1
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
|
Review |
3 |
57 |
2
|
Jiao X, Zheng K, Hu Z, Zhu S, Sun Y, Xie Y. Conversion of Waste Plastics into Value-Added Carbonaceous Fuels under Mild Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005192. [PMID: 33834571 DOI: 10.1002/adma.202005192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Owing to the extremely difficult breakage of the adamant cross-linked structures, converting non-recyclable plastic wastes into valuable fuels usually demands rigorous conditions, wherein the required high temperature and pressure is inevitably energy-wasting and environment-polluting. Given this aspect, herein, the recent achievements in the conversion of plastics into value-added carbonaceous fuels under mild conditions are summarized. In detail, solar-driven conversion of commercial plastics into liquid fuels in alkaline solutions or pure water at ambient temperature and pressure are surveyed; also, enzyme-driven conversion of polyethylene terephthalate into terephthalic acid and ethylene glycol at a mild temperature are emphasized; and low-temperature-driven catalytic conversion of polyethylene into oils and waxes with the help of a light alkane are reviewed. Finally, other potentially used strategies and in situ characterization technologies in plastics degradation under moderate conditions are presented.
Collapse
|
Review |
4 |
45 |
3
|
Huang L, Gu M, Wang Z, Tang TW, Zhu Z, Yuan Y, Wang D, Shen C, Tang BZ, Ye R. Highly Efficient and Rapid Inactivation of Coronavirus on Non-Metal Hydrophobic Laser-Induced Graphene in Mild Conditions. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101195. [PMID: 34149339 PMCID: PMC8206748 DOI: 10.1002/adfm.202101195] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Indexed: 05/18/2023]
Abstract
The prevalence of COVID-19 has caused global dysfunction in terms of public health, sustainability, and socio-economy. While vaccination shows potential in containing the spread, the development of surfaces that effectively reduces virus transmission and infectivity is also imperative, especially amid the early stage of the pandemic. However, most virucidal surfaces are operated under harsh conditions, making them impractical or potentially unsafe for long-term use. Here, it is reported that laser-induced graphene (LIG) without any metal additives shows marvelous antiviral capacities for coronavirus. Under low solar irradiation, the virucidal efficacy of the hydrophobic LIG (HLIG) against HCoV-OC43 and HCoV-229E can achieve 97.5% and 95%, respectively. The photothermal effect and the hydrophobicity of the HLIG synergistically contribute to the superior inactivation capacity. The stable antiviral performance of HLIG enables its multiple uses, showing advantages in energy saving and environmental protection. This work discloses a potential method for antiviral applications and has implications for the future development of antiviral materials.
Collapse
|
research-article |
4 |
35 |
4
|
The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. Molecules 2021; 26:molecules26010223. [PMID: 33406782 PMCID: PMC7795100 DOI: 10.3390/molecules26010223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Flavor is amongst the major personal satisfaction indicators for meat products. The aroma of dry cured meat products is generated under specific conditions such as long ripening periods and mild temperatures. In these conditions, the contribution of Maillard reactions to the generation of the dry cured flavor is unknown. The main purpose of this study was to examine mild curing conditions such as temperature, pH and aw for the generation of volatile compounds responsible for the cured meat aroma in model systems simulating dry fermented sausages. The different conditions were tested in model systems resembling dry fermented sausages at different stages of production. Three conditions of model system, labeled initial (I), 1st drying (1D) and 2nd drying (2D) and containing different concentrations of amino acid and curing additives, as well as different pH and aw values, were incubated at different temperatures. Changes in the profile of the volatile compounds were investigated by solid phase microextraction and gas chromatography mass spectrometry (SPME-GS-MS) as well as the amino acid content. Seventeen volatile compounds were identified and quantified in the model systems. A significant production of branched chain volatile compounds, sulfur, furans, pyrazines and heterocyclic volatile compounds were detected in the model systems. At the drying stages, temperature was the main factor affecting volatile production, followed by amino acid concentration and aw. This research demonstrates that at the mild curing conditions used to produce dry cured meat product volatile compounds are generated via the Maillard reaction from free amino acids. Moreover, in these conditions aw plays an important role promoting formation of flavor compounds.
Collapse
|
Journal Article |
4 |
21 |
5
|
Kazemnejadi M, Shakeri A, Nikookar M, Shademani R, Mohammadi M. Selective and metal-free epoxidation of terminal alkenes by heterogeneous polydioxirane in mild conditions. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171541. [PMID: 29892358 PMCID: PMC5990723 DOI: 10.1098/rsos.171541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Polydioxirane (PDOX) was prepared by the treatment of polysalicylaldehyde with Oxone and was found as a selective, highly efficient and heterogeneous reagent for epoxidation of alkenes which can be successfully isolated. This work also introduced a simpler, safer and milder way for epoxidation of alkenes with dioxirane groups than before. PDOX can be simply recovered from the reaction mixture by plain filtration and reused for eight runs without significant reactivity loss.
Collapse
|
research-article |
7 |
13 |
6
|
Tan H, Wang Y. Facile Synthesis of Novel Hexahydroimidazo[1,2- a]pyridine Derivatives by One-Pot, Multicomponent Reaction under Ambient Conditions. ACS COMBINATORIAL SCIENCE 2020; 22:468-474. [PMID: 32633496 DOI: 10.1021/acscombsci.0c00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An efficient one-pot multicomponent reaction for the synthesis of novel tetrasubstituted hexahydroimidazo[1,2-a]pyridines starting from readily available cinnamaldehydes, ethylenediamines, and 1,3-dicarbonyl compounds catalyzed by AcOH is described. Two new cycles and four new bonds are constructed with all reactants being efficiently utilized in this transformation. The products could be obtained in 1-3 h under ambient conditions exclusively as a single isomer (trans). Single-crystal X-ray analysis confirmed the trans derivative as the only isomer.
Collapse
|
|
5 |
11 |
7
|
Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification. Molecules 2017; 22:molecules22010115. [PMID: 28085065 PMCID: PMC6155579 DOI: 10.3390/molecules22010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids (ILs) as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min) by multiple microscopic techniques (FE-SEM, CLSM, and CRM). Chemical composition analysis, XRD, cellulase adsorption isotherm, and enzymatic hydrolysis were also performed to monitor the variation of substrate properties. Our results indicated that the biomass conversion was greatly enhanced (from 20.57% to 73.64%) due to the cell wall deconstruction and lignin dissolution (29.83% lignin was removed after incubation for 40 min), rather than the decrystallization or crystallinity transformation of substrates. The mild ILs pretreatment, with less energy input, can not only enhance enzymatic hydrolysis, but also provide a potential approach as the first step in improving the sequential pretreatment effectiveness in integrated methods. This study provides new insights on understanding the ILs pretreatment with low temperature and short duration, which is critical for developing individual and/or combined pretreatment technologies with reduced energy consumption.
Collapse
|
Journal Article |
8 |
10 |
8
|
Coffey SB, Aspnes G, Londregan AT. Expedient Synthesis of N1-Substituted Triazole Peptidomimetics. ACS COMBINATORIAL SCIENCE 2015; 17:706-9. [PMID: 26562078 DOI: 10.1021/acscombsci.5b00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A general procedure for the rapid diversification of peptide scaffolds is described. A one-pot click reaction between a peptide-alkyne and a series of in situ generated aryl/alkyl azides affords novel N1-substituted triazole peptidomimetics. This transformation is of broad scope, operates under mild conditions, and is parallel chemical synthesis compatible.
Collapse
|
Letter |
10 |
8 |
9
|
Jiao X, Hu Z, Zheng K, Zhu J, Wu Y, Zhang X, Hu J, Yan W, Zhu J, Sun Y, Xie Y. Direct Polyethylene Photoreforming into Exclusive Liquid Fuel over Charge-Asymmetrical Dual Sites under Mild Conditions. NANO LETTERS 2022; 22:10066-10072. [PMID: 36515999 DOI: 10.1021/acs.nanolett.2c03813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct polyethylene photoreforming to high-energy-density C2 fuels under mild conditions is of great significance and still faces a huge challenge, which is partly attributed to the extreme instability of *CH2CH2 adsorbed on the traditional catalysts with single catalytic sites. Herein, charge-asymmetrical dual sites are designed to boost the adsorption of *CH2CH2 for direct polyethylene photoreforming into C2 fuels under normal temperature and pressure. As a prototype, the synthetic Zr-doped CoFe2O4 quantum dots with charge-asymmetrical dual metal sites realize direct polyethylene photoreforming into acetic acid, with 100% selectivity of liquid fuel and the evolution rate of 1.10 mmol g-1 h-1, outperforming those of most previously reported photocatalysts under similar conditions. In situ X-ray photoelectron spectra, density-functional-theory calculations, and control experiments reveal the charge-asymmetrical Zr-Fe dual sites may act as the predominate catalytic sites, which can simultaneously bond with the *CH2CH2 intermediates for the following stepwise oxidation to form C2 products.
Collapse
|
|
3 |
8 |
10
|
Henderson SH, West RA, Ward SE, Honey MA. Metal-free selective mono-halodecarboxylation of heteroarenes under mild conditions. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180333. [PMID: 30110478 PMCID: PMC6030312 DOI: 10.1098/rsos.180333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/10/2018] [Indexed: 06/02/2023]
Abstract
The halodecarboxylation of heteroarene carboxylic acids by treatment with N-bromosuccinimide or N-chlorosuccinimide was performed. This procedure provides a convenient route to synthetically useful mono-halogenated heteroarene intermediates such as halo-indoles, -aza-indoles, -indazoles and -aza-indazoles. The mild conditions employed and simple protocol provides an advantage over traditional halodecarboxylation procedures that require expensive and toxic metal catalysts, basic conditions, time-consuming intermediate isolation and elevated reaction temperatures.
Collapse
|
research-article |
7 |
5 |
11
|
An Z, Liu Y, Sun Y, Yan R. TFA-Catalyzed [3+2] Spiroannulation of Cyclobutanols: A Route to Spiro[cyclobuta[a]indene-7,1'-cyclobutane] Skeletons. Chem Asian J 2020; 15:3812-3815. [PMID: 32997399 DOI: 10.1002/asia.202001048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Indexed: 12/15/2022]
Abstract
A straightforward method for the synthesis of spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives from cyclobutanols has been developed via one-pot [3+2] spiroannulation. A series of new spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives are facilely synthesized in good yields under mild reaction conditions.
Collapse
|
|
5 |
4 |
12
|
Zheng K, Wu Y, Hu Z, Jiao X, Li L, Zhao Y, Wang S, Zhu S, Liu W, Yan W, Sun Y, Xie Y. Selective CH 4 Partial Photooxidation by Positively Charged Metal Clusters Anchored on Carbon Aerogel under Mild Conditions. NANO LETTERS 2021; 21:10368-10376. [PMID: 34898228 DOI: 10.1021/acs.nanolett.1c03682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective partial photooxidation of CH4 into value-added chemicals under mild conditions still remains a huge bottleneck. Herein, we design positively charged metal clusters anchored on a three-dimensional porous carbon aerogel. With 0.75FeCA800-4 as an example, X-ray photoelectron spectra and Raman spectra disclose that the iron sites are positively charged. In situ electron paramagnetic resonance spectra show that the Feδ+ sites could donate electrons to activate CH4 into CH4- by virtue of the excited-state carbon atoms; meanwhile, they could convert H2O2 into •OH radicals under irradiation. In addition, in situ diffuse Fourier-transform infrared spectra suggest the CH3OOH obtained is derived from CH4 oxidation by the hydroxylation of *CH3 and *CH3O intermediates. Consequently, 0.75FeCA800-4 displays a CH3OOH selectivity of near 100% and a CH3OOH evolution rate of 13.2 mmol gFe-1 h-1, higher than those of most previously reported supported catalysts under similar conditions.
Collapse
|
|
4 |
3 |
13
|
Li S, Shuler EW, Willinger D, Nguyen HT, Kim S, Kang HC, Lee JJ, Zheng W, Yoo CG, Sherman BD, Leem G. Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO 2 Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22799-22809. [PMID: 35195406 DOI: 10.1021/acsami.1c20795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Visible-light-driven organic oxidations carried out under mild conditions offer a sustainable approach to performing chemical transformations important to the chemical industry. This work reports an efficient photocatalytic benzyl alcohol oxidation process using one-dimensional (1D) TiO2 nanorod (NR)-based photoanodes with surface-adsorbed ruthenium polypyridyl photocatalysts at room temperature. The photocatalyst bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)Ru(II) (RuC) was covalently anchored onto TiO2 nanorod arrays grown on fluorine-doped tin oxide (FTO) electrode surfaces (FTO|t-TiO2|RuC, t = the thickness of TiO2 NR). Under aerobic conditions, the photophysical and photocatalytic properties of FTO|t-TiO2|RuC (t = 1, 2, or 3.5 μm) photoanodes were investigated in a solution containing a hydrogen atom transfer mediator (4-acetamido-2,2,6,6-tetramethylpiperidine-N-oxyl, ACT) as cocatalyst. Dye-sensitized photoelectrochemical cells (DSPECs) using the FTO|t-TiO2|RuC (t = 1, 2, or 3.5 μm) photoanodes and ACT-containing electrolyte were investigated for carrying out photocatalytic oxidation of a lignin model compound containing a benzylic alcohol functional group. The best-performing anode surface, FTO|1-TiO2|RuC (shortest NR length), oxidized the 2° alcohol of the lignin model compound to the Cα-ketone form with a > 99% yield over a 4 h photocatalytic experiment with a Faradaic efficiency of 88%. The length of TiO2 NR arrays (TiO2 NRAs) on the FTO substrate influenced the photocatalytic performance with longer NRAs underperforming compared to the shorter arrays. The influence of the NR length is hypothesized to affect the homogeneity of the RuC coating and accessibility of the ACT mediator to the RuC-coated TiO2 surface. The efficient photocatalytic alcohol oxidation with visible light at room temperature as demonstrated in this study is important to the development of sustainable approaches for lignin depolymerization and biomass conversion.
Collapse
|
|
3 |
2 |
14
|
Haro-Mares NB, Meza-Contreras JC, López-Dellamary Toral FA, González-Cruz R, Silva-Guzmán JA, Manríquez-González R. A Simplified Method of Synthesis to Obtain Zwitterionic Cellulose under Mild Conditions with Active Ionic Moieties. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25133065. [PMID: 32635597 PMCID: PMC7412472 DOI: 10.3390/molecules25133065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023]
Abstract
A simplified procedure to synthesize zwitterionic cellulose by means of N-protected aspartic anhydride under mild conditions was developed. The preparation of modified cellulose samples was carried out under heterogeneous, aqueous conditions by reacting NH4OH-activated cellulose with aspartic anhydrides N-protected with trifluoroacetyl (TFAc) and carbobenzyloxy (Cbz). Modified cellulose samples Cel-Asp-N-TFAc and Cel-Asp-N-Cbz were characterized by Fourier Transform Infrared (FTIR) and 13C solid state Nuclear Magnetic Resonance (NMR) spectroscopy. The functionalization degree of each cellulose sample was determined by the 13C NMR signal integration values corresponding to the cellulose C1 vs. the Cα of the aspartate residue and corroborated by elemental analysis. In agreement, both analytical methods averaged a grafting degree of 20% for Cel-Asp-N-TFAc and 16% for Cel-Asp-N-Cbz. Conveniently, Cel-Asp-N-TFAc was concomitantly partially N-deprotected (65%) as determined by the ninhydrin method. The zwitterion character of this sample was confirmed by a potentiometric titration curve and the availability of these amino acid residues on the cellulose was inspected by adsorption kinetics method with a 100 mg L−1 cotton blue dye solution. In addition, the synthesis reported in the present work involves environmentally related advantages over previous methodologies developed in our group concerning to zwitterionic cellulose preparation.
Collapse
|
|
5 |
2 |
15
|
Gore S, Baskaran S, König B. Synthesis of 5-unsubstituted dihydropyrimidinone-4-carboxylates from deep eutectic mixtures. Beilstein J Org Chem 2022; 18:331-336. [PMID: 35387381 PMCID: PMC8965339 DOI: 10.3762/bjoc.18.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 01/19/2023] Open
Abstract
A facile one-pot synthesis of 5-unsubstituted dihydropyrimidinones from β,γ-unsaturated ketoesters in low melting ʟ-(+)-tartaric acid-N,N-dimethylurea mixtures is reported. This solvent-free method is very general and provides easy access to 5-unsubstituted dihydropyrimidinone-4-carboxylate derivatives in good yields.
Collapse
|
research-article |
3 |
1 |
16
|
Li Y, Cheng X, Jin Y, Li Z, Sun Y, Zou Y, Liu L, Zhang J, Xu W. Highly Crystalline Ag-based Coordination Polymers for Efficient Photocatalytic Oxidation of Sulfides. Chem Asian J 2022; 17:e202200031. [PMID: 35267242 DOI: 10.1002/asia.202200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Coordination polymers (CPs) display great potential for the development of highly active photocatalysts. Herein, we report the fabrication of a highly crystalline CP, [Ag2 BTT]n (BTT=benzene-1,2,4,5-tetrathiol). The crystal structure of [Ag2 BTT]n was resolved and its performance for photocatalytic oxidation of thioanisole was explored. [Ag2 BTT]n is highly active and selective for the photo-oxidation of sulfides to sulfoxides under mild conditions, that is, in air, at room temperature and in the absence of a sacrificial reagent, co-catalyst or redox mediator.
Collapse
|
|
3 |
1 |
17
|
Li H, Jiang S, He S, Zhang Y, Chen Y, Wang L, Yang J. Accelerated Solar-Driven Polyolefin Degradation via Self-Activated Hydroxy-Rich ZnIn 2S 4. NANO LETTERS 2024; 24:11624-11631. [PMID: 39225501 DOI: 10.1021/acs.nanolett.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Degradation of polyolefin (PE) plastic by a traditional chemical method requires a high pressure and a high temperature but generates complex products. Here, sulfur vacancy-rich ZnIn2S4 and hydroxy-rich ZnIn2S4 were rationally fabricated to realize photocatalytic degradation of PE in an aqueous solution under mild conditions. The results reveal that the optimized photocatalyst could degrade PE into CO2 and CO, and PE had a weight loss of 84.5% after reaction for 60 h. Systematic experiments confirm that the synergetic effect of hydroxyl groups and S vacancies contributes to improve the photocatalytic degradation properties of plastic wastes. In-depth investigation illustrates that the active radicals attack (h+ and •OH) weak spots (C-H and C-C bonds) of the PE chain to form CO2, which is further selectively photoreduced to CO. Multimodule synergistic tandem catalysis can further improve the utilization value of plastic wastes; for example, product CO2/CO in the plastic degradation process can be converted in situ into HCOOH by coupling with electrocatalytic technology.
Collapse
|
|
1 |
|
18
|
Ding J, He D, Du P, Wu J, Hu Q, Chen Q, Jiao X. Design Photocatalysts to Boost Carrier Dynamics in Plastics Photoconversion into Fuels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35865-35873. [PMID: 38970473 DOI: 10.1021/acsami.4c07664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels.
Collapse
|
Review |
1 |
|
19
|
Cai C, Wang X, Tang X, Zheng H, Sun J, He G, Zhang F. Synthesis of Vacancy-Rich NiTe x-NC Catalyst under Mild Conditions for High-Performance Lithium Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23972-23983. [PMID: 40229222 DOI: 10.1021/acsami.5c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Due to the slow conversion kinetics of polysulfides, the practical application of lithium-sulfur batteries faces significant challenges. Transition metal tellurides exhibit good catalytic activity and are expected to help mitigate the shuttle effect in lithium-sulfur batteries. Vacancies, as a form of defect, can further enhance the conductivity and catalytic activity of the catalysts. However, most vacancy creation is achieved by the action of strong reducing agents (such as H2, NaBH4, hydrazine, etc.). Here, we utilized the similarity in lattice parameters between NiTe and NiTe2 to adjust the extent of lattice contraction in NiTe2 by controlling the Te powder content, ultimately obtaining a Te-vacancy-rich NiTex-NC catalyst under mild conditions. The unsaturated coordination between Ni and Te provides abundant active sites for the chemical adsorption and catalytic conversion of polysulfides, thus allowing NiTex-NC to significantly lower the reaction energy barrier of polysulfides and effectively inhibit the shuttle effect. The results show that NiTex-NC can achieve a specific capacity of 589.4 mAh g-1 at a rate of 7 C, and after 1000 cycles at 2 C, the capacity decay per cycle is only 0.0278%. Even under complex conditions (with a sulfur loading of 7.5 mg cm-2 and a liquid sulfur ratio of 10 μL mg-1), it still maintains good cycling stability.
Collapse
|
|
1 |
|
20
|
Arroyo-Caire J, Diaz-Perez MA, Lara-Angulo MA, Serrano-Ruiz JC. A Conceptual Approach for the Design of New Catalysts for Ammonia Synthesis: A Metal-Support Interactions Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2914. [PMID: 37999267 PMCID: PMC10674330 DOI: 10.3390/nano13222914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The growing interest in green ammonia production has spurred the development of new catalysts with the potential to carry out the Haber-Bosch process under mild pressure and temperature conditions. While there is a wide experimental background on new catalysts involving transition metals, supports and additives, the fundamentals behind ammonia synthesis performance on these catalysts remained partially unsolved. Here, we review the most important works developed to date and analyze the traditional catalysts for ammonia synthesis, as well as the influence of the electron transfer properties of the so-called 3rd-generation catalysts. Finally, the importance of metal-support interactions is highlighted as an effective pathway for the design of new materials with potential to carry out ammonia synthesis at low temperatures and pressures.
Collapse
|
Review |
2 |
|
21
|
NAWAZ Z, GÜRBÜZ N, ZAFAR MN, ÖZDEMIR N, ÇETİNKAYA B, ÖZDEMİR İ. Benzimidazol-2-ylidene ruthenium complexes for C-N bond formation through alcohol dehydrogenation. Turk J Chem 2023; 47:1209-1223. [PMID: 38173746 PMCID: PMC10760900 DOI: 10.55730/1300-0527.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6-p-cymene)(BNHC)RuCl2] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2O, and [RuCl2(p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6-p-cymene)(Me4BnMe2BNHCCH2OxMe)RuCl2] (1f) and [(η6-p-cymene)(Me5BnMe2BNHCCH2OxMe)RuCl2] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
Collapse
|
research-article |
2 |
|
22
|
A Visible Light-Induced and ROS-Dependent Method for the Rapid Formation of a MOF Composite Membrane with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24021520. [PMID: 36675031 PMCID: PMC9861057 DOI: 10.3390/ijms24021520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The diverse application potential of metal-organic framework (MOF) materials are currently limited by their challenging and complicated preparation processes. In this study, we successfully developed a novel strategy for the rapid synthesis of a sustainable MOF composite membrane under neutral conditions with improved physicochemical and antibacterial properties. Our reaction pipeline comprised visible light that induced the production of reactive oxygen species (ROS) from ZIF-8 particles, which facilitated the rapid oxidative polymerization of dopamine to polydopamine. The physicochemical properties of the composite membrane were assessed using imaging methods, including scanning and transmission electron microscopy, X-ray photoelectron spectrometry, and nitrogen adsorption/desorption; its antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were measured using optical densitometry. The bactericidal potency of the synthesized membrane was >99% against all tested strains under the conditions of simulated sunlight. Moreover, the composite membrane retained its structural integrity and antibacterial effect after multiple cycles of use and recovery, showcasing remarkable stability. Overall, this study displays a ROS-mediated method for the rapid preparation of sustainable MOF composite membranes under neutral conditions with optimal physicochemical characteristics, antibacterial properties, and performance. Our study provides insights into the use of membrane materials as design platforms for a range of diverse practical applications.
Collapse
|
research-article |
2 |
|
23
|
Aguirre ME, Ramírez CL, Di Iorio Y. Stable and Reusable Fe 3 O 4 /ZIF-8 Composite for Encapsulation of FDH Enzyme under Mild Conditions Applicable to CO 2 Reduction. Chemistry 2023; 29:e202301113. [PMID: 37294852 DOI: 10.1002/chem.202301113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/11/2023]
Abstract
The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.
Collapse
|
|
2 |
|
24
|
Li W, Wang Z, Jiang L, Feng M, Fan X, Fan H, Xiang J. A Facile Synthetic Approach to UV-Degradable Hydrogels. Polymers (Basel) 2023; 15:3762. [PMID: 37765614 PMCID: PMC10535451 DOI: 10.3390/polym15183762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Light-degradable hydrogels have a wide range of application prospects in the field of biomedicine. However, the provision of a facile synthetic approach to light-degradable hydrogels under mild conditions remains a challenge for researchers. To surmount this challenge, a facile synthetic approach to UV-degradable hydrogels is demonstrated in this manuscript. Initially, an UV-degradable crosslinker (UVDC) having o-nitrobenzyl ester groups was synthesized in a single step through the employment of the Passerini three-component reaction (P-3CR). Both 1H NMR and MS spectra indicated the successful synthesis of high-purity UVDC, and it was experimentally demonstrated that the synthesized UVDC was capable of degradation under 368 nm light. Furthermore, this UVDC was mixed with 8-arm PEG-thiol (sPEG20k-(SH)8) to promptly yield an UV-degradable hydrogel through a click reaction. The SEM image of the fabricated hydrogel exhibits the favorable crosslinking network of the hydrogel, proving the successful synthesis of the hydrogel. After continuous 368 nm irradiation, the hydrogel showed an obvious gel-sol transition, which demonstrates that the hydrogel possesses a desirable UV-degradable property. In summary, by utilizing solely a two-step reaction devoid of catalysts and hazardous raw materials, UV-degradable hydrogels can be obtained under ambient conditions, which greatly reduces the difficulty of synthesizing light-degradable hydrogels. This work extends the synthetic toolbox for light-degradable hydrogels, enabling their accelerated development.
Collapse
|
research-article |
2 |
|
25
|
Zhao J, Zhang T, Xu H, Hou S, Ren F, Han J, Zhao B. CO-Free Aminocarbonylation of Terminal Alkynes Catalyzed by Synergistic Effect From Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405308. [PMID: 39234812 PMCID: PMC11538656 DOI: 10.1002/advs.202405308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Incorporation of CO into substrates to construct high-value carbonyl compounds is an intensive industrial carbonylation procedure, however, high toxicity and wide explosion limits (12.5-74.0 vol% in air) of CO limit its application in industrial production. The development of a CO-free catalytic system for carbonylation is one of ideal methods, but full of challenge. Herein, this study reports the CO-free aminocarbonylation conversion of terminal alkynes synergistically catalyzed by a unique Co(ІІ)/Ag(І) metal-organic framework (MOF), in which the combination of isocyanides and O2 is employed as safe and green source of aminocarbonyl. This reaction has broad substrate applicability in terminal alkyne and isocyanides components with 100% atom economy. The bimetal MOF catalyst can be recycled at least five times without substantial loss of catalytic activities. Mechanistic investigations demonstrate that the synergistic effect between Ag(I) and Co(II) sites can efficiently activate terminal alkyne and isocyanides, respectively. Free radical capture experiments, FT-IR analysis and theoretical explorations further reveal that terminal alkynes and isocyanides can be catalytically transformed into an anionic intermediate through heterolysis pathways. This work provides secure and practical access to carbonylation as well as a new approach to aminocarbonylation of terminal alkynes.
Collapse
|
research-article |
1 |
|