1
|
Chambers JE, Kubánková M, Huber RG, López-Duarte I, Avezov E, Bond PJ, Marciniak SJ, Kuimova MK. An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles. ACS NANO 2018; 12:4398-4407. [PMID: 29648785 DOI: 10.1021/acsnano.8b00177] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.
Collapse
|
|
7 |
111 |
2
|
Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proc Natl Acad Sci U S A 2013; 110:9225-30. [PMID: 23690599 DOI: 10.1073/pnas.1301479110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a "molecular rotor" embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
99 |
3
|
Michels L, Gorelova V, Harnvanichvech Y, Borst JW, Albada B, Weijers D, Sprakel J. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc Natl Acad Sci U S A 2020; 117:18110-18118. [PMID: 32669427 PMCID: PMC7395454 DOI: 10.1073/pnas.1921374117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.
Collapse
|
research-article |
5 |
43 |
4
|
Vyšniauskas A, Qurashi M, Kuimova MK. A Molecular Rotor that Measures Dynamic Changes of Lipid Bilayer Viscosity Caused by Oxidative Stress. Chemistry 2016; 22:13210-7. [PMID: 27487026 PMCID: PMC5096028 DOI: 10.1002/chem.201601925] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/23/2022]
Abstract
Oxidation of cellular structures is typically an undesirable process that can be a hallmark of certain diseases. On the other hand, photooxidation is a necessary step of photodynamic therapy (PDT), a cancer treatment causing cell death upon light irradiation. Here, the effect of photooxidation on the microscopic viscosity of model lipid bilayers constructed of 1,2-dioleoyl-sn-glycero-3-phosphocholine has been studied. A molecular rotor has been employed that displays a viscosity-dependent fluorescence lifetime as a quantitative probe of the bilayer's viscosity. Thus, spatially-resolved viscosity maps of lipid photooxidation in giant unilamellar vesicles (GUVs) were obtained, testing the effect of the positioning of the oxidant relative to the rotor in the bilayer. It was found that PDT has a strong impact on viscoelastic properties of lipid bilayers, which 'travels' through the bilayer to areas that have not been irradiated directly. A dramatic difference in viscoelastic properties of oxidized GUVs by Type I (electron transfer) and Type II (singlet oxygen-based) photosensitisers was also detected.
Collapse
|
research-article |
9 |
31 |
5
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
|
|
6 |
27 |
6
|
Shimolina L, Gulin A, Ignatova N, Druzhkova I, Gubina M, Lukina M, Snopova L, Zagaynova E, Kuimova MK, Shirmanova M. The Role of Plasma Membrane Viscosity in the Response and Resistance of Cancer Cells to Oxaliplatin. Cancers (Basel) 2021; 13:cancers13246165. [PMID: 34944789 PMCID: PMC8699340 DOI: 10.3390/cancers13246165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding the role of the plasma membrane in the responses of cancer cells to chemotherapy is important because the cell membrane is directly involved in drug transport and the regulation of numerous biological processes. However, the role of the plasma membrane in cell resistance to platinum drugs like oxaliplatin is not fully understood. In this study we identified the changes to plasma membrane viscosity and lipid composition induced by oxaliplatin in responsive, cultured cancer cells and in mouse tumors. It was also found that the acquisition of chemoresistance is accompanied by modification of membrane lipids in ways that preserve the viscous properties unchanged upon further treatment. Therefore, new therapeutic approaches could be developed to reverse chemoresistance based on membrane lipid modifications and the de-stabilisation of membrane viscosity. Abstract Maintenance of the biophysical properties of membranes is essential for cell survival upon external perturbations. However, the links between a fluid membrane state and the drug resistance of cancer cells remain elusive. Here, we investigated the role of membrane viscosity and lipid composition in the responses of cancer cells to oxaliplatin and the development of chemoresistance. Plasma membrane viscosity was monitored in live colorectal cancer cells and tumor xenografts using two-photon excited fluorescence lifetime imaging microscopy (FLIM) using the fluorescent molecular rotor BODIPY 2. The lipid profile was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that the plasma membrane viscosity increased upon oxaliplatin treatment, both in vitro and in vivo, and that this correlated with lower phosphatidylcholine and higher cholesterol content. The emergence of resistance to oxaliplatin was accompanied by homeostatic adaptation of the membrane lipidome, and the recovery of lower viscosity. These results suggest that maintaining a constant plasma membrane viscosity via remodeling of the lipid profile is crucial for drug resistance in cancer.
Collapse
|
|
4 |
18 |
7
|
Poncelet M, Driesschaert B. A 13 C-Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020; 59:16451-16454. [PMID: 32542924 PMCID: PMC7901239 DOI: 10.1002/anie.202006591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/21/2022]
Abstract
A stable triarylmethyl spin probe whose electron paramagnetic resonance (EPR) spectrum is highly sensitive to molecular tumbling is reported. The strong anisotropy of the hyperfine coupling tensor with the central carbon of a 13 C1 -labeled triarylmethyl radical enables the measurement of the probe rotational correlation time with applications to measure microviscosity and molecular dynamics.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
16 |
8
|
Raja SO, Sivaraman G, Biswas S, Singh G, Kalim F, Kandaswamy P, Gulyani A. A Tunable Palette of Molecular Rotors Allows Multicolor, Ratiometric Fluorescence Imaging and Direct Mapping of Mitochondrial Heterogeneity. ACS APPLIED BIO MATERIALS 2021; 4:4361-4372. [PMID: 35006848 DOI: 10.1021/acsabm.1c00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environment-sensitive molecular probes offer the potential for a comprehensive mapping of the complex cellular milieu. We present here a radically new strategy of multiplexing highly sensitive, spectrally tuned fluorescent dyes for sensing cellular microenvironment. To achieve this multicolor, ratiometric cellular imaging, we first developed a series of highly sensitive, tunable molecular rotors for mitochondrial imaging, with emission wavelengths spanning the visible spectrum. These fluorogenic merocyanine dyes are all sensitive to solvent viscosity despite distinctive photophysical features. Our results show that merocyanine dyes can show a rotor-like behavior despite significant changes to the conventional donor-acceptor or push-pull scaffolds, thereby revealing conserved features of rotor dye chemistry. Developing closely related but spectrally separated dyes that have distinct response functions allows us to do ″two-color, two-dye″ imaging of the mitochondrial microenvironment. Our results with multidye, combinatorial imaging provide a direct visualization of the intrinsic heterogeneity of the mitochondrial microenvironment. The overall mitochondrial microenvironment (including contributions from local membrane order) as reported through two-color fluorescence ″ratio″ changes of multiplexed rotor dyes shows dynamic heterogeneity with distinct spatiotemporal signatures that evolve over time and respond to chemical perturbations. Our results offer a powerful illustration of how multiplexed dye imaging allows the quantitative imaging of mitochondrial membrane order and cellular microenvironment.
Collapse
|
|
4 |
16 |
9
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
|
|
7 |
14 |
10
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
|
Journal Article |
12 |
10 |
11
|
Give or Take: Effects of Electron-Accepting/-Withdrawing Groups in Red-Fluorescent BODIPY Molecular Rotors. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010023. [PMID: 35011252 PMCID: PMC8746292 DOI: 10.3390/molecules27010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/12/2023]
Abstract
Mapping microviscosity, temperature, and polarity in biosystems is an important capability that can aid in disease detection. This can be achieved using fluorescent sensors based on a green-emitting BODIPY group. However, red fluorescent sensors are desired for convenient imaging of biological samples. It is known that phenyl substituents in the β position of the BODIPY core can shift the fluorescence spectra to longer wavelengths. In this research, we report how electron-withdrawing (EWG) and -donating (EDG) groups can change the spectral and sensory properties of β-phenyl-substituted BODIPYs. We present a trifluoromethyl-substituted (EWG) conjugate with moderate temperature sensing properties and a methoxy-substituted (EDG) molecule that could be used as a lifetime-based polarity probe. In this study, we utilise experimental results of steady-state and time-resolved fluorescence, as well as quantum chemical calculations using density functional theory (DFT). We also explain how the energy barrier height (Ea) for non-radiative relaxation affects the probe’s sensitivity to temperature and viscosity and provide appropriate Ea ranges for the best possible sensitivity to viscosity and temperature.
Collapse
|
|
4 |
8 |
12
|
Díaz M, Pereda de Pablo D, Valdés‐Baizabal C, Santos G, Marin R. Molecular and biophysical features of hippocampal "lipid rafts aging" are modified by dietary n-3 long-chain polyunsaturated fatty acids. Aging Cell 2023; 22:e13867. [PMID: 37254617 PMCID: PMC10410061 DOI: 10.1111/acel.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.
Collapse
|
research-article |
2 |
4 |
13
|
Efremov YM, Shimolina L, Gulin A, Ignatova N, Gubina M, Kuimova MK, Timashev PS, Shirmanova MV. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy. Cells 2023; 12:2583. [PMID: 37947661 PMCID: PMC10650173 DOI: 10.3390/cells12212583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.
Collapse
|
research-article |
2 |
4 |
14
|
Velayutham M, Poncelet M, Eubank TD, Driesschaert B, Khramtsov VV. Biological Applications of Electron Paramagnetic Resonance Viscometry Using a 13C-Labeled Trityl Spin Probe. Molecules 2021; 26:2781. [PMID: 34066858 PMCID: PMC8125944 DOI: 10.3390/molecules26092781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1-2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.
Collapse
|
research-article |
4 |
3 |
15
|
Kamiguri J, Tsuchiya N, Hidema R, Yatabe Z, Shoji M, Hashimoto C, Pansu RB, Ushiki H. Contraction behaviors of Vorticella sp. stalk investigated using high-speed video camera. II: Viscosity effect of several types of polymer additives. Biophysics (Nagoya-shi) 2012; 8:11-19. [PMID: 27857603 PMCID: PMC5070451 DOI: 10.2142/biophysics.8.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/15/2011] [Indexed: 12/01/2022] Open
Abstract
The contraction process of living Vorticella sp. in polymer solutions with various viscosities has been investigated by image processing using a high-speed video camera. The viscosity of the external fluid ranges from 1 to 5mPa·s for different polymer additives such as hydroxypropyl cellulose, polyethylene oxide, and Ficoll. The temporal change in the contraction length of Vorticella sp. in various macromolecular solutions is fitted well by a stretched exponential function based on the nucleation and growth model. The maximum speed of the contractile process monotonically decreases with an increase in the external viscosity, in accordance with power law behavior. The index values approximate to 0.5 and this suggests that the viscous energy dissipated by the contraction of Vorticella sp. is constant in a macromolecular environment.
Collapse
|
research-article |
13 |
2 |
16
|
Saito Y. Ion Transport in Solid Medium-Evaluation of Ionic Mobility for Design of Ion Transport Pathways in Separator and Gel Electrolyte. MEMBRANES 2021; 11:membranes11040277. [PMID: 33918890 PMCID: PMC8069590 DOI: 10.3390/membranes11040277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Further improvement in the performance of lithium secondary batteries will be an indispensable issue to realize a decarbonized society. Among them, the batteries for electric vehicles still have many issues to be addressed because they are subject to various conditions such as high-power performance, safety, and cost restrictions for widespread use. Those subjects require extensive researches from the improvement of each element material to control the battery system to optimize the total performance. Based on this idea, we have been conducting research focusing on ion movement to elucidate the ion conduction mechanism from the microscopic point of view. It has been recognized that the ionic mobility in the battery, which dominates the power performance of the battery, is affected by the solid environment in which the ions move (separator and electrode materials) and the evaluation of ion movement, including the interaction with the surroundings, is necessary as an essential step for battery design. In this article, I will introduce the evaluation approach of ion dynamics and the evaluation results of mobility and interactive situations of carrier ions in the practical separator membranes and gel electrolytes. Finally, the direction of material design is outlined through this review.
Collapse
|
Review |
4 |
2 |
17
|
Maleckaitė K, Dodonova-Vaitkūnienė J, Žilėnaitė R, Tumkevičius S, Vyšniauskas A. Red fluorescent BODIPY molecular rotor for high microviscosity environments. Methods Appl Fluoresc 2022; 10. [PMID: 35705104 DOI: 10.1088/2050-6120/ac7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Microviscosity has a strong impact for diffusion-controlled processes in biological environments. BODIPY molecular rotors are viscosity-sensitive fluorophores that provide a simple and non-invasive way to visualise microviscosity. Although green fluorescent probes are already well developed for imaging, thick biological samples require longer wavelengths for investigation. This work focuses on the examination of novelβ-substitutedmeso-phenyl-BODIPYs possessing a red emission. We report a new red fluorescent BODIPY-based probe BP-Vinyl-NO2suitable for sensing microviscosity in rigid environments of over 100 000 cP viscosities. Furthermore, we demonstrate that changing the methyl position fromorthotometaon theβ-phenyl-substituted conjugate BP-PH-m2M-NO2redshifts absorbance and fluorescence spectra while maintaining viscosity sensitivity. Finally, we show that nitro-substitution ofmeso-phenyl is a versatile approach to improve the sensitivity to viscosity while suppressing sensitivity to polarity and temperature of such derivatives. In summary, we present two nitro-substituted red fluorescent probes that could be used as lifetime-based microviscosity sensors.
Collapse
|
|
3 |
|
18
|
Shimolina LE, Khlynova AE, Elagin VV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer. Biomedicines 2024; 12:2550. [PMID: 39595116 PMCID: PMC11591579 DOI: 10.3390/biomedicines12112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. METHODS In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. RESULTS Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. CONCLUSIONS These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer.
Collapse
|
research-article |
1 |
|
19
|
Jurgutis D, Jarockyte G, Poderys V, Dodonova-Vaitkuniene J, Tumkevicius S, Vysniauskas A, Rotomskis R, Karabanovas V. Exploring BODIPY-Based Sensor for Imaging of Intracellular Microviscosity in Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23105687. [PMID: 35628497 PMCID: PMC9143602 DOI: 10.3390/ijms23105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.
Collapse
|
|
3 |
|
20
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova MK, Shirmanova M. Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells. Int J Mol Sci 2023; 24:12186. [PMID: 37569560 PMCID: PMC10419023 DOI: 10.3390/ijms241512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
Collapse
|
research-article |
2 |
|