1
|
Abstract
In part I of this review we assessed nanoscience-related definitions as applied to pharmaceuticals and we discussed all 43 currently approved drug formulations, which are widely publicized as nanopharmaceuticals or nanomedicines. In continuation, here we review the currently ongoing clinical trials within the broad field of nanomedicine. Confining the definition of nanopharmaceuticals to therapeutic formulations, in which the unique physicochemical properties expressed in the nanosize range, when man-made, play the pivotal therapeutic role, we found an apparently low number of trials, which reflects neither the massive investments made in the field of nanomedicine nor the general hype associated with the term "nano." Moreover, after an extensive search for information through clinical trials, we found only two clinical trials with materials that show unique nano-based properties, ie, properties that are displayed neither on the atomic nor on the bulk material level.
Collapse
|
Review |
10 |
63 |
2
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
|
Review |
5 |
37 |
3
|
Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020; 8:E347. [PMID: 32932737 PMCID: PMC7554840 DOI: 10.3390/biomedicines8090347] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nanoscale, which is the scale of nanometers or one billionth of a meter. Nanotechnology encompasses a broad range of technologies, materials, and manufacturing processes that are used to design and/or enhance many products, including medicinal products. This technology has achieved considerable progress in the oncology field in recent years. Most chemotherapeutic agents are not specific to the cancer cells they are intended to treat, and they can harm healthy cells, leading to numerous adverse effects. Due to this non-specific targeting, it is not feasible to administer high doses that may harm healthy cells. Moreover, low doses can cause cancer cells to acquire resistance, thus making them hard to kill. A solution that could potentially enhance drug targeting and delivery lies in understanding the complexity of nanotechnology. Engineering pharmaceutical and natural products into nano-products can enhance the diagnosis and treatment of cancer. Novel nano-formulations such as liposomes, polymeric micelles, dendrimers, quantum dots, nano-suspensions, and gold nanoparticles have been shown to enhance the delivery of drugs. Improved delivery of chemotherapeutic agents targets cancer cells rather than healthy cells, thereby preventing undesirable side effects and decreasing chemotherapeutic drug resistance. Nanotechnology has also revolutionized cancer diagnosis by using nanotechnology-based imaging contrast agents that can specifically target and therefore enhance tumor detection. In addition to the delivery of drugs, nanotechnology can be used to deliver nutraceuticals like phytochemicals that have multiple properties, such as antioxidant activity, that protect cells from oxidative damage and reduce the risk of cancer. There have been multiple advancements and implications for the use of nanotechnology to enhance the delivery of both pharmaceutical and nutraceutical products in cancer prevention, diagnosis, and treatment.
Collapse
|
Review |
5 |
27 |
4
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
review-article |
3 |
23 |
5
|
Zielińska A, Soles BB, Lopes AR, Vaz BF, Rodrigues CM, Alves TFR, Klensporf-Pawlik D, Durazzo A, Lucarini M, Severino P, Santini A, Chaud MV, Souto EB. Nanopharmaceuticals for Eye Administration: Sterilization, Depyrogenation and Clinical Applications. BIOLOGY 2020; 9:biology9100336. [PMID: 33066555 PMCID: PMC7602230 DOI: 10.3390/biology9100336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Nanopharmaceuticals have revolutionized the way ophthalmic drugs are administered to overcome ocular delivery barriers and improve drug bioavailability. The design and production of an efficient ocular drug delivery system still remain a challenge. In this review, we discuss the sterilization and depyrogenation methods, commonly used for ophthalmic nanopharmaceuticals, and their clinical applications. Abstract As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.
Collapse
|
Review |
5 |
12 |
6
|
Timmermans J, Zhao Y, van den Hoven J. Ethics and Nanopharmacy: Value Sensitive Design of New Drugs. NANOETHICS 2011; 5:269-283. [PMID: 22247745 PMCID: PMC3250608 DOI: 10.1007/s11569-011-0135-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/21/2011] [Indexed: 05/10/2023]
Abstract
Although applications are being developed and have reached the market, nanopharmacy to date is generally still conceived as an emerging technology. Its concept is ill-defined. Nanopharmacy can also be construed as a converging technology, which combines features of multiple technologies, ranging from nanotechnology to medicine and ICT. It is still debated whether its features give rise to new ethical issues or that issues associated with nanopharma are merely an extension of existing issues in the underlying fields. We argue here that, regardless of the alleged newness of the ethical issues involved, developments occasioned by technological advances affect the roles played by stakeholders in the field of nanopharmacy to such an extent that this calls for a different approach to responsible innovation in this field. Specific features associated with nanopharmacy itself and features introduced to the associated converging technologies- bring about a shift in the roles of stakeholders that call for a different approach to responsibility. We suggest that Value Sensitive Design is a suitable framework to involve stakeholders in addressing moral issues responsibly at an early stage of development of new nanopharmaceuticals.
Collapse
|
research-article |
14 |
12 |
7
|
Bedőcs P, Szebeni J. The Critical Choice of Animal Models in Nanomedicine Safety Assessment: A Lesson Learned From Hemoglobin-Based Oxygen Carriers. Front Immunol 2020; 11:584966. [PMID: 33193403 PMCID: PMC7649120 DOI: 10.3389/fimmu.2020.584966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Intravenous injection of nanopharmaceuticals can induce severe hypersensitivity reactions (HSRs) resulting in anaphylactoid shock in a small percentage of patients, a phenomenon explicitly reproducible in pigs. However, there is a debate in the literature on whether the pig model of HSRs can be used as a safety test for the prediction of severe adverse reactions in humans. Given the importance of using appropriate animal models for toxicity/safety testing, the choice of the right species and model is a critical decision. In order to facilitate the decision process and to expand the relevant information regarding the pig or no pig dilemma, this review examines an ill-fated clinical development program conducted by Baxter Corporation in the United States 24 years ago, when HemeAssist, an αα (diaspirin) crosslinked hemoglobin-based O2 carrier (HBOC) was tested in trauma patients. The study showed increased mortality in the treatment group relative to controls and had to be stopped. This disappointing result had far-reaching consequences and contributed to the setback in blood substitute research ever since. Importantly, the increased mortality of trauma patients was predicted in pig experiments conducted by US Army scientists, yet they were considered irrelevant to humans. Here we draw attention to that the underlying cause of hemoglobin-induced aggravation of hemorrhagic shock and severe HSRs have a common pathomechanism: cardiovascular distress due to vasoconstrictive effects of hemoglobin (Hb) and reactogenic nanomedicines, manifested, among others, in pulmonary hypertension. The main difference is that in the case of Hb this effect is due to NO-binding, while nanomedicines can trigger the release of proinflammatory mediators. Because of the higher sensitivity of cloven-hoof animals to this kind of cardiopulmonary distress compared to rodents, these reactions can be better reproduced in pigs than in murine or rat models. When deciding on the battery of tests and the appropriate models to identify the potential hazard for nanomedicine-induced severe HSR, the pros and cons of the various species must be considered carefully.
Collapse
|
Review |
5 |
8 |
8
|
|
Editorial |
10 |
8 |
9
|
Choudhury SD. Nano-Medicines a Hope for Chagas Disease! Front Mol Biosci 2021; 8:655435. [PMID: 34141721 PMCID: PMC8204082 DOI: 10.3389/fmolb.2021.655435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease, is a vector-mediated tropical disease whose causative agent is a parasitic protozoan named Trypanosoma cruzi. It is a very severe health issue in South America and Mexico infecting millions of people every year. Protozoan T. cruzi gets transmitted to human through Triatominae, a subfamily of the Reduviidae, and do not have any effective treatment or preventative available. The lack of economic gains from this tropical parasitic infection, has always been the reason behind its negligence by researchers and drug manufacturers for many decades. Hence there is an enormous requirement for more efficient and novel strategies to reduce the fatality associated with these diseases. Even, available diagnosis protocols are outdated and inefficient and there is an urgent need for rapid high throughput diagnostics as well as management protocol. The current advancement of nanotechnology in the field of healthcare has generated hope for better management of many tropical diseases including Chagas disease. Nanoparticulate systems for drug delivery like poloxamer coated nanosuspension of benzimidazole have shown promising results in reducing toxicity, elevating efficacy and bioavailability of the active compound against the pathogen, by prolonging release, thereby increasing the therapeutic index. Moreover, nanoparticle-based drug delivery has shown promising results in inducing the host’s immune response against the pathogen with very few side effects. Besides, advances in diagnostic assays, such as nanosensors, aided in the accurate detection of the parasite. In this review, we provide an insight into the life cycle stages of the pathogen in both vertebrate host and the insect vector, along with an overview of the current therapy for Chagas disease and its limitations; nano carrier-based delivery systems for antichagasic agents, we also address the advancement of nano vaccines and nano-diagnostic techniques, for treatment of Chagas disease, majorly focusing on the novel perspectives in combating the disease.
Collapse
|
Review |
4 |
6 |
10
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
|
Review |
3 |
4 |
11
|
Mulvey JJ, Littmann ER, Ling L, McDevitt MR, Pamer EG, Scheinberg DA. The effects of amine-modified single-walled carbon nanotubes on the mouse microbiota. Int J Nanomedicine 2018; 13:5275-5286. [PMID: 30237714 PMCID: PMC6136419 DOI: 10.2147/ijn.s168554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Amine-modified carbon nanotubes are drug delivery platforms with great potential that have not yet been applied in human clinical trials. Although modified nanotube vectors have the ability to carry multiple effectors, targeting agents, and even wrapped RNA, reports on unmodified, insoluble carbon nanotubes have highlighted inflammation in organs, including the intestine, with disruption of its resident microbiota. Disruption of the microbiota may allow for colonization by pathogenic bacteria, such as Clostridoidies difficile, stimulate immunoinfiltrates into the lamina propria or alter the absorption of therapeutics. Most proposed nanotube drugs are soluble, modified structures that are administered parenterally, and the majority of these soluble macromolecules are renally excreted; however, some are released into the bile, gaining access to the gastrointestinal tract. METHODS Using environmentally isolated BALB/C mice in oral and intraperitoneal dosing models, high dose (3.80 or 4.25 mg/week), we administered amine-modified, soluble carbon nanotubes for 7 or 8 weeks. The general health and weight of the mice were monitored weekly, and upon killing, the diversity and content of their colonic, cecal, and ileal microbiota were assessed using shotgun 16S DNA sequencing. RESULTS AND CONCLUSION We show that while oral administration at suprapharmacological doses modestly altered the α- and β-diversity of the mouse microbiome, these changes did not result in observed changes in clinical end points. Intraperitoneally-dosed mice exhibited none of the toxicities assessed.
Collapse
|
research-article |
7 |
2 |
12
|
Steinborn B, Lächelt U. Metal-organic Nanopharmaceuticals. Pharm Nanotechnol 2020; 8:163-190. [PMID: 32316907 DOI: 10.2174/2211738508666200421113215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Coordinative interactions between multivalent metal ions and drug derivatives with Lewis base functions give rise to nanoscale coordination polymers (NCPs) as delivery systems. As the pharmacologically active agent constitutes a main building block of the nanomaterial, the resulting drug loadings are typically very high. By additionally selecting metal ions with favorable pharmacological or physicochemical properties, the obtained NCPs are predominantly composed of active components which serve individual purposes, such as pharmacotherapy, photosensitization, multimodal imaging, chemodynamic therapy or radiosensitization. By this approach, the assembly of drug molecules into NCPs modulates pharmacokinetics, combines pharmacological drug action with specific characteristics of metal components and provides a strategy to generate tailorable multifunctional nanoparticles. This article reviews different applications and recent examples of such highly functional nanopharmaceuticals with a high 'material economy'. Lay Summary: Nanoparticles, that are small enough to circulate in the bloodstream and can carry cargo molecules, such as drugs, imaging or contrast agents, are attractive materials for pharmaceutical applications. A high loading capacity is a generally aspired parameter of nanopharmaceuticals to minimize patient exposure to unnecessary nanomaterial. Pharmaceutical agents containing Lewis base functions in their molecular structure can directly be assembled into metal-organic nanopharmaceuticals by coordinative interaction with metal ions. Such coordination polymers generally feature extraordinarily high loading capacities and the flexibility to encapsulate different agents for a simultaneous delivery in combination therapy or 'theranostic' applications.
Collapse
|
Review |
5 |
1 |
13
|
Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14122640. [PMID: 36559135 PMCID: PMC9781757 DOI: 10.3390/pharmaceutics14122640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is one of the most common malignancies and a leading cause of cancer-related mortality among women worldwide. The elements of group XIV in the periodic table exhibit a wide range of chemical manners. Recently, there have been remarkable developments in the field of nanobiomedical research, especially in the application of engineered nanomaterials in biomedical applications. In this review, we concentrate on the recent investigations on the antiproliferative effects of nanomaterials of the elements of group XIV in the periodic table on breast cancer cells. In this review, the data available on nanomaterials of group XIV for breast cancer treatment has been documented, providing a useful insight into tumor biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
|
review-article |
3 |
1 |
14
|
Ullah Z, Athar MT, Samad A. Nanostructured Therapeutic Carriers for Tuberculosis Treatment: Approaches & Challenges. ACTA ACUST UNITED AC 2017; 12:128-137. [PMID: 28990537 DOI: 10.2174/1574891x12666171006105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/19/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs, leading to several side effects and contribute to low patient compliance and drug resistance. The pathogens are found to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required. METHODS This review discusses the potential of nanomedicine and related patents to improve intracellular disease chemotherapy. To complete the objective, we searched bibliographic databases of indexed literature using a focused and structured criteria. The quality and characteristics of selected papers were assessed using standard parameters with qualitative analysis having a conceptual framework. RESULTS Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses, such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes and microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with main antituberculosis drugs by employing nanocarriers. Besides the advantage of the controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy, reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting. Published literature including patented studies suggests that nanomedicine mediated drug delivery may improve tuberculosis chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development. CONCLUSION The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases.
Collapse
|
Review |
8 |
|
15
|
Matalqah S, Lafi Z, Asha SY. Hyaluronic Acid in Nanopharmaceuticals: An Overview. Curr Issues Mol Biol 2024; 46:10444-10461. [PMID: 39329973 PMCID: PMC11431703 DOI: 10.3390/cimb46090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Hyaluronic acid (HA) is a naturally occurring, long, unbranched polysaccharide that plays a critical role in maintaining skin structure and hydration. Its unique properties make it a valuable component in the field of nanopharmaceuticals. The combination of HA into nanopharmaceuticals enhances its ability to interact with various therapeutic agents, improving the delivery and efficacy of drugs. HA-based nanoparticles, including solid lipid nanoparticles, and polymeric nanogels, offer controlled release, enhanced stability, and targeted delivery of therapeutic agents. These innovations significantly improve therapeutic outcomes and reduce side effects, making HA an essential tool in modern medicine. In general, HA-modified liposomes enhance drug encapsulation and targeting, while HA-modified solid lipid nanoparticles (SLNs) provide a solid lipid core for drug encapsulation, offering controlled release and stability. This article provides an overview of the potential applications and recent advancements of HA in nanopharmaceuticals, emphasizing its significant impact on the evolving field of targeted drug delivery and advanced therapeutic strategies. By delving into the unique properties of HA and its compatibility with various therapeutic agents, this review underscores the promising potential of HA in revolutionizing nanopharmaceuticals.
Collapse
|
Review |
1 |
|
16
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
|
Review |
1 |
|
17
|
Chuah LH, Fu JY, Nguyen S, Banciu M, Solanki PR, Ta HT. Editorial: Women in nanomedicine. Front Pharmacol 2023; 13:1122774. [PMID: 36686703 PMCID: PMC9849359 DOI: 10.3389/fphar.2022.1122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
|
editorial |
2 |
|
18
|
Shi Y, He D, Zhang X, Yuan M, Liu X. Research Progress in Nanopharmaceuticals with Different Delivery Routes in the Antivirus Field. Curr Pharm Des 2023; 29:1975-1991. [PMID: 37644796 DOI: 10.2174/1381612829666230830105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
Human health is significantly threatened by infectious diseases caused by viral infection. Over the years, there have been numerous virus epidemics worldwide, causing millions of deaths. Traditional antiviral medications have many problems, including poor solubility and antiviral resistance. Additionally, because different drug delivery methods have different biological barriers to overcome, the drug's bioavailability will be significantly affected. Therefore, it is essential that researchers create more effective antiviral drugs. To serve as a guide for the future development of nanosized antiviral drugs with stronger and more precise therapeutic effects, research has been performed on nanotechnology in the field of antiviral therapy. This review summarizes the recent developments in antiviral nanopharmaceuticals with different delivery routes. Research on 7 typical viruses, including COVID-19, has been included in this review. After being loaded into nanoparticles, antiviral drugs can be delivered through several drug modes of delivery, overcoming biological barriers. Moreover, some nanoparticles themselves have the ability to combat infections, so they can be used in conjunction with antiviral medication. The use of nanoparticle medications through various routes of administration can result in their unique benefits. They can be capable of overcoming its limitations as well as retaining the advantages of this method of delivery. This will motivate researchers to conducted a new investigation on nanoparticle medicines from the standpoint of the route of administration in order to increase the practicability of antiviral medications.
Collapse
|
|
2 |
|
19
|
Smeu A, Marcovici I, Dehelean CA, Dumitrel SI, Borza C, Lighezan R. Flavonoids and Flavonoid-Based Nanopharmaceuticals as Promising Therapeutic Strategies for Colorectal Cancer-An Updated Literature Review. Pharmaceuticals (Basel) 2025; 18:231. [PMID: 40006045 PMCID: PMC11858883 DOI: 10.3390/ph18020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Colorectal cancer (CRC) represents one of the most serious health issues and the third most commonly diagnosed cancer worldwide. However, the treatment options for CRC are associated with adverse reactions, and in some cases, resistance can develop. Flavonoids have emerged as promising alternatives for CRC prevention and therapy due to their multitude of biological properties and ability to target distinct processes involved in CRC pathogenesis. Their innate disadvantageous properties (e.g., low solubility and stability, reduced bioavailability, and lack of tumor specificity) have delayed the potential inclusion of flavonoids in CRC treatment regimens but have hastened the design of nanopharmaceuticals comprising a flavonoid agent entrapped in a nanosized delivery platform that not only counteract these inconveniences but also provide an augmented therapeutic effect and an elevated safety profile by conferring a targeted action. Starting with a brief presentation of the pathological features of CRC and an overview of flavonoid classes, the present study comprehensively reviews the anti-CRC activity of different flavonoids from a mechanistic perspective while also portraying the latest discoveries made in the area of flavonoid-containing nanocarriers that have proved efficient in CRC management. This review concludes by showcasing future perspectives for the advancement of flavonoids and flavonoid-based nanopharmaceuticals in CRC research.
Collapse
|
Review |
1 |
|