1
|
Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019; 11:v11080762. [PMID: 31430946 PMCID: PMC6723519 DOI: 10.3390/v11080762] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.
Collapse
|
Review |
6 |
325 |
2
|
Abstract
PURPOSE OF REVIEW The aim of this study was to evaluate the relationship between infection with SARS-CoV-2 and autoimmunity. RECENT FINDINGS Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome (SARS) associated coronavirus 2 (SARS-CoV-2). Although most of the infected individuals are asymptomatic, a proportion of patients with COVID-19 develop severe disease with multiple organ injuries. Evidence suggests that some medications used to treat autoimmune rheumatologic diseases might have therapeutic effect in patients with severe COVID-19 infections, drawing attention to the relationship between COVID-19 and autoimmune diseases. COVID-19 shares similarities with autoimmune diseases in clinical manifestations, immune responses and pathogenic mechanisms. Robust immune reactions participate in the pathogenesis of both disease conditions. Autoantibodies as a hallmark of autoimmune diseases can also be detected in COVID-19 patients. Moreover, some patients have been reported to develop autoimmune diseases, such as Guillain--Barré syndrome or systemic lupus erythematosus, after COVID-19 infection. It is speculated that SARS-CoV-2 can disturb self-tolerance and trigger autoimmune responses through cross-reactivity with host cells. The infection risk and prognosis of COVID-19 in patients with autoimmune diseases remains controversial, but patient adherence to medication regimens to prevent autoimmune disease flares is strongly recommended. SUMMARY We present a review of the association between COVID-19 and autoimmune diseases, focusing on similarities in immune responses, cross-reactivity of SARS-CoV-2, the development of autoimmune diseases in COVID-19 patients and the risk of COVID-19 infection in patients with preexisting autoimmune conditions.
Collapse
|
Review |
4 |
306 |
3
|
Vojdani A, Vojdani E, Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front Immunol 2021; 11:617089. [PMID: 33584709 PMCID: PMC7873987 DOI: 10.3389/fimmu.2020.617089] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
We sought to determine whether immune reactivity occurs between anti-SARS-CoV-2 protein antibodies and human tissue antigens, and whether molecular mimicry between COVID-19 viral proteins and human tissues could be the cause. We applied both human monoclonal anti-SARS-Cov-2 antibodies (spike protein, nucleoprotein) and rabbit polyclonal anti-SARS-Cov-2 antibodies (envelope protein, membrane protein) to 55 different tissue antigens. We found that SARS-CoV-2 antibodies had reactions with 28 out of 55 tissue antigens, representing a diversity of tissue groups that included barrier proteins, gastrointestinal, thyroid and neural tissues, and more. We also did selective epitope mapping using BLAST and showed similarities and homology between spike, nucleoprotein, and many other SARS-CoV-2 proteins with the human tissue antigens mitochondria M2, F-actin and TPO. This extensive immune cross-reactivity between SARS-CoV-2 antibodies and different antigen groups may play a role in the multi-system disease process of COVID-19, influence the severity of the disease, precipitate the onset of autoimmunity in susceptible subgroups, and potentially exacerbate autoimmunity in subjects that have pre-existing autoimmune diseases. Very recently, human monoclonal antibodies were approved for use on patients with COVID-19. The human monoclonal antibodies used in this study are almost identical with these approved antibodies. Thus, our results can establish the potential risk for autoimmunity and multi-system disorders with COVID-19 that may come from cross-reactivity between our own human tissues and this dreaded virus, and thus ensure that the badly-needed vaccines and treatments being developed for it are truly safe to use against this disease.
Collapse
|
Journal Article |
4 |
220 |
4
|
Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev 2014; 255:197-209. [PMID: 23947356 DOI: 10.1111/imr.12091] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity.
Collapse
|
Review |
11 |
209 |
5
|
Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A 2019; 116:16955-16960. [PMID: 31375628 DOI: 10.1073/pnas.1902623116] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, likely autoimmune disease of the central nervous system with a combination of genetic and environmental risk factors, among which Epstein-Barr virus (EBV) infection is a strong suspect. We have previously identified increased autoantibody levels toward the chloride-channel protein Anoctamin 2 (ANO2) in MS. Here, IgG antibody reactivity toward ANO2 and EBV nuclear antigen 1 (EBNA1) was measured using bead-based multiplex serology in plasma samples from 8,746 MS cases and 7,228 controls. We detected increased anti-ANO2 antibody levels in MS (P = 3.5 × 10-36) with 14.6% of cases and 7.8% of controls being ANO2 seropositive (odds ratio [OR] = 1.6; 95% confidence intervals [95%CI]: 1.5 to 1.8). The MS risk increase in ANO2-seropositive individuals was dramatic when also exposed to 3 known risk factors for MS: HLA-DRB1*15:01 carriage, absence of HLA-A*02:01, and high anti-EBNA1 antibody levels (OR = 24.9; 95%CI: 17.9 to 34.8). Reciprocal blocking experiments with ANO2 and EBNA1 peptides demonstrated antibody cross-reactivity, mapping to ANO2 [aa 140 to 149] and EBNA1 [aa 431 to 440]. HLA gene region was associated with anti-ANO2 antibody levels and HLA-DRB1*04:01 haplotype was negatively associated with ANO2 seropositivity (OR = 0.6; 95%CI: 0.5 to 0.7). Anti-ANO2 antibody levels were not increased in patients from 3 other inflammatory disease cohorts. The HLA influence and the fact that specific IgG production usually needs T cell help provides indirect evidence for a T cell ANO2 autoreactivity in MS. We propose a hypothesis where immune reactivity toward EBNA1 through molecular mimicry with ANO2 contributes to the etiopathogenesis of MS.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
126 |
6
|
Abstract
There is growing evidence that the commensal bacteria in the gastrointestinal tract (the gut microbiota) influence the development of autoimmunity in rodent models. Since humans have co-evolved with commensals for millennia, it is likely that people, who are genetically predisposed to autoimmunity, harbor gut microbial communities that similarly influence the onset and/or severity of disease. Beyond the current efforts to identify such disease-promoting or -preventing commensals ("pathobionts" or "symbionts"), it will be important to determine what factors modulate them. Dietary changes are known to affect both the composition and function of the gut microbial communities, which in turn can alter the innate and adaptive immune system. In this review, we focus on the relationships between diet, microbiota, and autoimmune diseases. We hypothesize that the beneficial and life-prolonging effects of caloric restriction on a variety of autoimmune models including lupus might partly be mediated by its effects on the gut microbiome and associated virome, the collection of all viruses in the gut. We give recent examples of the immunomodulatory potential of select gut commensals and their products or diet-derived metabolites in murine models of arthritis, multiple sclerosis, and type 1 diabetes. Lastly, we summarize the published phenotypes of germ-free mouse models of lupus and speculate on any role of the diet-sensitive microbiome and virome in systemic lupus and the related antiphospholipid syndrome.
Collapse
|
Review |
11 |
122 |
7
|
Franceschi F, Gasbarrini A, Polyzos SA, Kountouras J. Extragastric Diseases and Helicobacter pylori. Helicobacter 2015; 20 Suppl 1:40-6. [PMID: 26372824 DOI: 10.1111/hel.12256] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extragastric manifestations of Helicobacter pylori infection still remain a very strong topic throughout the H. pylori world. Indeed, H. pylori may interfere with many biological processes, both inside and outside of the stomach, possibly influencing or determining the occurrence of many diseases outside of the stomach. While its role in idiopathic thrombocytopenic purpura and sideropenic anemia has already been recognized, emerging evidence suggests that H. pylori may increase the risk of acute coronary syndrome, contribute to insulin resistance and be associated with neurodegenerative, respiratory, and other miscellaneous disorders previously associated with other conditions. Different pathogenic mechanisms have been hypothesized, including the induction of a low-grade inflammatory state and the occurrence of molecular mimicry mechanisms. This review summarizes the results of the most relevant studies published on this topic in the last year.
Collapse
|
Review |
10 |
110 |
8
|
Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT, Roth AS, Vieira SM, Kriegel C, Adeniyi O, Mulla MJ, Abrahams VM, Kwok WW, Nussinov R, Erkan D, Goodman AL, Kriegel MA. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host Microbe 2019; 26:100-113.e8. [PMID: 31227334 PMCID: PMC8194364 DOI: 10.1016/j.chom.2019.05.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Given the immense antigenic load present in the microbiome, we hypothesized that microbiota mimotopes can be a persistent trigger in human autoimmunity via cross-reactivity. Using antiphospholipid syndrome (APS) as a model, we demonstrate cross-reactivity between non-orthologous mimotopes expressed by a common human gut commensal, Roseburia intestinalis (R. int), and T and B cell autoepitopes in the APS autoantigen β2-glycoprotein I (β2GPI). Autoantigen-reactive CD4+ memory T cell clones and an APS-derived, pathogenic monoclonal antibody cross-reacted with R. int mimotopes. Core-sequence-dependent anti-R. int mimotope IgG titers were significantly elevated in APS patients and correlated with anti-β2GPI IgG autoantibodies. R. int immunization of mice induced β2GPI-specific lymphocytes and autoantibodies. Oral gavage of susceptible mice with R. int induced anti-human β2GPI autoantibodies and autoimmune pathologies. Together, these data support a role for non-orthologous commensal-host cross-reactivity in the development and persistence of autoimmunity in APS, which may apply more broadly to human autoimmune disease.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
101 |
9
|
Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis Zoonosis - The Hundred Year War - Beyond Crohn's Disease. Front Immunol 2015; 6:96. [PMID: 25788897 PMCID: PMC4349160 DOI: 10.3389/fimmu.2015.00096] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
The factitive role of Mycobacterium avium ss. paratuberculosis (MAP) in Crohn's disease has been debated for more than a century. The controversy is due to the fact that Crohn's disease is so similar to a disease of MAP-infected ruminant animals, Johne's disease; and, though MAP can be readily detected in the infected ruminants, it is much more difficult to detect in humans. Molecular techniques that can detect MAP in pathologic Crohn's specimens as well as dedicated specialty labs successful in culturing MAP from Crohn's patients have provided strong argument for MAP's role in Crohn's disease. Perhaps more incriminating for MAP as a zoonotic agent is the increasing number of diseases with which MAP has been related: Blau syndrome, type 1 diabetes, Hashimoto thyroiditis, and multiple sclerosis. In this article, we debate about genetic susceptibility to mycobacterial infection and human exposure to MAP; moreover, it suggests that molecular mimicry between protein epitopes of MAP and human proteins is a likely bridge between infection and these autoimmune disorders.
Collapse
|
Review |
10 |
99 |
10
|
Corfield AP, Berry M. Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 2015; 40:351-9. [PMID: 26002999 DOI: 10.1016/j.tibs.2015.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/16/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
In this review, we document the evolution of common glycan structures in the eukaryotes, and illustrate the considerable variety of oligosaccharides existing in these organisms. We focus on the families of N- and O-glycans, glycosphingolipids, glycosaminoglycans, glycosylphosphatidylinositol (GPI) anchors, sialic acids (Sias), and cytoplasmic and nuclear glycans. We also outline similar and divergent aspects of the glycans during evolution within the groups, which include inter- and intraspecies differences, molecular mimicry, viral glycosylation adaptations, glycosyltransferase specificity relating to function, and the natural dynamism powering these events. Finally, we present an overview of the patterns of glycosylation found within the groups comprising the Eukaryota, namely the Deuterostomia, Fungi, Viridiplantae, Nematoda, and Arthropoda.
Collapse
|
Review |
10 |
99 |
11
|
Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 2020; 9:58603. [PMID: 32452762 PMCID: PMC7343387 DOI: 10.7554/elife.58603] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular mimicry is an evolutionary strategy adopted by viruses to exploit the host cellular machinery. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site, absent in any previous coronavirus sequenced, resulting in the striking mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic alteration of ENaC-α causes aldosterone dysregulation in patients, highlighting that the FURIN site is critical for activation of ENaC. Single cell RNA-seq from 66 studies shows significant overlap between expression of ENaC-α and the viral receptor ACE2 in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular characterization with cleavage signatures of 178 proteases highlights proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. Evolution of SARS-CoV-2 into a global pandemic may be driven in part by its targeted mimicry of ENaC-α, a protein critical for the homeostasis of airway surface liquid, whose misregulation is associated with respiratory conditions. Viruses hijack the cellular machinery of humans to infect their cells and multiply. The virus causing the global COVID-19 pandemic, SARS-CoV-2, is no exception. Identifying which proteins in human cells the virus co-opts is crucial for developing new ways to diagnose, prevent and treat COVID-19 infections. SARS-CoV-2 is covered in spike-shaped proteins, which the virus uses to gain entry into cells. First, the spikes bind to a protein called ACE2, which is found on the cells that line the respiratory tract and lungs. SARS-CoV-2 then exploits enzymes called proteases to cut, or cleave, its spikes at a specific site which allows the virus to infiltrate the host cell. Proteases identify which proteins to target based on the sequence of amino acids – the building blocks of proteins – at the cleavage site. However, it remained unclear which human proteases SARS-CoV-2 co-opts and whether its cut site is similar to human proteins. Now, Anand et al. show that the spike proteins on SARS-CoV-2 may have the same sequence of amino acids at its cut site as a human epithelial channel protein called ENaC-α. This channel is important for maintaining the balance of salt and water in many organs including the lungs. Further analyses showed that ENaC-α is often found in the same types of human lung and respiratory tract cells as ACE2. This suggests that SARS-CoV-2 may use the same proteases that cut ENaC-α to get inside human respiratory cells. It is possible that by hijacking the cutting mechanism for ENaC-α, SARS-CoV-2 interferes with the balance of salt and water in the lungs of COVID-19 patients. This may help explain why the virus causes severe respiratory symptoms. However, more studies are needed to confirm that the proteases that cut ENaC-α also cut the spike proteins on SARS-CoV-2, and how this affects the respiratory health of COVID-19 patients.
Collapse
|
Journal Article |
5 |
98 |
12
|
Abstract
Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.
Collapse
|
review-article |
28 |
95 |
13
|
Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus 2014; 23:596-605. [PMID: 24763543 DOI: 10.1177/0961203314531637] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic and environmental factors appear to contribute to the pathogenesis of systemic lupus erythematosus (SLE). Viral infections have been reported to be associated with the disease. A number of exogenous viruses have been linked to the pathogenesis of SLE, of which Epstein-Barr virus (EBV) has the most evidence of an aetiological candidate. In addition, human endogenous retroviruses (HERV), HRES-1, ERV-3, HERV-E 4-1, HERV-K10 and HERV-K18 have also been implicated in SLE. HERVs are incorporated into human DNA, and thus can be inherited. HERVs may trigger an autoimmune reaction through molecular mimicry, since homology of amino acid sequences between HERV proteins and SLE autoantigens has been demonstrated. These viruses can also be influenced by oestrogen, DNA hypomethylation, and ultraviolet light (UVB) exposure which have been shown to enhance HERV activation or expression. Viral infection, or other environmental factors, could induce defective apoptosis, resulting in loss of immune tolerance. Further studies in SLE and other autoimmune diseases are needed to elucidate the contribution of both exogenous and endogenous viruses in the development of autoimmunity. If key peptide sequences could be identified as molecular mimics between viruses and autoantigens, then this might offer the possibility of the development of blocking peptides or antibodies as therapeutic agents in SLE and other autoimmune conditions.
Collapse
|
Review |
11 |
83 |
14
|
Oldstone MBA. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005; 296:1-17. [PMID: 16329189 PMCID: PMC7120699 DOI: 10.1007/3-540-30791-5_1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Molecular mimicry is defined as similar structures shared by molecules from dissimilar genes or by their protein products. Either several linear amino acids or their conformational fit may be shared, even though their origins are separate. Hence, during a viral or microbe infection, if that organism shares cross-reactive epitopes for B or T cells with the host, then the response to the infecting agent will also attack the host, causing autoimmune disease. A variation on this theme is when a second, third, or repeated infection(s) shares cross-reactive B or T cell epitopes with the first (initiating) virus but not necessarily the host. In this instance, the secondary infectious agents increase the number of antiviral/antihost effector antibodies or T cells that potentiate or precipitate the autoimmune assault. The formation of this concept initially via study of monoclonal antibody or clone T cell cross-recognition in vitro through its evolution to in vivo animal models and to selected human diseases is explored in this mini-review.
Collapse
|
chapter-article |
20 |
82 |
15
|
Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med 2015; 21:233-44. [PMID: 25771098 DOI: 10.1016/j.molmed.2015.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
Abstract
The microbiota is considered to be an important factor influencing the pathogenesis of autoimmunity at both barrier sites and internal organs. Impinging on innate and adaptive immunity, commensals exert protective or detrimental effects on various autoimmune animal models. Human microbiome studies of autoimmunity remain largely descriptive, but suggest a role for dysbiosis in autoimmune disease. Humanized gnotobiotic approaches have advanced our understanding of immune-commensal interactions, but little is known about the mechanisms in autoimmunity. We propose that, similarly to infectious agents, the microbiota mediates autoimmunity via bystander activation, epitope spread, and, particularly under homeostatic conditions, via crossreactivity. This review presents an overview of the current literature concluding with outstanding questions in this field.
Collapse
|
Review |
10 |
79 |
16
|
Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol 2020; 190:e92-e93. [PMID: 32453861 PMCID: PMC7283741 DOI: 10.1111/bjh.16883] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
Comment |
5 |
79 |
17
|
Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human Endogenous Retroviruses (HERVs) and Autoimmune Rheumatic Disease: Is There a Link? Open Rheumatol J 2013; 7:13-21. [PMID: 23750183 PMCID: PMC3636489 DOI: 10.2174/1874312901307010013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/25/2022] Open
Abstract
Autoimmune rheumatic diseases, such as RA and SLE, are caused by genetic, hormonal and environmental factors. Human Endogenous Retroviruses (HERVs) may be triggers of autoimmune rheumatic disease. HERVs are fossil viruses that began to be integrated into the human genome some 30-40 million years ago and now make up 8% of the genome. Evidence suggests HERVs may cause RA and SLE, among other rheumatic diseases. The key mechanisms by which HERVS are postulated to cause disease include molecular mimicry and immune dysregulation. Identification of HERVs in RA and SLE could lead to novel treatments for these chronic conditions. This review summarises the evidence for HERVs as contributors to autoimmune rheumatic disease and the clinical implications and mechanisms of pathogenesis are discussed.
Collapse
|
Journal Article |
12 |
75 |
18
|
Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front Immunol 2021; 11:623944. [PMID: 33613559 PMCID: PMC7886683 DOI: 10.3389/fimmu.2020.623944] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease. Infections or infectious reactivation are potential triggers for initiation of autoimmunity and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been associated with several autoimmune diseases such as SLE, multiple sclerosis, Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent advances regarding how EBV may contribute to immune dysregulation, and how these mechanisms may relate to SLE disease progression.
Collapse
|
Review |
4 |
68 |
19
|
Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 2014; 40:36-48. [PMID: 25475989 DOI: 10.1016/j.tibs.2014.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.
Collapse
|
Review |
11 |
67 |
20
|
Voloshin ON, Ramirez BE, Bax A, Camerini-Otero RD. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 2001; 15:415-27. [PMID: 11230150 PMCID: PMC312637 DOI: 10.1101/gad.862901] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 12/22/2000] [Indexed: 11/25/2022]
Abstract
DinI is a recently described negative regulator of the SOS response in Escherichia coli. Here we show that it physically interacts with RecA and prevents the binding of single-stranded DNA to RecA, which is required for the activation of the latter. DinI also displaces ssDNA from a stable RecA-DNA cofilament, thus eliminating the SOS signal. In addition, DinI inhibits RecA-mediated homologous DNA pairing, but has no effect on actively proceeding strand exchange. Biochemical data, together with the molecular structure, define the C-terminal alpha-helix in DinI as the active site of the protein. In an unusual example of molecular mimicry, a negatively charged surface on this alpha-helix, by imitating single-stranded DNA, interacts with the loop L2 homologous pairing region of RecA and interferes with the activation of RecA.
Collapse
|
research-article |
24 |
66 |
21
|
Yuki N. Guillain-Barré syndrome and anti-ganglioside antibodies: a clinician-scientist's journey. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:299-326. [PMID: 22850724 PMCID: PMC3422685 DOI: 10.2183/pjab.88.299] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/02/2012] [Indexed: 05/25/2023]
Abstract
Guillain-Barré syndrome (GBS) is the most frequent cause of acute flaccid paralysis. Having seen my first GBS patient in 1989, I have since then dedicated my time in research towards understanding the pathogenesis of GBS. Along with several colleagues, we identified IgG autoantibodies against ganglioside GM1 in two patients with GBS subsequent to Campylobacter jejuni enteritis. We proceeded to demonstrate molecular mimicry between GM1 and bacterial lipo-oligosaccharide of C. jejuni isolated from a patient with GBS. Our group then established a disease model for GBS by sensitization with GM1 or GM1-like lipo-oligosaccharide. With this, a new paradigm that carbohydrate mimicry can cause autoimmune disorders was demonstrated, making GBS the first proof of molecular mimicry in autoimmune disease. Patients with Fisher syndrome, characterized by ophthalmoplegia and ataxia, can develop the disease after an infection by C. jejuni. We showed that the genetic polymorphism of C. jejuni sialyltransferase, an enzyme essential to the biosynthesis of ganglioside-like lipo-oligosaccharides determines whether patients develop GBS or Fisher syndrome. This introduces another paradigm that microbial genetic polymorphism can determine the clinical phenotype of human autoimmune diseases. Similarities between the clinical presentation of Fisher syndrome and Bickerstaff brainstem encephalitis have caused debate as to whether they are in fact the same disease. We demonstrated that IgG anti-GQ1b antibodies were common to both, suggesting that they are part of the same disease spectrum. We followed this work by clarifying the nosological relationship between the various clinical presentations within the anti-GQ1b antibody syndrome. In this review, I wanted to share my journey from being a clinician to a clinician-scientist in the hopes of inspiring younger clinicians to follow a similar path.
Collapse
|
Review |
13 |
66 |
22
|
Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20194871. [PMID: 31575045 PMCID: PMC6801612 DOI: 10.3390/ijms20194871] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease featuring enhanced expression of type I interferon (IFN) and autoantibody production triggering inflammation of, and damage to, multiple organs. Continuing research efforts focus on how gut microbes trigger systemic autoimmunity and SLE. The gut microbial communities of mice and humans with lupus have been investigated via high-throughput sequencing. The Firmicutes-to-Bacteroidetes ratio is consistently reduced in SLE patients, regardless of ethnicity. The relative abundance of Lactobacillus differs from the animal model used (MRL/lpr mice or NZB/W F1 mice). This may indicate that interactions between gut microbes and the host, rather than the enrichment of certain gut microbes, are especially significant in terms of SLE development. Enterococcus gallinarum and Lactobacillus reuteri, both of which are possible gut pathobionts, become translocated into systemic tissue if the gut epithelial barrier is impaired. The microbes then interact with the host immune systems, activating the type I IFN pathway and inducing autoantibody production. In addition, molecular mimicry may critically link the gut microbiome to SLE. Gut commensals of SLE patients share protein epitopes with the Ro60 autoantigen. Ruminococcus gnavus strain cross-reacted with native DNA, triggering an anti-double-stranded DNA antibody response. Expansion of R. gnavus in SLE patients paralleled an increase in disease activity and lupus nephritis. Such insights into the link between the gut microbiota and SLE enhance our understanding of SLE pathogenesis and will identify biomarkers predicting active disease.
Collapse
|
Review |
6 |
65 |
23
|
Abstract
During the past year, many articles were published on the extragastric diseases related to Helicobacter pylori infection. This supports the theory that some microorganisms may cause diseases even far from the primary site of infection by interfering with different biologic processes. The role of H. pylori on idiopathic thrombocytopenic purpura, sideropenica anemia, and vitamin B12 deficiency is well known. On the other hand, there is a growing interest in the bacterium's association with cardiovascular, neurologic, hematologic, dermatologic, head and neck, and uro-gynecologic diseases, as well as diabetes mellitus and metabolic syndrome, with very promising results. This review has been aimed at summarizing the results of the most relevant studies published over the last year on this fascinating topic.
Collapse
|
Review |
9 |
63 |
24
|
Abstract
In this review, we shall focus on the last year progression understanding the pathogenesis of Helicobacter pylori infection in the light of recent data related to adaptation of H pylori to the harsh acidic environment in the stomach, colonization of gastric mucosa via interaction with mucin 5 (MUC5AC) and other host cell receptors, the ability to form biofilm, interference with the host metabolic pathways, and induction of neuroimmune cross-talk as well as downregulation of gastric barrier homeostasis and its consequences for the disease development. The role of the membrane vesicles of these bacteria has been emphasized as an important source of virulence factors. Furthermore, we shall describe molecular and functional studies on new aspects of VacA and CagA virulence, including the role of urease in the upregulation of VacA toxicity, an epithelial-mesenchymal transition mediated by CagA, and the role of interaction of HopQ adhesin with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in CagA translocation into the host cells by the type IV secretion system (T4SS). The role of molecular mimicry between a common sequence (ATVLA) of H pylori heat shock protein (Hsp) B and human Hsp60 in the induction of potentially autoreactive antibodies is discussed. All these new data illustrate further progress in understanding H pylori pathogenicity and facilitate the search for new therapeutic targets as well as development of immunoprophylaxis methods based on new chimeric UreB and HpA proteins.
Collapse
|
Review |
6 |
63 |
25
|
From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies (Basel) 2020; 9:antib9030033. [PMID: 32708525 PMCID: PMC7551747 DOI: 10.3390/antib9030033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present in SARS-CoV-2 were mostly composed of peptide sequences present in human proteins that—when altered, mutated, deficient or, however, improperly functioning—may associate with a wide range of disorders, from respiratory distress to multiple organ failure. Conclusions: This study represents a starting point or hint for future scientific–clinical investigations and suggests a range of possible protein targets of autoimmunity in SARS-CoV-2 infection. From an experimental perspective, the results warrant the testing of patients’ sera for autoantibodies against these protein targets. Clinically, the results warrant a stringent surveillance on the future pathologic sequelae of the current SARS-CoV-2 pandemic.
Collapse
|
Journal Article |
5 |
62 |