1
|
Chen B, Li D, Wang F. InP Quantum Dots: Synthesis and Lighting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002454. [PMID: 32613755 DOI: 10.1002/smll.202002454] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Indexed: 05/24/2023]
Abstract
InP quantum dots (QDs) are typical III-V group semiconductor nanocrystals that feature large excitonic Bohr radius and high carrier mobility. The merits of InP QDs include large absorption coefficient, broad color tunability, and low toxicity, which render them promising alternatives to classic Cd/Pb-based QDs for applications in practical settings. Over the past two decades, the advances in wet-chemistry methods have enabled the synthesis of small-sized colloidal InP QDs with the assistance of organic ligands. By proper selection of synthetic protocols and precursor materials coupled with surface passivation, the QYs of InP QDs are pushed to near unity with modest color purity. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications with the potential for commercialization. This work focuses on the recent development of wet-chemistry protocols and various precursor materials for the synthesis and surface modification of InP QDs. Current methods for constructing light-emitting diodes using novel InP-based QDs are also summarized.
Collapse
|
Review |
5 |
83 |
2
|
Gilroy KD, Yang X, Xie S, Zhao M, Qin D, Xia Y. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706312. [PMID: 29656471 DOI: 10.1002/adma.201706312] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Indexed: 05/25/2023]
Abstract
Controlling the surface structure of metal nanocrystals while maximizing the utilization efficiency of the atoms is a subject of great importance. An emerging strategy that has captured the attention of many research groups involves the conformal deposition of one metal as an ultrathin shell (typically 1-6 atomic layers) onto the surface of a seed made of another metal and covered by a set of well-defined facets. This approach forces the deposited metal to faithfully replicate the surface atomic structure of the seed while at the same time serving to minimize the usage of the deposited metal. Here, the recent progress in this area is discussed and analyzed by focusing on the synthetic and mechanistic requisites necessary for achieving surface atomic replication of precious metals. Other related methods are discussed, including the one-pot synthesis, electrochemical deposition, and skin-layer formation through thermal annealing. To close, some of the synergies that arise when the thickness of the deposited shell is decreased controllably down to a few atomic layers are highlighted, along with how the control of thickness can be used to uncover the optimal physicochemical properties necessary for boosting the performance toward a range of catalytic reactions.
Collapse
|
Review |
7 |
77 |
3
|
Zhao L, Yeh YW, Tran NL, Wu F, Xiao Z, Kerner RA, Lin YL, Scholes GD, Yao N, Rand BP. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS NANO 2017; 11:3957-3964. [PMID: 28332818 DOI: 10.1021/acsnano.7b00404] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.
Collapse
|
|
8 |
63 |
4
|
Sui J, Yan J, Liu D, Wang K, Luo G. Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902828. [PMID: 31755221 DOI: 10.1002/smll.201902828] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Indexed: 05/28/2023]
Abstract
Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.
Collapse
|
Review |
5 |
38 |
5
|
Sun H, Wang F, Buhro WE. Tellurium Precursor for Nanocrystal Synthesis: Tris(dimethylamino)phosphine Telluride. ACS NANO 2018; 12:12393-12400. [PMID: 30452232 DOI: 10.1021/acsnano.8b06468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preparations of CdTe quantum platelets, magic-size (CdTe)13 nanoclusters, and CdTe quantum wires are described using (Me2N)3PTe (with (Me2N)3P) as a Te precursor. The (Me2N)3PTe/(Me2N)3P precursor mixture is shown to be more reactive than mixtures of trialkylphosphine tellurides and the corresponding trialkylphosphines, R3PTe/R3P, which are commonly employed in nanocrystal syntheses. For syntheses conducted in primary amine solvents, (Me2N)3PTe and (Me2N)3P undergo a transamination reaction, affording (Me2N) x(RHN)3- xPTe and (Me2N) x(RHN)3- xP (R = n-octyl or oleyl). The transaminated (Me2N) x(RHN)3- xPTe derivatives are shown to be the likely Te precursors under those conditions. The enhanced reactivities of the tris(amino)phosphine tellurides are ascribed to increased nucleophilicity due to the amino-N lone pairs.
Collapse
|
|
7 |
13 |
6
|
Glassy BA, Cossairt BM. II 3 V 2 (II: Zn, Cd; V: P, As) Semiconductors: From Bulk Solids to Colloidal Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702038. [PMID: 28857437 DOI: 10.1002/smll.201702038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Indexed: 05/21/2023]
Abstract
II3 V2 semiconductors have become increasingly popular for a variety of applications including solar light harvesting, near-IR imaging, and low energy light detection. The bulk physical and electronic structure of these materials is highlighted, followed by an in-depth survey on progress in synthesizing these semiconductors as colloidal nanocrystals. Interestingly, no universal synthetic approach has yet been developed to access all compounds within this family. A discussion on how the complex crystal structure of these materials translates to small domain sizes will highlight current challenges in the characterization of II3 V2 nanocrystals. Finally, potential avenues for further research will be proposed as a way to advance this field towards greater utilization in light harvesting applications.
Collapse
|
Review |
8 |
7 |
7
|
Langevin MA, Pons T, Ritcey AM, Nì. Allen C. Near-Infrared Emitting AgInTe2 and Zn-Ag-In-Te Colloidal Nanocrystals. NANOSCALE RESEARCH LETTERS 2015; 10:951. [PMID: 26058512 PMCID: PMC4477004 DOI: 10.1186/s11671-015-0951-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 05/05/2023]
Abstract
The synthesis of AgInTe2 nanocrystals emitting between 1095 and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In(3+) in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.
Collapse
|
research-article |
10 |
6 |
8
|
Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X. Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205950. [PMID: 36515335 DOI: 10.1002/smll.202205950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Ligands are indispensable for perovskite nanocrystals (NCs) throughout the whole lifetime, as they not only play key roles in the controllable synthesis of NCs with different sizes and shapes, but also act as capping shell that affects optical properties and electrical coupling of NCs. Establishing a systematic understanding of the relationship between ligands and perovskite NCs is significant to enable many potential applications of NCs. This review mainly focuses on the influence of ligands on perovskite NCs. First of all, the ligands-dominated size and shape control of NCs is discussed. Whereafter, the surface defects of NCs and the bonding between ligands and perovskite NCs are classified, and corresponding post-treatment of surface defects via ligands is also summarized. Furthermore, advances in engineering the ligands towards the high performance of optoelectronic devices based on perovskite NCs, including photodetector, solar cell, light emitting diode (LED), and laser, and finally to potential challenges are also discussed.
Collapse
|
Review |
2 |
5 |
9
|
Li X, Zhao Y, Brennan A, McCeig M, Wolden CA, Yang Y. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen. CHEMSUSCHEM 2017; 10:2904-2913. [PMID: 28510305 DOI: 10.1002/cssc.201700532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Anhydrous alkali sulfide (M2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H2 ). Next, H2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M2 S NC precipitates and regenerate alcohol that can be recycled. The M2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔGmo <-100 kJ mol-1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H2 S+2 m→M2 S+H2 , makes good use of a hazardous chemical (H2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies.
Collapse
|
|
8 |
4 |
10
|
Swisher SL, Volkman SK, Subramanian V. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10069-10075. [PMID: 25915094 DOI: 10.1021/acsami.5b00893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics.
Collapse
|
|
10 |
4 |
11
|
Synthesis and Study of Fe-Doped Bi₂S₃ Semimagnetic Nanocrystals Embedded in a Glass Matrix. Molecules 2017; 22:molecules22071142. [PMID: 28696350 PMCID: PMC6152244 DOI: 10.3390/molecules22071142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
Iron-doped bismuth sulphide (Bi2−xFexS3) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7–9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe3+ typical characteristics, with spin of 5/2 in the 3d5 electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi2S3 host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi2S3 counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322|e| on FeBi1 and 1.306|e| on FeBi2 ions, and a spin contribution for the magnetic moment of 5.0 µB per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3:FeBi1 (Bi2S3:FeBi2). These results are compatible with the 3d5 high-spin state of Fe3+, and are in agreement with the experimental results, within the density functional theory accuracy.
Collapse
|
|
8 |
3 |
12
|
Cho MG, Sytwu K, Rangel DaCosta L, Groschner C, Oh MH, Scott MC. Size-Resolved Shape Evolution in Inorganic Nanocrystals Captured via High-Throughput Deep Learning-Driven Statistical Characterization. ACS NANO 2024; 18:29736-29747. [PMID: 39425689 PMCID: PMC11526432 DOI: 10.1021/acsnano.4c09312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Precise size and shape control in nanocrystal synthesis is essential for utilizing nanocrystals in various industrial applications, such as catalysis, sensing, and energy conversion. However, traditional ensemble measurements often overlook the subtle size and shape distributions of individual nanocrystals, hindering the establishment of robust structure-property relationships. In this study, we uncover intricate shape evolutions and growth mechanisms in Co3O4 nanocrystal synthesis at a subnanometer scale, enabled by deep-learning-assisted statistical characterization. By first controlling synthetic parameters such as cobalt precursor concentration and water amount then using high resolution electron microscopy imaging to identify the geometric features of individual nanocrystals, this study provides insights into the interplay between synthesis conditions and the size-dependent shape evolution in colloidal nanocrystals. Utilizing population-wide imaging data encompassing over 441,067 nanocrystals, we analyze their characteristics and elucidate previously unobserved size-resolved shape evolution. This high-throughput statistical analysis is essential for representing the entire population accurately and enables the study of the size dependency of growth regimes in shaping nanocrystals. Our findings provide experimental quantification of the growth regime transition based on the size of the crystals, specifically (i) for faceting and (ii) from thermodynamic to kinetic, as evidenced by transitions from convex to concave polyhedral crystals. Additionally, we introduce the concept of an "onset radius," which describes the critical size thresholds at which these transitions occur. This discovery has implications beyond achieving nanocrystals with desired morphology; it enables finely tuned correlation between geometry and material properties, advancing the field of colloidal nanocrystal synthesis and its applications.
Collapse
|
research-article |
1 |
|
13
|
Lee S, Watanabe T, Ross FM, Park JH. Temperature Dependent Growth Kinetics of Pd Nanocrystals: Insights from Liquid Cell Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403969. [PMID: 39109568 DOI: 10.1002/smll.202403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Indexed: 12/20/2024]
Abstract
Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.
Collapse
|
|
1 |
|