivo, focusing on the following three types of microelectrodes: (1) non-nanomaterial-modified carbon fiber microelectrodes (CFE); (2) nanomaterial-modified microelectrodes; (3) microelectrode arrays (MEA).
Collapse
|
Journal Article |
5 |
22 |
21
|
Seo KJ, Artoni P, Qiang Y, Zhong Y, Han X, Shi Z, Yao W, Fagiolini M, Fang H. Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Single-Unit Electrophysiology. ACTA ACUST UNITED AC 2019; 3:e1800276. [PMID: 32627399 DOI: 10.1002/adbi.201800276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/08/2018] [Indexed: 01/08/2023]
Abstract
Accurately mapping neuronal activity across brain networks is critical to understand behaviors, yet it is very challenging due to the need of tools with both high spatial and temporal resolutions. Here, penetrating arrays of flexible microelectrodes made of low-impedance nanomeshes are presented, which are capable of recording single-unit electrophysiological neuronal activity and at the same time, transparent, allowing to bridge electrical and optical brain mapping modalities. These 32 transparent penetrating electrodes with site area, 225 µm2 , have a low impedance of ≈149 kΩ at 1 kHz, an adequate charge injection limit of ≈0.76 mC cm-2 , and up to 100% yield. Mechanical bending tests reveal that the array is robust up to 1000 bending cycles, and its high transmittance of 67% at 550 nm makes it suitable for combining with various optical methods. A temporary stiffening using polyethylene glycol allows the penetrating nanomesh arrays to be inserted into the brain minimally invasively, with in vivo validation of recordings of spontaneous and evoked single-unit activity of neurons across layers of the mouse visual cortex. Together, these results establish a novel neurotechnology-transparent, flexible, penetrating microelectrode arrays-which possesses great potential for brain research.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
22
|
Duru J, Küchler J, Ihle SJ, Forró C, Bernardi A, Girardin S, Hengsteler J, Wheeler S, Vörös J, Ruff T. Engineered Biological Neural Networks on High Density CMOS Microelectrode Arrays. Front Neurosci 2022; 16:829884. [PMID: 35264928 PMCID: PMC8900719 DOI: 10.3389/fnins.2022.829884] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
In bottom-up neuroscience, questions on neural information processing are addressed by engineering small but reproducible biological neural networks of defined network topology in vitro. The network topology can be controlled by culturing neurons within polydimethylsiloxane (PDMS) microstructures that are combined with microelectrode arrays (MEAs) for electric access to the network. However, currently used glass MEAs are limited to 256 electrodes and pose a limitation to the spatial resolution as well as the design of more complex microstructures. The use of high density complementary metal-oxide-semiconductor (CMOS) MEAs greatly increases the spatial resolution, enabling sub-cellular readout and stimulation of neurons in defined neural networks. Unfortunately, the non-planar surface of CMOS MEAs complicates the attachment of PDMS microstructures. To overcome the problem of axons escaping the microstructures through the ridges of the CMOS MEA, we stamp-transferred a thin film of hexane-diluted PDMS onto the array such that the PDMS filled the ridges at the contact surface of the microstructures without clogging the axon guidance channels. This method resulted in 23 % of structurally fully connected but sealed networks on the CMOS MEA of which about 45 % showed spiking activity in all channels. Moreover, we provide an impedance-based method to visualize the exact location of the microstructures on the MEA and show that our method can confine axonal growth within the PDMS microstructures. Finally, the high spatial resolution of the CMOS MEA enabled us to show that action potentials follow the unidirectional topology of our circular multi-node microstructure.
Collapse
|
research-article |
3 |
18 |
23
|
Jun SB, Hynd MR, Dowell-Mesfin NM, Al-Kofahi Y, Roysam B, Shain W, Kim SJ. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays. J Neural Eng 2008; 5:203-13. [PMID: 18477815 PMCID: PMC2767261 DOI: 10.1088/1741-2560/5/2/011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
18 |
24
|
Black BJ, Ecker M, Stiller A, Rihani R, Danda VR, Reed I, Voit WE, Pancrazio JJ. In vitro compatibility testing of thiol-ene/acrylate-based shape memory polymers for use in implantable neural interfaces. J Biomed Mater Res A 2018; 106:2891-2898. [PMID: 30371968 DOI: 10.1002/jbm.a.36478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/06/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Shape memory polymers (SMPs) based on thiol-ene/acrylate formulations are an emerging class of materials with potential applications as structural and/or dielectric coatings for implantable neural interfaces. Here, we report in vitro compatibility studies of three novel thiol-ene/acrylate-based SMP formulations. In vivo cytotoxicity assays were carried out in accordance with International Organization for Standards (ISO) protocol 10993-5, using NCTC clone 929 fibroblasts as well as embryonic cortical cultures. All three SMP formulations passed standardized cytotoxicity assays (>70% normalized cell viability) using both cell types. Functional neurotoxicity assays were carried out using primary cortical networks cultured on substrate-integrated microelectrode arrays (MEAs). We observed significant reduction in cortical network activity in the case of positive control material, but no significant alterations in activity following incubation with SMP material extracts, indicating functional cytocompatibility. Finally, we assessed cell reactivity at the tissue-material interface by performing an in vitro glial scarring assay. Through immunostaining, we observed similar astrocyte-associated (GFAP) mean intensity ratios near nonsoftening SMP-coated and uncoated stainless steel microwires (1.10 ± 0.06 vs. 1.19 ± 0.10), suggesting similar glial cell reactivity. However, we observed decreased mean intensity ratios in the presence of fully softening SMP-coated microwires (1.02 ± 0.04) suggesting reduced glial cell reactivity. Overall, these results indicate that the thiol-ene/acrylate SMP formulations presented here are neither cytotoxic nor neurotoxic, and suggest that fully softening SMP may reduce foreign body response in terms of glial cell reactivity. These findings support further consideration of this class of materials as backbone or insulating materials for implantable neural stimulating/recording devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2891-2898, 2018.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
18 |
25
|
Aghagolzadeh M, Oweiss K. Compressed and distributed sensing of neuronal activity for real time spike train decoding. IEEE Trans Neural Syst Rehabil Eng 2009; 17:116-27. [PMID: 19193517 PMCID: PMC2782557 DOI: 10.1109/tnsre.2009.2012711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multivariate point processes are increasingly being used to model neuronal response properties in the cortex. Estimating the conditional intensity functions underlying these processes is important to characterize and decode the firing patterns of cortical neurons. This paper proposes a new approach for estimating these intensity functions directly from a compressed representation of the neurons' extracellular recordings. The approach is based on exploiting a sparse representation of the extracellular spike waveforms, previously demonstrated to yield near-optimal denoising and compression properties. We show that by restricting this sparse representation to a subset of projections that simultaneously preserve features of the spike waveforms in addition to the temporal characteristics of the underlying intensity functions, we can reasonably approximate the instantaneous firing rates of the recorded neurons with variable tuning characteristics across a multitude of time scales. Such feature is highly desirable to detect subtle temporal differences in neuronal firing characteristics from single-trial data. An added advantage of this approach is that it eliminates multiple steps from the typical processing path of neural signals that are customarily performed for instantaneous neural decoding. We demonstrate the decoding performance of the approach using a stochastic cosine tuning model of motor cortical activity during a natural, nongoal-directed 2-D arm movement.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
17 |