1
|
Dong Y, Wu ZS, Zheng S, Wang X, Qin J, Wang S, Shi X, Bao X. Ti 3C 2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS NANO 2017; 11:4792-4800. [PMID: 28460161 DOI: 10.1021/acsnano.7b01165] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sodium and potassium ion batteries hold promise for next-generation energy storage systems due to their rich abundance and low cost, but are facing great challenges in optimum electrode materials for actual applications. Here, ultrathin nanoribbons of sodium titanate (M-NTO, NaTi1.5O8.3) and potassium titanate (M-KTO, K2Ti4O9) were successfully synthesized by a simultaneous oxidation and alkalization process of Ti3C2 MXene. Benefiting from the suitable interlayer spacing (0.90 nm for M-NTO, 0.93 nm for M-KTO), ultrathin thickness (<11 nm), narrow widths of nanoribbons (<60 nm), and open macroporous structures for enhanced ion insertion/extraction kinetics, the resulting M-NTO exhibited a large reversible capacity of 191 mAh g-1 at 200 mA g-1 for sodium storage, higher than those of pristine Ti3C2 (178 mAh g-1) and commercial TiC derivatives (86 mAh g-1). Notably, M-KTO displayed a superior reversible capacity of 151 mAh g-1 at 50 mA g-1 and 88 mAh g-1 at a high rate of 300 mA g-1 and long-term stable cyclability over 900 times, which outperforms other Ti-based layered materials reported to date. Moreover, this strategy is facile and highly flexible and can be extended for preparing a large number of MXene-derived materials, from the 60+ group of MAX phases, for various applications such as supercapacitors, batteries, and electrocatalysts.
Collapse
|
|
8 |
220 |
2
|
Li Y, Wu D, Zhou Z, Cabrera CR, Chen Z. Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. J Phys Chem Lett 2012; 3:2221-7. [PMID: 26295774 DOI: 10.1021/jz300792n] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
By means of density functional theory computations, we systematically investigated the adsorption and diffusion of Li on the 2-D MoS2 nanosheets and 1-D zigzag MoS2 nanoribbons (ZMoS2NRs), in comparison with MoS2 bulk. Although the Li mobility can be significantly facilitated in MoS2 nanosheets, their decreased Li binding energies make them less attractive for cathode applications. Because of the presence of unique edge states, ZMoS2NRs have a remarkably enhanced binding interaction with Li without sacrificing the Li mobility, and thus are promising as cathode materials of Li-ion batteries with a high power density and fast charge/discharge rates.
Collapse
|
|
13 |
147 |
3
|
Jiang L, Gao J, Wang E, Li H, Wang Z, Hu W, Jiang L. Organic Single-Crystalline Ribbons of a Rigid "H"-type Anthracene Derivative and High-Performance, Short-Channel Field-Effect Transistors of Individual Micro/Nanometer-Sized Ribbons Fabricated by an "Organic Ribbon Mask" Technique. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2008; 20:2735-40. [PMID: 25213898 DOI: 10.1002/adma.200800341] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/04/2008] [Indexed: 05/25/2023]
Abstract
The synthesis of a rigid, planar H-type anthracene derivative is described. Single-crystalline ribbons at micro- and nanometer sizes can be controllably produced and transistors based on an individual ribbon can be fabricated in situ through a newly developed "organic ribbon mask" method, in which the channel length of the transistors can be easily scaled down to sub-micrometer level.
Collapse
|
|
17 |
75 |
4
|
Cortizo‐Lacalle D, Mora‐Fuentes JP, Strutyński K, Saeki A, Melle‐Franco M, Mateo‐Alonso A. Monodisperse N-Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angew Chem Int Ed Engl 2018; 57:703-708. [PMID: 29193535 PMCID: PMC5768023 DOI: 10.1002/anie.201710467] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/24/2017] [Indexed: 12/20/2022]
Abstract
The properties of graphene nanoribbons are highly dependent on structural variables such as width, length, edge structure, and heteroatom doping. Therefore, atomic precision over all these variables is necessary for establishing their fundamental properties and exploring their potential applications. An iterative approach is presented that assembles a small and carefully designed molecular building block into monodisperse N-doped graphene nanoribbons with different lengths. To showcase this approach, the synthesis and characterisation of a series of nanoribbons constituted of 10, 20 and 30 conjugated linearly-fused rings (2.9, 5.3, and 7.7 nm in length, respectively) is presented.
Collapse
|
brief-report |
7 |
70 |
5
|
Verzhbitskiy IA, Corato MD, Ruini A, Molinari E, Narita A, Hu Y, Schwab MG, Bruna M, Yoon D, Milana S, Feng X, Müllen K, Ferrari AC, Casiraghi C, Prezzi D. Raman Fingerprints of Atomically Precise Graphene Nanoribbons. NANO LETTERS 2016; 16:3442-7. [PMID: 26907096 PMCID: PMC4901367 DOI: 10.1021/acs.nanolett.5b04183] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/16/2016] [Indexed: 05/26/2023]
Abstract
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.
Collapse
|
rapid-communication |
9 |
59 |
6
|
Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019; 11:E1287. [PMID: 31374977 PMCID: PMC6723308 DOI: 10.3390/polym11081287] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
The accurate prediction and manipulation of nanoscale product sizes is a major challenge in material processing. In this investigation, two process characteristics were explored during the modified coaxial electrospinning of zein, with the aim of understanding how this impacts the products formed. The characteristics studied were the spreading angle at the unstable region (θ) and the length of the straight fluid jet (L). An electrospinnable zein core solution was prepared and processed with a sheath comprising ethanolic solutions of LiCl. The width of the zein nanoribbons formed (W) was found to be more closely correlated with the spreading angle and straight fluid jet length than with the experimental parameters (the electrolyte concentrations and conductivity of the shell fluids). Linear equations W = 546.44L - 666.04 and W = 2255.3θ - 22.7 could be developed with correlation coefficients of Rwl2 = 0.9845 and Rwθ2 = 0.9924, respectively. These highly linear relationships reveal that the process characteristics can be very useful tools for both predicting the quality of the electrospun products, and manipulating their sizes for functional applications. This arises because any changes in the experimental parameters would have an influence on both the process characteristics and the solid products' properties.
Collapse
|
research-article |
6 |
57 |
7
|
Pan F, Li B, Sarnello E, Fei Y, Gang Y, Xiang X, Du Z, Zhang P, Wang G, Nguyen HT, Li T, Hu YH, Zhou HC, Li Y. Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO 2 Reduction. ACS NANO 2020; 14:5506-5516. [PMID: 32330000 DOI: 10.1021/acsnano.9b09658] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal and nitrogen co-doped carbon (M-N/C) catalysts hold great promise for electrochemical CO2 conversion. However, there is a lack of cost-effective synthesis approaches to meet the goal of economic mass production of single-atom M-N/C with desirable carbon support architecture for efficient CO2 reduction. Herein, we report facile transformation of commercial carbon nanotube (CNT) into isolated Fe-N4 sites anchored on carbon nanotube and graphene nanoribbon (GNR) networks (Fe-N/CNT@GNR). The oxidization-induced partial unzipping of CNT results in the generation of GNR nanolayers attached to the remaining fibrous CNT frameworks, which reticulates a hierarchically mesoporous complex and thus enables a high electrochemical active surface area and smooth mass transport. The Fe residues originating from CNT growth seeds serve as Fe sources to form isolated Fe-N4 moieties located at the CNT and GNR basal plane and edges with high intrinsic capability of activating CO2 and suppressing hydrogen evolution. The Fe-N/CNT@GNR delivers a stable CO Faradaic efficiency of 96% with a partial current density of 22.6 mA cm-2 at a low overpotential of 650 mV, making it one of the most active M-N/C catalysts reported. This work presents an effective strategy to fabricate advanced atomistic catalysts and highlights the key roles of support architecture in single-atom electrocatalysis.
Collapse
|
|
5 |
53 |
8
|
Vo TH, Perera UGE, Shekhirev M, Mehdi Pour M, Kunkel DA, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P. Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. NANO LETTERS 2015; 15:5770-7. [PMID: 26258628 DOI: 10.1021/acs.nanolett.5b01723] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Narrow graphene nanoribbons (GNRs) constructed by atomically precise bottom-up synthesis from molecular precursors have attracted significant interest as promising materials for nanoelectronics. But there has been little awareness of the potential of GNRs to serve as nanoscale building blocks of novel materials. Here we show that the substitutional doping with nitrogen atoms can trigger the hierarchical self-assembly of GNRs into ordered metamaterials. We use GNRs doped with eight N atoms per unit cell and their undoped analogues, synthesized using both surface-assisted and solution approaches, to study this self-assembly on a support and in an unrestricted three-dimensional (3D) solution environment. On a surface, N-doping mediates the formation of hydrogen-bonded GNR sheets. In solution, sheets of side-by-side coordinated GNRs can in turn assemble via van der Waals and π-stacking interactions into 3D stacks, a process that ultimately produces macroscopic crystalline structures. The optoelectronic properties of these semiconducting GNR crystals are determined entirely by those of the individual nanoscale constituents, which are tunable by varying their width, edge orientation, termination, and so forth. The atomically precise bottom-up synthesis of bulk quantities of basic nanoribbon units and their subsequent self-assembly into crystalline structures suggests that the rapidly developing toolset of organic and polymer chemistry can be harnessed to realize families of novel carbon-based materials with engineered properties.
Collapse
|
|
10 |
48 |
9
|
Rubert Pérez CM, Álvarez Z, Chen F, Aytun T, Stupp SI. Mimicking the Bioactivity of Fibroblast Growth Factor-2 Using Supramolecular Nanoribbons. ACS Biomater Sci Eng 2017; 3:2166-2175. [PMID: 28920077 PMCID: PMC5596412 DOI: 10.1021/acsbiomaterials.7b00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/16/2017] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor (FGF-2) is a multifunctional growth factor that has pleiotropic effects in different tissues and organs. In particular, FGF-2 has a special role in angiogenesis, an important process in development, wound healing, cell survival, and differentiation. Therefore, incorporating biological agents like FGF-2 within therapeutic biomaterials is a potential strategy to create angiogenic bioactivity for the repair of damaged tissue caused by trauma or complications that arise from age and/or disease. However, the use of growth factors as therapeutic agents can be costly and does not always bring about efficient tissue repair due to rapid clearance from the targeted site. An alternative would be a stable supramolecular nanostructure with the capacity to activate the FGF-2 receptor that can also assemble into a scaffold deliverable to tissue. We report here on peptide amphiphiles that incorporate a peptide known to activate the FGF-2 receptor and peptide domains that drive its self-assembly into supramolecular nanoribbons. These FGF2-PA nanoribbons displayed the ability to increase the proliferation and migration of the human umbilical vein endothelial cells (HUVECs) in vitro to the same extent as the native FGF-2 protein at certain concentrations. We confirmed that this activity was specific to the FGFR1 signaling pathway by tracking the phosphorylation of downstream signaling effectors such ERK1/2 and pH3. These results indicated the specificity of FGF2-PA nanoribbons in activating the FGF-2 signaling pathway and its potential application as a supramolecular scaffold that can be used in vivo as an alternative to the encapsulation and delivery of the native FGF-2 protein.
Collapse
|
Journal Article |
8 |
48 |
10
|
Wang ST, Lin Y, Spencer RK, Thomas MR, Nguyen AI, Amdursky N, Pashuck ET, Skaalure SC, Song CY, Parmar PA, Morgan RM, Ercius P, Aloni S, Zuckermann RN, Stevens MM. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils. ACS NANO 2017; 11:8579-8589. [PMID: 28771324 PMCID: PMC5618150 DOI: 10.1021/acsnano.7b02325] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. We anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.
Collapse
|
research-article |
8 |
43 |
11
|
Yang S, Wang Z, Hu Y, Luo X, Lei J, Zhou D, Fei L, Wang Y, Gu H. Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO₃ Nanoribbon Membranes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9247-53. [PMID: 25870908 DOI: 10.1021/acsami.5b01858] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
[001]-Oriented α-MoO3 nanoribbons were synthesized via hydrothermal method at temperature from 120 to 200 °C and following assembled a membrane on interdigital electrodes to form sensors. The sensitivity, response speed, and recovery speed of the sensor improve with the increasing hydrothermal temperature. Among them, the sample obtained at 200 °C exhibits a room-temperature response time of 14.1 s toward 1000 ppm of H2. The nanoribbons also show good selectivity against CO, ethanol, and acetone, as well as high sensitivity to H2 with a concentration as low as 500 ppb. The hydrogen sensing behavior is dependent on the redox reaction between the H2 and chemisorbed oxygen species. Higher hydrothermal temperature creates larger specific surface area and higher Mo(5+) content, leading to increased chemisorbed oxygen species on the nanoribbon surface.
Collapse
|
|
10 |
42 |
12
|
Chen L, Du R, Zhu J, Mao Y, Xue C, Zhang N, Hou Y, Zhang J, Yi T. Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1423-9. [PMID: 25367785 DOI: 10.1002/smll.201402472] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/15/2014] [Indexed: 05/06/2023]
Abstract
A highly conductive, ultralight, neat and versatile nitrogen-doped GNRs aerogel has been fabricated by a new hydrothermal method for the first time. The newly developed aerogel shows a very promising performance when used as a novel ORR catalyst in both alkaline and acidic solutions.
Collapse
|
|
10 |
42 |
13
|
Cox JD, Silveiro I, García de Abajo FJ. Quantum Effects in the Nonlinear Response of Graphene Plasmons. ACS NANO 2016; 10:1995-2003. [PMID: 26718484 DOI: 10.1021/acsnano.5b06110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.
Collapse
|
|
9 |
35 |
14
|
Cui P, Choi JH, Chen W, Zeng J, Shih CK, Li Z, Zhang Z. Contrasting Structural Reconstructions, Electronic Properties, and Magnetic Orderings along Different Edges of Zigzag Transition Metal Dichalcogenide Nanoribbons. NANO LETTERS 2017; 17:1097-1101. [PMID: 28029259 DOI: 10.1021/acs.nanolett.6b04638] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides represent an emerging class of layered materials exhibiting various intriguing properties, and integration of such materials for potential device applications will necessarily invoke further reduction of their dimensionality. Using first-principles approaches, here we investigate the structural, electronic, and magnetic properties along the two different edges of zigzag MX2 (M = Mo, W; X = S, Se) nanoribbons. Along the M edges, we reveal a previously unrecognized but energetically strongly preferred (2 × 1) reconstruction pattern, which is universally operative for all the four systems (and possibly more), characterized by an elegant self-passivation mechanism through place exchanges of the outmost X and M edge atoms. In contrast, the X edges undergo a much milder (2 × 1) or (3 × 1) reconstruction for MoX2 or WX2, respectively. These contrasting structural preferences of the edges can be exploited for controlled fabrication of properly tailored transition metal dichalcogenide nanoribbons under nonequilibrium growth conditions. We further use the zigzag MoX2 nanoribbons to demonstrate that the Mo and X edges possess distinctly different electronic and magnetic properties, which are significant for catalytic and spintronic applications.
Collapse
|
|
8 |
35 |
15
|
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines. Int J Mol Sci 2016; 17:ijms17121995. [PMID: 27916824 PMCID: PMC5187795 DOI: 10.3390/ijms17121995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.
Collapse
|
Journal Article |
9 |
33 |
16
|
Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W. Large Single-Crystal Hexagonal Boron Nitride Monolayer Domains with Controlled Morphology and Straight Merging Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4497-4502. [PMID: 26042391 DOI: 10.1002/smll.201500210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/14/2015] [Indexed: 06/04/2023]
|
|
10 |
32 |
17
|
Shifa TA, Wang F, Liu K, Cheng Z, Xu K, Wang Z, Zhan X, Jiang C, He J. Efficient Catalysis of Hydrogen Evolution Reaction from WS 2(1-x) P 2x Nanoribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603706. [PMID: 28165191 DOI: 10.1002/smll.201603706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/27/2016] [Indexed: 05/26/2023]
Abstract
The rational design of Earth abundant electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of carbon neutral energy carrier. Owing to their fascinating chemical and physical properties, transition metal dichalcogenides (TMDs) are widely studied for this purpose. Of particular note is that doping by foreign atom can bring the advent of electronic perturbation, which affects the intrinsic catalytic property. Hence, through doping, the catalytic activity of such materials could be boosted. A rational synthesis approach that enables phosphorous atom to be doped into WS2 without inducing phase impurity to form WS2(1-x) P2x nanoribbon (NRs) is herein reported. It is found that the WS2(1-x) P2x NRs exhibit considerably enhanced HER performance, requiring only -98 mV versus reversible hydrogen electrode to achieve a current density of -10 mA cm-2 . Such a high performance can be attributed to the ease of H-atom adsorption and desorption due to intrinsically tuned WS2 , and partial formation of NRs, a morphology wherein the exposure of active edges is more pronounced. This finding can provide a fertile ground for subsequent works aiming at tuning intrinsic catalytic activity of TMDs.
Collapse
|
|
8 |
30 |
18
|
Abstract
Asymmetry in chemical structure or shape at molecular, nanoscale, or microscopic levels is essential to a vast number of functionalities in both natural and artificial systems. Bottom-up approaches to create asymmetric supramolecular nanostructures are considered promising but this strategy suffers from the potentially dynamic nature of noncovalent interactions. We report here on supramolecular self-assembly of asymmetric peptide amphiphiles consisting of two different molecularly linked domains. We found that strong noncovalent interactions and a high degree of internal order among the asymmetric amphiphiles lead to nanoribbons with asymmetric faces due to the preferential self-association of the two domains. The capture of gold nanoparticles on only one face of the nanoribbons demonstrates symmetry breaking in these supramolecular structures.
Collapse
|
|
9 |
28 |
19
|
Smoukov SK, Tian T, Vitchuli N, Gangwal S, Geisen P, Wright M, Shim E, Marquez M, Fowler J, Velev OD. Scalable liquid shear-driven fabrication of polymer nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2642-2647. [PMID: 25788298 DOI: 10.1002/adma.201404616] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/08/2015] [Indexed: 06/04/2023]
Abstract
A simple process for batch or continuous formation of polymer nanofibers and other nanomaterials in the bulk of a sheared fluid medium is introduced. The process may be of high value to commercial nanotechnology, as it can be easily scaled up to the fabrication of staple nanofibers at rates that may exceed tens of kilograms per hour.
Collapse
|
|
10 |
27 |
20
|
Vegas VG, Lorca R, Latorre A, Hassanein K, Gómez-García CJ, Castillo O, Somoza Á, Zamora F, Amo-Ochoa P. Copper(II)-Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angew Chem Int Ed Engl 2016; 56:987-991. [PMID: 27936318 DOI: 10.1002/anie.201609031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022]
Abstract
The direct reaction between copper nitrate, thymine-1-acetic acid, and 4,4'-bipyridine in water leads to the formation of a blue colloid comprising uniform crystalline nanoribbons (length >1 μm; width ca. 150-185 nm; diameter ca. 15-60 nm) of a coordination polymer. The polymer displays a thymine-based structure freely available for supramolecular interactions. These nanostructures show significant selective interaction with single-stranded oligonucleotides based on adenine. Remarkably, they present low cell toxicity in three cell lines-despite the copper(II) content-and can be used as nanocarriers of oligonucleotides. These results suggest the potential of these types of nanostructures in several biological applications.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
24 |
21
|
Pigot C, Dumur F. Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. MATERIALS 2019; 12:ma12040662. [PMID: 30813327 PMCID: PMC6416628 DOI: 10.3390/ma12040662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 02/01/2023]
Abstract
The fabrication of macromolecular organic structures on surfaces is one major concern in materials science. Nanoribbons, linear polymers, and porous nanostructures have gained a lot of interest due to their possible applications ranging from nanotemplates, catalysis, optoelectronics, sensors, or data storage. During decades, supramolecular chemistry has constituted an unavoidable approach for the design of well-organized structures on surfaces displaying a long-range order. Following these initial works, an important milestone has been established with the formation of covalent bonds between molecules. Resulting from this unprecedented approach, various nanostructures of improved thermal and chemical stability compared to those obtained by supramolecular chemistry and displaying unique and unprecedented properties have been developed. However, a major challenge exists: the growth control is very delicate and a thorough understanding of the complex mechanisms governing the on-surface chemistry is still needed. Recently, a new approach consisting in elaborating macromolecular structures by combining consecutive steps has been identified as a promising strategy to elaborate organic structures on surface. By designing precursors with a preprogrammed sequence of reactivity, a hierarchical or a sequential growth of 1D and 2D structures can be realized. In this review, the different reaction combinations used for the design of 1D and 2D structures are reported. To date, eight different sequences of reactions have been examined since 2008, evidencing the intense research activity existing in this field.
Collapse
|
Review |
6 |
14 |
22
|
Liao L, Duan X. Graphene-Dielectric Integration for Graphene Transistors. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2010; 70:354-370. [PMID: 21278913 PMCID: PMC3026475 DOI: 10.1016/j.mser.2010.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Graphene is emerging as an interesting electronic material for future electronics due to its exceptionally high carrier mobility and single-atomic thickness. Graphene-dielectric integration is of critical importance for the development of graphene transistors and a new generation of graphene based electronics. Deposition of dielectric materials onto graphene is of significant challenge due to the intrinsic material incompatibility between pristine graphene and dielectric oxide materials. Here we review various strategies being researched for graphene-dielectric integration. Physical vapor deposition (PVD) can be used to directly deposit dielectric materials on graphene, but often introduces significant defects into the monolayer of carbon lattice; Atomic layer deposition (ALD) process has also been explored to to deposit high-κ dielectrics on graphene, which however requires functionalization of graphene surface with reactive groups, inevitably leading to a significant degradation in carrier mobilities; Using naturally oxidized thin aluminum or polymer as buffer layer for dielectric deposition can mitigate the damages to graphene lattice and improve the carrier mobility of the resulted top-gated transistors; Lastly, a physical assembly approach has recently been explored to integrate dielectric nanostructures with graphene without introducing any appreciable defects, and enabled top-gated graphene transistors with the highest carrier mobility reported to date. We will conclude with a brief summary and perspective on future opportunities.
Collapse
|
research-article |
15 |
13 |
23
|
Wang B, Zhao M, Li L, Huang Y, Zhang X, Guo C, Zhang Z, Cheng H, Liu W, Shang J, Jin J, Sun X, Liu J, Zhang H. Ultra-thin metal-organic framework nanoribbons. Natl Sci Rev 2020; 7:46-52. [PMID: 34692016 PMCID: PMC8288949 DOI: 10.1093/nsr/nwz118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023] Open
Abstract
Structure engineering of metal-organic frameworks (MOFs) at the nanometer scale is attracting increasing interest due to their unique properties and new functions that normally cannot be achieved in bulk MOF crystals. Here, we report the preparation of ultra-thin MOF nanoribbons (NRBs) by using metal-hydroxide nanostructures as the precursors. Importantly, this general method can be used to synthesize various kinds of ultra-thin MOF NRBs, such as MBDC (M = Co, Ni; BDC = 1,4-benzenedicarboxylate), NiCoBDC, CoTCPP (TCPP = tetrakis(4-carboxyphenyl)porphyrin) and MIL-53(Al) NRBs. As a proof-of-concept application, the as-prepared ultra-thin CoBDC NRBs have been successfully used as a fluorescent sensing platform for DNA detection, which exhibited excellent sensitivity and selectivity. The present strategy might open an avenue to prepare MOF nanomaterials with new structures and unique properties for various promising applications.
Collapse
|
research-article |
5 |
13 |
24
|
Senkovskiy BV, Pfeiffer M, Alavi SK, Bliesener A, Zhu J, Michel S, Fedorov AV, German R, Hertel D, Haberer D, Petaccia L, Fischer FR, Meerholz K, van Loosdrecht PHM, Lindfors K, Grüneis A. Making Graphene Nanoribbons Photoluminescent. NANO LETTERS 2017; 17:4029-4037. [PMID: 28358214 DOI: 10.1021/acs.nanolett.7b00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate the alignment-preserving transfer of parallel graphene nanoribbons (GNRs) onto insulating substrates. The photophysics of such samples is characterized by polarized Raman and photoluminescence (PL) spectroscopies. The Raman scattered light and the PL are polarized along the GNR axis. The Raman cross section as a function of excitation energy has distinct excitonic peaks associated with transitions between the one-dimensional parabolic subbands. We find that the PL of GNRs is intrinsically low but can be strongly enhanced by blue laser irradiation in ambient conditions or hydrogenation in ultrahigh vacuum. These functionalization routes cause the formation of sp3 defects in GNRs. We demonstrate the laser writing of luminescent patterns in GNR films for maskless lithography by the controlled generation of defects. Our findings set the stage for further exploration of the optical properties of GNRs on insulating substrates and in device geometries.
Collapse
|
|
8 |
11 |
25
|
Sutter P, Khorashad LK, Argyropoulos C, Sutter E. Cathodoluminescence of Ultrathin Twisted Ge 1- x Sn x S van der Waals Nanoribbon Waveguides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006649. [PMID: 33283337 DOI: 10.1002/adma.202006649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Ultrathin van der Waals semiconductors have shown extraordinary optoelectronic and photonic properties. Propagating photonic modes make layered crystal waveguides attractive for photonic circuitry and for studying hybrid light-matter states. Accessing guided modes by conventional optics is challenging due to the limited spatial resolution and poor out-of-plane far-field coupling. Scanning near-field optical microscopy can overcome these issues and can characterize waveguide modes down to a resolution of tens of nanometers, albeit for planar samples or nanostructures with moderate height variations. Electron microscopy provides atomic-scale localization also for more complex geometries, and recent advances have extended the accessible excitations from interband transitions to phonons. Here, bottom-up synthesized layered semiconductor (Ge1- x Snx S) nanoribbons with an axial twist and deep subwavelength thickness are demonstrated as a platform for realizing waveguide modes, and cathodoluminescence spectroscopy is introduced as a tool to characterize them. Combined experiments and simulations show the excitation of guided modes by the electron beam and their efficient detection via photons emitted in the ribbon plane, which enables the measurement of key properties such as the evanescent field into the vacuum cladding with nanometer resolution. The results identify van der Waals waveguides operating in the infrared and highlight an electron-microscopy-based approach for probing complex-shaped nanophotonic structures.
Collapse
|
|
4 |
11 |