1
|
Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Ed Engl 2014; 54:1414-44. [PMID: 25504117 DOI: 10.1002/anie.201406096] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/08/2022]
Abstract
Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.
Collapse
|
Review |
11 |
609 |
2
|
Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG. Self-propelled micromotors for cleaning polluted water. ACS NANO 2013; 7:9611-20. [PMID: 24180623 PMCID: PMC3872448 DOI: 10.1021/nn405075d] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/01/2013] [Indexed: 05/18/2023]
Abstract
We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
Collapse
|
research-article |
12 |
334 |
3
|
Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors. ACS NANO 2015; 9:117-23. [PMID: 25549040 PMCID: PMC4310033 DOI: 10.1021/nn507097k] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
Artificial micromotors, operating on locally supplied fuels and performing complex tasks, offer great potential for diverse biomedical applications, including autonomous delivery and release of therapeutic payloads and cell manipulation. Various types of synthetic motors, utilizing different propulsion mechanisms, have been fabricated to operate in biological matrices. However, the performance of these man-made motors has been tested exclusively under in vitro conditions (outside the body); their behavior and functionalities in an in vivo environment (inside the body) remain unknown. Herein, we report an in vivo study of artificial micromotors in a living organism using a mouse model. Such in vivo evaluation examines the distribution, retention, cargo delivery, and acute toxicity profile of synthetic motors in mouse stomach via oral administration. Using zinc-based micromotors as a model, we demonstrate that the acid-driven propulsion in the stomach effectively enhances the binding and retention of the motors as well as of cargo payloads on the stomach wall. The body of the motors gradually dissolves in the gastric acid, autonomously releasing their carried payloads, leaving nothing toxic behind. This work is anticipated to significantly advance the emerging field of nano/micromotors and to open the door to in vivo evaluation and clinical applications of these synthetic motors.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
324 |
4
|
Ma X, Jannasch A, Albrecht UR, Hahn K, Miguel-López A, Schäffer E, Sánchez S. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. NANO LETTERS 2015; 15:7043-50. [PMID: 26437378 DOI: 10.1021/acs.nanolett.5b03100] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.
Collapse
|
|
10 |
294 |
5
|
Esteban-Fernández de Ávila B, Martín A, Soto F, Lopez-Ramirez MA, Campuzano S, Vásquez-Machado GM, Gao W, Zhang L, Wang J. Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS NANO 2015; 9:6756-64. [PMID: 26035455 DOI: 10.1021/acsnano.5b02807] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A nanomotor-based strategy for rapid single-step intracellular biosensing of a target miRNA, expressed in intact cancer cells, at the single cell level is described. The new concept relies on the use of ultrasound (US) propelled dye-labeled single-stranded DNA (ssDNA)/graphene-oxide (GO) coated gold nanowires (AuNWs) capable of penetrating intact cancer cells. Once the nanomotor is internalized into the cell, the quenched fluorescence signal (produced by the π-π interaction between GO and a dye-labeled ssDNA) is recovered due to the displacement of the dye-ssDNA probe from the motor GO-quenching surface upon binding with the target miRNA-21, leading to an attractive intracellular "OFF-ON" fluorescence switching. The faster internalization process of the US-powered nanomotors and their rapid movement into the cells increase the likelihood of probe-target contacts, leading to a highly efficient and rapid hybridization. The ability of the nanomotor-based method to screen cancer cells based on the endogenous content of the target miRNA has been demonstrated by measuring the fluorescence signal in two types of cancer cells (MCF-7 and HeLa) with significantly different miRNA-21 expression levels. This single-step, motor-based miRNAs sensing approach enables rapid "on the move" specific detection of the target miRNA-21, even in single cells with an extremely low endogenous miRNA-21 content, allowing precise and real-time monitoring of intracellular miRNA expression.
Collapse
|
|
10 |
211 |
6
|
Lee TC, Alarcón-Correa M, Miksch C, Hahn K, Gibbs JG, Fischer P. Self-propelling nanomotors in the presence of strong Brownian forces. NANO LETTERS 2014; 14:2407-12. [PMID: 24707952 PMCID: PMC4039130 DOI: 10.1021/nl500068n] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/25/2014] [Indexed: 05/20/2023]
Abstract
Motility in living systems is due to an array of complex molecular nanomotors that are essential for the function and survival of cells. These protein nanomotors operate not only despite of but also because of stochastic forces. Artificial means of realizing motility rely on local concentration or temperature gradients that are established across a particle, resulting in slip velocities at the particle surface and thus motion of the particle relative to the fluid. However, it remains unclear if these artificial motors can function at the smallest of scales, where Brownian motion dominates and no actively propelled living organisms can be found. Recently, the first reports have appeared suggesting that the swimming mechanisms of artificial structures may also apply to enzymes that are catalytically active. Here we report a scheme to realize artificial Janus nanoparticles (JNPs) with an overall size that is comparable to that of some enzymes ∼30 nm. Our JNPs can catalyze the decomposition of hydrogen peroxide to water and oxygen and thus actively move by self-electrophoresis. Geometric anisotropy of the Pt-Au Janus nanoparticles permits the simultaneous observation of their translational and rotational motion by dynamic light scattering. While their dynamics is strongly influenced by Brownian rotation, the artificial Janus nanomotors show bursts of linear ballistic motion resulting in enhanced diffusion.
Collapse
|
rapid-communication |
11 |
203 |
7
|
Esteban-Fernández de Ávila B, Angell C, Soto F, Lopez-Ramirez MA, Báez DF, Xie S, Wang J, Chen Y. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS NANO 2016; 10:4997-5005. [PMID: 27022755 DOI: 10.1021/acsnano.6b01415] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An effective intracellular gene silencing strategy based on acoustically propelled nanowires modified with an interfering RNA's (siRNA) payload is described. The gold nanowires (AuNW) are wrapped with a Rolling Circle Amplification (RCA) DNA strand, which serves to anchor the siRNA therapy. The ultrasound (US)-powered propulsion of the AuNW leads to fast internalization and rapid intracellular movement and hence to an accelerated siRNA delivery and silencing response. To optimize the micromotor gene silencing procedure, the influence of motion, time, and siRNA dosage was investigated, leading up to a 94% silencing after few minutes treatment with US-propelled siRNA-AuNWs, and to a dramatic (∼13-fold) improvement in the silencing response compared to the static modified nanowires. The ability of the nanomotor-based method for gene silencing has been demonstrated by measuring the GFP silencing response in two different cell lines (HEK-293 and MCF-7) and using detailed control experiments. The viability of the cells after the nanomotors treatment was examined using the MCF-7 cancer cell line. The use of DNA structures carried by the US-propelled nanomotors for gene silencing represents an efficient tool that addresses the challenges associated with RNA transportation and intracellular delivery. Future implementation of nanomachines in gene therapy applications can be expanded into a co-delivery platform for therapeutics.
Collapse
|
|
9 |
176 |
8
|
Hansen-Bruhn M, de Ávila BEF, Beltrán-Gastélum M, Zhao J, Ramírez-Herrera DE, Angsantikul P, Vesterager Gothelf K, Zhang L, Wang J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors. Angew Chem Int Ed Engl 2018; 57:2657-2661. [PMID: 29325201 DOI: 10.1002/anie.201713082] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound-powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA-loaded nanomotors to directly penetrate through the plasma membrane of GFP-expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA-loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor-based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
170 |
9
|
Hortelão AC, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S. Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS NANO 2019; 13:429-439. [PMID: 30588798 DOI: 10.1021/acsnano.8b06610] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.
Collapse
|
|
6 |
167 |
10
|
Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, Orozco J, Galarnyk M, Wang J. Self-propelled activated carbon Janus micromotors for efficient water purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:499-506. [PMID: 25207503 DOI: 10.1002/smll.201402215] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/15/2014] [Indexed: 05/22/2023]
Abstract
Self-propelled activated carbon-based Janus particle micromotors that display efficient locomotion in environmental matrices and offer effective 'on-the-fly' removal of wide range of organic and inorganic pollutants are described. The new bubble-propelled activated carbon Janus micromotors rely on the asymmetric deposition of a catalytic Pt patch on the surface of activated carbon microspheres. The rough surface of the activated carbon microsphere substrate results in a microporous Pt structure to provide a highly catalytic layer, which leads to an effective bubble evolution and propulsion at remarkable speeds of over 500 μm/s. Such coupling of the high adsorption capacity of carbon nanoadsorbents with the rapid movement of these catalytic Janus micromotors, along with the corresponding fluid dynamics and mixing, results in a highly efficient moving adsorption platform and a greatly accelerated water purification. The adsorption kinetics and adsorption isotherms have been investigated. The remarkable decontamination efficiency of self-propelled activated carbon-based Janus micromotors is illustrated towards the rapid removal of heavy metals, nitroaromatic explosives, organophosphorous nerve agents and azo-dye compounds, indicating considerable promise for diverse environmental, defense, and public health applications.
Collapse
|
|
10 |
161 |
11
|
Tu Y, Peng F, André AAM, Men Y, Srinivas M, Wilson DA. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS NANO 2017; 11:1957-1963. [PMID: 28187254 PMCID: PMC5348104 DOI: 10.1021/acsnano.6b08079] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/10/2017] [Indexed: 04/14/2023]
Abstract
We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs.
Collapse
|
research-article |
8 |
160 |
12
|
Abstract
Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.
Collapse
|
|
9 |
155 |
13
|
Ma X, Hortelão AC, Patiño T, Sánchez S. Enzyme Catalysis To Power Micro/Nanomachines. ACS NANO 2016; 10:9111-9122. [PMID: 27666121 PMCID: PMC5228067 DOI: 10.1021/acsnano.6b04108] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/25/2016] [Indexed: 05/18/2023]
Abstract
Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature's design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field.
Collapse
|
Review |
9 |
151 |
14
|
Peng F, Tu Y, van Hest JCM, Wilson DA. Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angew Chem Int Ed Engl 2015; 54:11662-5. [PMID: 26277327 PMCID: PMC4600232 DOI: 10.1002/anie.201504186] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/09/2015] [Indexed: 01/06/2023]
Abstract
Delivery vehicles that are able to actively seek and precisely locate targeted tissues using concentration gradients of signaling molecules have hardly been explored. The directed movement toward specific cell types of cargo-loaded polymeric nanomotors along a hydrogen peroxide concentration gradient (chemotaxis) is reported. Through self-assembly, bowl-shaped poly(ethylene glycol)-b-polystyrene nanomotors, or stomatocytes, were formed with platinum nanoparticles entrapped in the cavity while a model drug was encapsulated in the inner compartment. Directional movement of the stomatocytes in the presence of a fuel gradient (chemotaxis) was first demonstrated in both static and dynamic systems using glass channels and a microfluidic flow. The highly efficient response of these motors was subsequently shown by their directional and autonomous movement towards hydrogen peroxide secreting neutrophil cells.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
143 |
15
|
Safdar M, Khan SU, Jänis J. Progress toward Catalytic Micro- and Nanomotors for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703660. [PMID: 29411445 DOI: 10.1002/adma.201703660] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Synthetic micro- and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.
Collapse
|
Review |
7 |
131 |
16
|
Rao KJ, Li F, Meng L, Zheng H, Cai F, Wang W. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2836-46. [PMID: 25851515 DOI: 10.1002/smll.201403621] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/25/2015] [Indexed: 05/23/2023]
Abstract
Synthetic microswimmers are a class of artificial nano- or microscale particle capable of converting external energy into motion. They are similar to natural microswimmers such as bacteria in behavior and are, therefore, of great interest to the study of active matter. Additionally, microswimmers show promise in applications ranging from bioanalytics and environmental monitoring to particle separation and drug delivery. However, since their sizes are on the nano-/microscale and their speeds are in the μm s(-1) range, they fall into a low Reynolds number regime where viscosity dominates. Therefore, new propulsion schemes are needed for these microswimmers to be able to efficiently move. Furthermore, many of the hotly pursued applications call for innovations in the next phase of development of biocompatible microswimmers. In this review, the latest developments of microswimmers powered by ultrasound are presented. Ultrasound, especially at MHz frequencies, does little harm to biological samples and provides an advantageous and well-controlled means to efficiently power microswimmers. By critically reviewing the recent progress in this research field, an introduction of how ultrasound propels colloidal particles into autonomous motion is presented, as well as how this propulsion can be used to achieve preliminary but promising applications.
Collapse
|
Review |
10 |
130 |
17
|
Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG. Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed Engl 2014; 53:2673-7. [PMID: 24481856 PMCID: PMC4255230 DOI: 10.1002/anie.201308610] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/12/2013] [Indexed: 12/21/2022]
Abstract
Flexible thermoresponsive polymeric microjets are formed by the self-folding of polymeric layers containing a thin Pt film used as catalyst for self-propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self-propulsion at the microscale, and also for biorelated applications.
Collapse
|
research-article |
11 |
126 |
18
|
Patino T, Porchetta A, Jannasch A, Lladó A, Stumpp T, Schäffer E, Ricci F, Sánchez S. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. NANO LETTERS 2019; 19:3440-3447. [PMID: 30704240 DOI: 10.1021/acs.nanolett.8b04794] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biocatalytic micro- and nanomotors have emerged as a new class of active matter self-propelled through enzymatic reactions. The incorporation of functional nanotools could enable the rational design of multifunctional micromotors for simultaneous real-time monitoring of their environment and activity. Herein, we report the combination of DNA nanotechnology and urease-powered micromotors as multifunctional tools able to swim, simultaneously sense the pH of their surrounding environment, and monitor their intrinsic activity. With this purpose, a FRET-labeled triplex DNA nanoswitch for pH sensing was immobilized onto the surface of mesoporous silica-based micromotors. During self-propulsion, urea decomposition and the subsequent release of ammonia led to a fast pH increase, which was detected by real-time monitoring of the FRET efficiency through confocal laser scanning microscopy at different time points (i.e., 30 s, 2 and 10 min). Furthermore, the analysis of speed, enzymatic activity, and propulsive force displayed a similar exponential decay, matching the trend observed for the FRET efficiency. These results illustrate the potential of using specific DNA nanoswitches not only for sensing the micromotors' surrounding microenvironment but also as an indicator of the micromotor activity status, which may aid to the understanding of their performance in different media and in different applications.
Collapse
|
|
6 |
116 |
19
|
Tu Y, Peng F, White PB, Wilson DA. Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angew Chem Int Ed Engl 2017; 56:7620-7624. [PMID: 28489266 PMCID: PMC5488187 DOI: 10.1002/anie.201703276] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/02/2017] [Indexed: 12/05/2022]
Abstract
The development of artificial nanomotor systems that are stimuli-responsive is still posing many challenges. Herein, we demonstrate the self-assembly of a redox-responsive stomatocyte nanomotor system, which can be used for triggered drug release under biological reducing conditions. The redox sensitivity was introduced by incorporating a disulfide bridge between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. When incubated with the endogenous reducing agent glutathione at a concentration comparable to that within cells, the external PEG shells of these stimuli-responsive nanomotors are cleaved. The specific bowl-shaped stomatocytes aggregate after the treatment with glutathione, leading to the loss of motion and triggered drug release. These novel redox-responsive nanomotors can not only be used for remote transport but also for drug delivery, which is promising for future biomedical applications.
Collapse
|
brief-report |
8 |
112 |
20
|
Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T, Villalonga R, Sancenón F, Martínez-Máñez R, Sánchez S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS NANO 2019; 13:12171-12183. [PMID: 31580642 DOI: 10.1021/acsnano.9b06706] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2'-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to "sense" the environment and deliver the payload on demand in response to predefined stimuli.
Collapse
|
|
6 |
104 |
21
|
Kiristi M, Singh VV, Esteban-Fernández de Ávila B, Uygun M, Soto F, Aktaş Uygun D, Wang J. Lysozyme-Based Antibacterial Nanomotors. ACS NANO 2015; 9:9252-9. [PMID: 26308491 DOI: 10.1021/acsnano.5b04142] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An effective and rapid bacterial killing nanotechnology strategy based on lysozyme-modified fuel-free nanomotors is demonstrated. The efficient antibacterial property of lysozyme, associated with the cleavage of glycosidic bonds of peptidoglycans present in the bacteria cell wall, has been combined with ultrasound (US)-propelled porous gold nanowire (p-AuNW) motors as biocompatible dynamic bacteria nanofighters. Coupling the antibacterial activity of the enzyme with the rapid movement of these p-AuNWs, along with the corresponding fluid dynamics, promotes enzyme-bacteria interactions and prevents surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability. The large active surface area of these nanoporous motors offers a significantly higher enzyme loading capacity compared to nonporous AuNWs, which results in a higher antimicrobial activity against Gram-positive and Gram-negative bacteria. Detailed characterization studies and control experiments provide useful insights into the underlying factors controlling the antibacterial performance of the new dynamic bacteria nanofighters. Rapid and effective killing of the Gram-positive Micrococcus lysodeikticus bacteria (69-84% within 1-5 min) is demonstrated.
Collapse
|
|
10 |
100 |
22
|
Pal M, Somalwar N, Singh A, Bhat R, Eswarappa SM, Saini DK, Ghosh A. Maneuverability of Magnetic Nanomotors Inside Living Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800429. [PMID: 29635828 DOI: 10.1002/adma.201800429] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Spatiotemporally controlled active manipulation of external micro-/nanoprobes inside living cells can lead to development of innovative biomedical technologies and inspire fundamental studies of various biophysical phenomena. Examples include gene silencing applications, real-time mechanical mapping of the intracellular environment, studying cellular response to local stress, and many more. Here, for the first time, cellular internalization and subsequent intracellular manipulation of a system of helical nanomotors driven by small rotating magnetic fields with no adverse effect on the cellular viability are demonstrated. This remote method of fuelling and guidance limits the effect of mechanical transduction to cells containing external probes, in contrast to ultrasonically or chemically powered techniques that perturb the entire experimental volume. The investigation comprises three cell types, containing both cancerous and noncancerous types, and is aimed toward analyzing and engineering the motion of helical propellers through the crowded intracellular space. The studies provide evidence for the strong anisotropy, heterogeneity, and spatiotemporal variability of the cellular interior, and confirm the suitability of helical magnetic nanoprobes as a promising tool for future cellular investigations and applications.
Collapse
|
|
7 |
92 |
23
|
Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, Wiitala D, Galarnyk M, Wang J. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4154-9. [PMID: 24995778 DOI: 10.1002/smll.201401013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/06/2014] [Indexed: 05/22/2023]
Abstract
Ultrasound (US)-powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver-gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near-infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound-driven transport of the loaded drug toward cancer cells followed by NIR-light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20-fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US-powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target-specific manner.
Collapse
|
|
11 |
90 |
24
|
Wu Z, Lin X, Si T, He Q. Recent Progress on Bioinspired Self-Propelled Micro/ Nanomotors via Controlled Molecular Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3080-3093. [PMID: 27073065 DOI: 10.1002/smll.201503969] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/03/2016] [Indexed: 06/05/2023]
Abstract
The combination of bottom-up controllable self-assembly technique with bioinspired design has opened new horizons in the development of self-propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self-propelled micro/nanomotors has been witnessed based on the controlled self-assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function. The construction, propulsion mechanism, and movement control of synthetic micro/nanomotors in connection with controlled self-assembly in recent research activities are summarized. These assembled nanomotors are expected to have a tremendous impact on current artificial nanomachines in future and hold potential promise for biomedical applications including drug targeted delivery, photothermal cancer therapy, biodetoxification, treatment of atherosclerosis, artificial insemination, crushing kidney stones, cleaning wounds, and removing blood clots and parasites.
Collapse
|
Review |
9 |
87 |
25
|
Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J, Tang J. A Silicon Nanowire as a Spectrally Tunable Light-Driven Nanomotor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701451. [PMID: 28599059 DOI: 10.1002/adma.201701451] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/09/2017] [Indexed: 05/27/2023]
Abstract
Over the last decades, scientists have endeavored to develop nanoscopic machines and envisioned that these tiny machines could be exploited in biomedical applications and novel material fabrication. Here, a visible-/near-infrared light-driven nanomotor based on a single silicon nanowire is reported. The silicon nanomotor harvests energy from light and propels itself by the self-electrophoresis mechanism. Due to the high efficiency, the silicon nanowire can be readily driven by visible and near-infrared illumination at ultralow light intensity (≈3 mW cm-2 ). The experimental study and numerical simulation also show that the detailed structure around the concentrated reaction center determines the migration behavior of the nanomotor. Importantly, due to the optical resonance inside the silicon nanowire, the spectral response of the nanowire-based nanomotor can be readily modulated by the nanowire's diameter. Compared to other methods, light controlling potentially offers more freedom and flexibility, as light can be modulated not only with its intensity and direction, but also with the frequency and polarities. This nanowire motor demonstrates a step forward to harness the advantages of light, which opens up new opportunities for the realization of many novel functions such as multiple channels communication to nanorobots and controllable self-assembly.
Collapse
|
|
8 |
86 |