1
|
Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 2018; 94:849-873. [PMID: 30467930 DOI: 10.1111/brv.12480] [Citation(s) in RCA: 835] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Collapse
|
Review |
7 |
835 |
2
|
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 2008; 363:789-813. [PMID: 17827109 PMCID: PMC2610110 DOI: 10.1098/rstb.2007.2184] [Citation(s) in RCA: 471] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.
Collapse
|
Review |
17 |
471 |
3
|
Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014; 97:3231-61. [PMID: 24746124 DOI: 10.3168/jds.2013-7234] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
Many opportunities exist to reduce enteric methane (CH4) and other greenhouse gas (GHG) emissions per unit of product from ruminant livestock. Research over the past century in genetics, animal health, microbiology, nutrition, and physiology has led to improvements in dairy production where intensively managed farms have GHG emissions as low as 1 kg of CO2 equivalents (CO2e)/kg of energy-corrected milk (ECM), compared with >7 kg of CO2 e/kg of ECM in extensive systems. The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability. A nutrition model based on carbohydrate digestion was used to evaluate the effect of feeding and nutrition strategies on CH4/ECM, and a meta-analysis was conducted to quantify the effects of lipid supplementation on CH4/ECM. A second model combining herd structure dynamics and production level was used to estimate the effect of genetic and management strategies that increase milk yield and reduce culling on CH4/ECM. Some of these approaches discussed require further research, but many could be implemented now. Past efforts in CH4 mitigation have largely focused on identifying and evaluating CH4 mitigation approaches based on nutrition, feeding, and modifications of rumen function. Nutrition and feeding approaches may be able to reduce CH4/ECM by 2.5 to 15%, whereas rumen modifiers have had very little success in terms of sustained CH4 reductions without compromising milk production. More significant reductions of 15 to 30% CH4/ECM can be achieved by combinations of genetic and management approaches, including improvements in heat abatement, disease and fertility management, performance-enhancing technologies, and facility design to increase feed efficiency and life-time productivity of individual animals and herds. Many of the approaches discussed are only partially additive, and all approaches to reducing enteric CH4 emissions should consider the economic impacts on farm profitability and the relationships between enteric CH4 and other GHG.
Collapse
|
Review |
11 |
467 |
4
|
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. PLANTS 2021; 10:plants10020259. [PMID: 33525688 PMCID: PMC7911879 DOI: 10.3390/plants10020259] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Collapse
|
Review |
4 |
405 |
5
|
Hatchett RJ, Mecher CE, Lipsitch M. Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci U S A 2007; 104:7582-7. [PMID: 17416679 PMCID: PMC1849867 DOI: 10.1073/pnas.0610941104] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 11/18/2022] Open
Abstract
Nonpharmaceutical interventions (NPIs) intended to reduce infectious contacts between persons form an integral part of plans to mitigate the impact of the next influenza pandemic. Although the potential benefits of NPIs are supported by mathematical models, the historical evidence for the impact of such interventions in past pandemics has not been systematically examined. We obtained data on the timing of 19 classes of NPI in 17 U.S. cities during the 1918 pandemic and tested the hypothesis that early implementation of multiple interventions was associated with reduced disease transmission. Consistent with this hypothesis, cities in which multiple interventions were implemented at an early phase of the epidemic had peak death rates approximately 50% lower than those that did not and had less-steep epidemic curves. Cities in which multiple interventions were implemented at an early phase of the epidemic also showed a trend toward lower cumulative excess mortality, but the difference was smaller (approximately 20%) and less statistically significant than that for peak death rates. This finding was not unexpected, given that few cities maintained NPIs longer than 6 weeks in 1918. Early implementation of certain interventions, including closure of schools, churches, and theaters, was associated with lower peak death rates, but no single intervention showed an association with improved aggregate outcomes for the 1918 phase of the pandemic. These findings support the hypothesis that rapid implementation of multiple NPIs can significantly reduce influenza transmission, but that viral spread will be renewed upon relaxation of such measures.
Collapse
|
Historical Article |
18 |
375 |
6
|
Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley P. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A 2008; 105:4639-44. [PMID: 18332436 PMCID: PMC2290797 DOI: 10.1073/pnas.0706849105] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Indexed: 01/20/2023] Open
Abstract
Planning a response to an outbreak of a pandemic strain of influenza is a high public health priority. Three research groups using different individual-based, stochastic simulation models have examined the consequences of intervention strategies chosen in consultation with U.S. public health workers. The first goal is to simulate the effectiveness of a set of potentially feasible intervention strategies. Combinations called targeted layered containment (TLC) of influenza antiviral treatment and prophylaxis and nonpharmaceutical interventions of quarantine, isolation, school closure, community social distancing, and workplace social distancing are considered. The second goal is to examine the robustness of the results to model assumptions. The comparisons focus on a pandemic outbreak in a population similar to that of Chicago, with approximately 8.6 million people. The simulations suggest that at the expected transmissibility of a pandemic strain, timely implementation of a combination of targeted household antiviral prophylaxis, and social distancing measures could substantially lower the illness attack rate before a highly efficacious vaccine could become available. Timely initiation of measures and school closure play important roles. Because of the current lack of data on which to base such models, further field research is recommended to learn more about the sources of transmission and the effectiveness of social distancing measures in reducing influenza transmission.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
356 |
7
|
Global scenarios of urban density and its impacts on building energy use through 2050. Proc Natl Acad Sci U S A 2017; 114:8945-8950. [PMID: 28069957 DOI: 10.1073/pnas.1606035114] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
272 |
8
|
Bala G, Duffy PB, Taylor KE. Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci U S A 2008; 105:7664-9. [PMID: 18505844 PMCID: PMC2409412 DOI: 10.1073/pnas.0711648105] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Indexed: 11/18/2022] Open
Abstract
The rapidly rising CO(2) level in the atmosphere has led to proposals of climate stabilization by "geoengineering" schemes that would mitigate climate change by intentionally reducing solar radiation incident on Earth's surface. In this article we address the impact of these climate stabilization schemes on the global hydrological cycle. By using equilibrium climate simulations, we show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in global mean precipitation. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO(2) forcing of a similar magnitude. In the model used here, the hydrological sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% K(-1) for solar forcing, but only 1.5% K(-1) for CO(2) forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. For the same surface temperature change, insolation changes result in relatively larger changes in net radiative fluxes at the surface; these are compensated by larger changes in the sum of latent and sensible heat fluxes. Hence, the hydrological cycle is more sensitive to temperature adjustment by changes in insolation than by changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.
Collapse
|
research-article |
17 |
210 |
9
|
Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 2020; 14:s2-s16. [PMID: 32024560 DOI: 10.1017/s1751731119003100] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Meat and milk from ruminants provide an important source of protein and other nutrients for human consumption. Although ruminants have a unique advantage of being able to consume forages and graze lands not suitable for arable cropping, 2% to 12% of the gross energy consumed is converted to enteric CH4 during ruminal digestion, which contributes approximately 6% of global anthropogenic greenhouse gas emissions. Thus, ruminant producers need to find cost-effective ways to reduce emissions while meeting consumer demand for food. This paper provides a critical review of the substantial amount of ruminant CH4-related research published in past decades, highlighting hydrogen flow in the rumen, the microbiome associated with methanogenesis, current and future prospects for CH4 mitigation and insights into future challenges for science, governments, farmers and associated industries. Methane emission intensity, measured as emissions per unit of meat and milk, has continuously declined over the past decades due to improvements in production efficiency and animal performance, and this trend is expected to continue. However, continued decline in emission intensity will likely be insufficient to offset the rising emissions from increasing demand for animal protein. Thus, decreases in both emission intensity (g CH4/animal product) and absolute emissions (g CH4/day) are needed if the ruminant industries continue to grow. Providing producers with cost-effective options for decreasing CH4 emissions is therefore imperative, yet few cost-effective approaches are currently available. Future abatement may be achieved through animal genetics, vaccine development, early life programming, diet formulation, use of alternative hydrogen sinks, chemical inhibitors and fermentation modifiers. Individually, these strategies are expected to have moderate effects (<20% decrease), with the exception of the experimental inhibitor 3-nitrooxypropanol for which decreases in CH4 have consistently been greater (20% to 40% decrease). Therefore, it will be necessary to combine strategies to attain the sizable reduction in CH4 needed, but further research is required to determine whether combining anti-methanogenic strategies will have consistent additive effects. It is also not clear whether a decrease in CH4 production leads to consistent improved animal performance, information that will be necessary for adoption by producers. Major constraints for decreasing global enteric CH4 emissions from ruminants are continued expansion of the industry, the cost of mitigation, the difficulty of applying mitigation strategies to grazing ruminants, the inconsistent effects on animal performance and the paucity of information on animal health, reproduction, product quality, cost-benefit, safety and consumer acceptance.
Collapse
|
Review |
5 |
209 |
10
|
Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190120. [PMID: 31983344 DOI: 10.1098/rstb.2019.0120] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing awareness that 'nature-based solutions' (NbS) can help to protect us from climate change impacts while slowing further warming, supporting biodiversity and securing ecosystem services. However, the potential of NbS to provide the intended benefits has not been rigorously assessed. There are concerns over their reliability and cost-effectiveness compared to engineered alternatives, and their resilience to climate change. Trade-offs can arise if climate mitigation policy encourages NbS with low biodiversity value, such as afforestation with non-native monocultures. This can result in maladaptation, especially in a rapidly changing world where biodiversity-based resilience and multi-functional landscapes are key. Here, we highlight the rise of NbS in climate policy-focusing on their potential for climate change adaptation as well as mitigation-and discuss barriers to their evidence-based implementation. We outline the major financial and governance challenges to implementing NbS at scale, highlighting avenues for further research. As climate policy turns increasingly towards greenhouse gas removal approaches such as afforestation, we stress the urgent need for natural and social scientists to engage with policy makers. They must ensure that NbS can achieve their potential to tackle both the climate and biodiversity crisis while also contributing to sustainable development. This will require systemic change in the way we conduct research and run our institutions. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
|
Review |
5 |
202 |
11
|
Malhi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N. Climate change and ecosystems: threats, opportunities and solutions. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190104. [PMID: 31983329 DOI: 10.1098/rstb.2019.0104] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rapid anthropogenic climate change that is being experienced in the early twenty-first century is intimately entwined with the health and functioning of the biosphere. Climate change is impacting ecosystems through changes in mean conditions and in climate variability, coupled with other associated changes such as increased ocean acidification and atmospheric carbon dioxide concentrations. It also interacts with other pressures on ecosystems, including degradation, defaunation and fragmentation. There is a need to understand the ecological dynamics of these climate impacts, to identify hotspots of vulnerability and resilience and to identify management interventions that may assist biosphere resilience to climate change. At the same time, ecosystems can also assist in the mitigation of, and adaptation to, climate change. The mechanisms, potential and limits of such nature-based solutions to climate change need to be explored and quantified. This paper introduces a thematic issue dedicated to the interaction between climate change and the biosphere. It explores novel perspectives on how ecosystems respond to climate change, how ecosystem resilience can be enhanced and how ecosystems can assist in addressing the challenge of a changing climate. It draws on a Royal Society-National Academy of Sciences Forum held in Washington DC in November 2018, where these themes and issues were discussed. We conclude by identifying some priorities for academic research and practical implementation, in order to maximize the potential for maintaining a diverse, resilient and well-functioning biosphere under the challenging conditions of the twenty-first century. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
176 |
12
|
Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals (Basel) 2020; 10:ani10081266. [PMID: 32722335 PMCID: PMC7460371 DOI: 10.3390/ani10081266] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Heat stress is one of the major environmental stressors in the poultry industry resulting in substantial economic loss. Heat stress causes several physiological changes, such as oxidative stress, acid-base imbalance, and suppressed immunocompetence, which leads to increased mortality and reduced feed efficiency, body weight, feed intake, and egg production, and also affects meat and egg quality. Several strategies, with a variable degree of effectiveness, have been implemented to attenuate heat stress in poultry. Nutritional strategies, such as restricting the feed, wet or dual feeding, adding fat in diets, supplementing vitamins, minerals, osmolytes, and phytochemicals, have been widely studied and found to reduce the deleterious effects of heat stress. Furthermore, the use of naked neck (Na) and frizzle (F) genes in certain breed lines have also gained massive attention in recent times. However, only a few of these strategies have been widely used in the poultry industry. Therefore, developing heat-tolerant breed lines along with proper management and nutritional approach needs to be considered for solving this problem. Thus, this review highlights the scientific evidence regarding the effects of heat stress on poultry health and performances, and potential mitigation strategies against heat stress in broiler chickens and laying hens.
Collapse
|
Review |
5 |
151 |
13
|
Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Böttcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? GLOBAL CHANGE BIOLOGY 2013; 19:2285-302. [PMID: 23505220 DOI: 10.1111/gcb.12160] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 05/20/2023]
Abstract
Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.
Collapse
|
Review |
12 |
150 |
14
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
|
Review |
4 |
141 |
15
|
Grossi G, Goglio P, Vitali A, Williams AG. Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front 2018; 9:69-76. [PMID: 32071797 PMCID: PMC7015462 DOI: 10.1093/af/vfy034] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
Journal Article |
7 |
138 |
16
|
Bakken LR, Bergaust L, Liu B, Frostegård A. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc Lond B Biol Sci 2012; 367:1226-34. [PMID: 22451108 PMCID: PMC3306626 DOI: 10.1098/rstb.2011.0321] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Denitrifying prokaryotes use NO(x) as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N(2)O and N(2), depending on the relative activity of the enzymes catalysing the stepwise reduction of NO(3)(-) to N(2)O and finally to N(2). Cultured denitrifying prokaryotes show characteristic transient accumulation of NO(2)(-), NO and N(2)O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N(2)O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N(2)O produced (N(2)O/(N(2)+N(2)O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N(2)O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N(2)O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level.
Collapse
|
research-article |
13 |
138 |
17
|
Paerl HW. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life (Basel) 2014; 4:988-1012. [PMID: 25517134 PMCID: PMC4284478 DOI: 10.3390/life4040988] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 11/28/2022] Open
Abstract
Bloom-forming harmful cyanobacteria (CyanoHABs) are harmful from environmental, ecological and human health perspectives by outcompeting beneficial phytoplankton, creating low oxygen conditions (hypoxia, anoxia), and by producing cyanotoxins. Cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence, global warming plays a key role in their expansion and persistence. CyanoHABs are regulated by synergistic effects of nutrient (nitrogen:N and phosphorus:P) supplies, light, temperature, vertical stratification, water residence times, and biotic interactions. In most instances, nutrient control strategies should focus on reducing both N and P inputs. Strategies based on physical, chemical (nutrient) and biological manipulations can be effective in reducing CyanoHABs; however, these strategies are largely confined to relatively small systems, and some are prone to ecological and environmental drawbacks, including enhancing release of cyanotoxins, disruption of planktonic and benthic communities and fisheries habitat. All strategies should consider and be adaptive to climatic variability and change in order to be effective for long-term control of CyanoHABs. Rising temperatures and greater hydrologic variability will increase growth rates and alter critical nutrient thresholds for CyanoHAB development; thus, nutrient reductions for bloom control may need to be more aggressively pursued in response to climatic changes globally.
Collapse
|
Review |
11 |
110 |
18
|
Georgescu M, Morefield PE, Bierwagen BG, Weaver CP. Urban adaptation can roll back warming of emerging megapolitan regions. Proc Natl Acad Sci U S A 2014; 111:2909-14. [PMID: 24516126 PMCID: PMC3939866 DOI: 10.1073/pnas.1322280111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1-2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.
Collapse
|
research-article |
11 |
108 |
19
|
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR, Crompton LA, Eugène MA, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold CJ, Reynolds CK, Schwarm A, Shingfield KJ, Veneman JB, Yáñez-Ruiz DR, Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A 2022; 119:e2111294119. [PMID: 35537050 PMCID: PMC9171756 DOI: 10.1073/pnas.2111294119] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies—namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio—decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies—namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds—decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.
Collapse
|
research-article |
3 |
100 |
20
|
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Y. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6813-6835. [PMID: 35612468 PMCID: PMC9178796 DOI: 10.1021/acs.est.2c01072] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.
Collapse
|
Review |
3 |
96 |
21
|
Wollenberg E, Richards M, Smith P, Havlík P, Obersteiner M, Tubiello FN, Herold M, Gerber P, Carter S, Reisinger A, van Vuuren DP, Dickie A, Neufeldt H, Sander BO, Wassmann R, Sommer R, Amonette JE, Falcucci A, Herrero M, Opio C, Roman-Cuesta RM, Stehfest E, Westhoek H, Ortiz-Monasterio I, Sapkota T, Rufino MC, Thornton PK, Verchot L, West PC, Soussana JF, Baedeker T, Sadler M, Vermeulen S, Campbell BM. Reducing emissions from agriculture to meet the 2 °C target. GLOBAL CHANGE BIOLOGY 2016; 22:3859-3864. [PMID: 27185416 DOI: 10.1111/gcb.13340] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/21/2016] [Indexed: 05/03/2023]
Abstract
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
Collapse
|
|
9 |
95 |
22
|
Pedreschi F, Mariotti MS, Granby K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:9-20. [PMID: 23939985 DOI: 10.1002/jsfa.6349] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 05/07/2023]
Abstract
Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods.
Collapse
|
Review |
11 |
95 |
23
|
Beebee TJC. Effects of road mortality and mitigation measures on amphibian populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2013; 27:657-668. [PMID: 23647090 DOI: 10.1111/cobi.12063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/19/2012] [Indexed: 05/27/2023]
Abstract
Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines.
Collapse
|
Review |
12 |
94 |
24
|
Münzel T, Kröller-Schön S, Oelze M, Gori T, Schmidt FP, Steven S, Hahad O, Röösli M, Wunderli JM, Daiber A, Sørensen M. Adverse Cardiovascular Effects of Traffic Noise with a Focus on Nighttime Noise and the New WHO Noise Guidelines. Annu Rev Public Health 2020; 41:309-328. [PMID: 31922930 DOI: 10.1146/annurev-publhealth-081519-062400] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to traffic noise is associated with stress and sleep disturbances. The World Health Organization (WHO) recently concluded that road traffic noise increases the risk for ischemic heart disease and potentially other cardiometabolic diseases, including stroke, obesity, and diabetes. The WHO report focused on whole-day noise exposure, but new epidemiological and translational field noise studies indicate that nighttime noise, in particular,is an important risk factor for cardiovascular disease (CVD) through increased levels of stress hormones and vascular oxidative stress, leading to endothelial dysfunction and subsequent development of various CVDs. Novel experimental studies found noise to be associated with oxidative stress-induced vascular and brain damage, mediated by activation of the NADPH oxidase, uncoupling of endothelial and neuronal nitric oxide synthase, and vascular/brain infiltration with inflammatory cells. Noise-induced pathophysiology was more pronounced in response to nighttime as compared with daytime noise. This review focuses on the consequences of nighttime noise.
Collapse
|
Review |
5 |
91 |
25
|
Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TWJ. Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett 2016; 11:rsbl.2015.0874. [PMID: 26582843 DOI: 10.1098/rsbl.2015.0874] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methods to mitigate the impacts of emerging infectious diseases affecting wildlife are urgently needed to combat loss of biodiversity. However, the successful mitigation of wildlife pathogens in situ has rarely occurred. Indeed, most strategies for combating wildlife diseases remain theoretical, despite the wealth of information available for combating infections in livestock and crops. Here, we report the outcome of a 5-year effort to eliminate infection with Batrachochytrium dendrobatidis affecting an island system with a single amphibian host. Our initial efforts to eliminate infection in the larval reservoir using a direct application of an antifungal were successful ex situ but infection returned to previous levels when tadpoles with cleared infections were returned to their natal sites. We subsequently combined antifungal treatment of tadpoles with environmental chemical disinfection. Infection at four of the five pools where infection had previously been recorded was eradicated, and remained so for 2 years post-application.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
91 |