Yu R, Tan Y, Yao H, Xu Y, Huang J, Zhao B, Du Y, Hua Z, Li J, Shi J. Toward
n-Alkane Hydroisomerization Reactions: High-Performance Pt-Al
2O
3/SAPO-11 Single-Atom Catalysts with Nanoscale Separated Metal-Acid Centers and Ultralow Platinum Content.
ACS APPLIED MATERIALS & INTERFACES 2022;
14:44377-44388. [PMID:
36153976 DOI:
10.1021/acsami.2c11607]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Long-chain n-alkane hydroisomerization reaction plays a vital role in petrochemical and coal chemical industries, which could produce high-quality hydrocarbon fuels and lubricant base oils for modern transportation and mechanical drive. However, minimizing precious metal usage while maintaining the catalyst performance remains a great challenge. Herein, a novel bifunctional catalyst toward n-alkane hydroisomerization reactions, Pt-Al2O3/SAPO-11 (Pt-A/S11) featuring nanoscale separated metal-acid active centers has been synthesized via a simple two-step procedure. In detail, Pt species was first loaded on the nanometer-sized alumina matrices through an incipient wetness impregnation method and then mixed with SAPO-11 molecular sieve to form the composite catalyst. Importantly, 0.015Pt-A/S11 catalyst with the ever-reported lowest Pt loading amount of 0.015 wt % exhibits an extraordinarily high isomer yield of 85.8% compared to previous published results and the traditional Pt-SAPO-11/Al2O3 (Pt-S11/A) catalyst accompanying with the direct contact between metal and acid sites (65.6%). It has been confirmed that the Pt species in 0.015Pt-A/S11 samples exist in single-atom form, leading to an excellent hydroisomerization performance. The possible reaction processes have been discussed to elucidate the exemplary catalytic performance of the synthesized Pt-A/S11 catalysts with nanoscale intimacy of metal-acid sites.
Collapse