1
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020; 8:E405. [PMID: 33050619 PMCID: PMC7601869 DOI: 10.3390/biomedicines8100405] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.
Collapse
|
Review |
5 |
97 |
2
|
Mannazzu I, Domizio P, Carboni G, Zara S, Zara G, Comitini F, Budroni M, Ciani M. Yeast killer toxins: from ecological significance to application. Crit Rev Biotechnol 2019; 39:603-617. [PMID: 31023102 DOI: 10.1080/07388551.2019.1601679] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.
Collapse
|
Review |
6 |
69 |
3
|
Gavahian M, Chu YH, Lorenzo JM, Mousavi Khaneghah A, Barba FJ. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit Rev Food Sci Nutr 2018; 60:310-321. [PMID: 30431327 DOI: 10.1080/10408398.2018.1525601] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bakery products, as an important part of a healthy diet, are characterized by their limited shelf-life. Microbiological spoilage of these products not only affects the quality characteristics and result in the economic loss but also threatens consumer's health. Incorporation of chemical preservatives, as one of the most conventional preserving techniques, lost its popularity due to the increasing consumer's health awareness. Therefore, the bakery industry is seeking alternatives to harmful antimicrobial agents that can be accepted by health-conscious customers. In this regard, essential oils have been previously used as either a part of product ingredient or a part of the packaging system. Therefore, the antimicrobial aspect of essential oils and their ability in delaying the microbiological spoilage of bakery products have been reviewed. Several types of essential oils, including thyme, cinnamon, oregano, and lemongrass, can inhibit the growth of harmful microorganisms in bakery products, resulting in a product with extended shelf-life and enhanced safety. Research revealed that several bioactive compounds are involved in the antimicrobial activity of essential oils. However, some limitations, such as the possible negative effects of essential oils on sensory parameters, may limit their applications, especially in high concentrations. In this case, they can be used in combination with other preservation techniques such as using appropriate packaging materials. Further research regarding the commercial production of the bakery products formulated with essential oils is required in this area.
Collapse
|
Review |
7 |
47 |
4
|
Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248999. [PMID: 36558132 PMCID: PMC9781695 DOI: 10.3390/molecules27248999] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.
Collapse
|
review-article |
3 |
46 |
5
|
Aminlari L, Hashemi MM, Aminlari M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J Food Sci 2014; 79:R1077-90. [PMID: 24837015 DOI: 10.1111/1750-3841.12460] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. PRACTICAL APPLICATION The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
Collapse
|
Review |
11 |
43 |
6
|
Zhu Z, Min T, Zhang X, Wen Y. Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1133. [PMID: 30959946 PMCID: PMC6480635 DOI: 10.3390/ma12071133] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022]
Abstract
Thymol has been shown to be a safe and effective broad-spectrum antimicrobial agent that can be used as a food preservative. However, its volatile characteristics and strong odor limit its use in food products. The microencapsulation of this essential oil in biopolymers could overcome these disadvantages. In this work, thymol-loaded poly(lactide-co-glycolide) (PLGA) microparticles were successfully prepared and the optimal encapsulation efficiency was obtained at 20% (w/w) thymol. Microparticles containing thymol presented a spherical shape and smooth surface. Microencapsulation significantly improved the thermal and storage stability of thymol. In vitro release profiles demonstrated an initial fast release followed by a slow and sustained release. Thymol-loaded microparticles had strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and the effectiveness of their antibacterial properties was confirmed in a milk test. Therefore, the thymol-loaded microparticles show great potential for use as an antimicrobial and as preservation additives in food.
Collapse
|
research-article |
6 |
37 |
7
|
Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics (Basel) 2020; 9:antibiotics9080441. [PMID: 32722192 PMCID: PMC7459900 DOI: 10.3390/antibiotics9080441] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the actual post-antibiotic era, novel ways of rethinking antimicrobial research approaches are more urgent than ever. Natural compounds with antimicrobial activity such as fatty acids and monoacylglycerols have been investigated for decades. Additionally, the interest in other lipid classes as antimicrobial agents is rising. This review provides an overview on the research about plant and marine lipids with potential antimicrobial activity, the methods for obtaining and analyzing these compounds, with emphasis on lipidomics, and future perspectives for bioprospection and applications for antimicrobial lipids. Lipid extracts or lipids isolated from higher plants, algae or marine invertebrates are promising molecules to inactivate a wide spectrum of microorganisms. These lipids include a variety of chemical structures. Present and future challenges in the research of antimicrobial lipids from natural origin are related to the investment and optimization of the analytical workflow based on lipidomics tools, complementary to the bioassay-guided fractionation, to identify the active compound(s). Also, further work is needed regarding the study of their mechanism of action, the structure-activity relationship, the synergistic effect with conventional antibiotics, and the eventual development of resistance to lipids, which, as far as is known, is unlikely.
Collapse
|
Review |
5 |
29 |
8
|
Khalifa HO, Kamimoto M, Shimamoto T, Shimamoto T. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae. Phytother Res 2015; 29:1791-7. [PMID: 26292998 DOI: 10.1002/ptr.5436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022]
Abstract
The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae.
Collapse
|
Journal Article |
10 |
27 |
9
|
Martelli F, Cirlini M, Lazzi C, Neviani E, Bernini V. Edible Seaweeds and Spirulina Extracts for Food Application: In Vitro and In Situ Evaluation of Antimicrobial Activity towards Foodborne Pathogenic Bacteria. Foods 2020; 9:E1442. [PMID: 33053649 PMCID: PMC7601287 DOI: 10.3390/foods9101442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Research is more and more focused on studying and selecting food preservatives of natural origin. In this scenario, algae are an excellent source of bioactive compounds, among which are antimicrobials, whose presence is variable depending on the algal species and environmental conditions. The aim of the present study was to obtain, by a food grade approach, antimicrobial extracts from five species already approved as foods and to test their efficacy in vitro (agar well diffusion assay) and in situ (microbial challenge test) towards foodborne pathogenic bacteria. Moreover, the total phenolic compounds of the extracts were determined in order to evaluate possible correlations with the antimicrobial activity. Strains belonging to Salmonella spp., Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were considered. Overall, the extracts showed a good antimicrobial activity in vitro towards all the tested microorganisms, especially L. monocytogenes (15 mm of inhibition diameter). The effect of inhibition was monitored during 24, 48 and 120 h showing a good persistence in time. Arthrospira platensis exerted the highest efficacy, further revealed towards L. monocytogenes on salmon tartare as bacteriostatic using 0.45% of the extract and bactericidal using 0.90%. The presence of phenolic compounds could be related to the antimicrobial activity but was not revealed as the main component of this activity. The extract with the highest phenolic content (18.79 ± 1.90 mg GAE/g) was obtained from Himanthalia elongata. The efficacy, confirmed also in a food matrix, might open perspectives for their application as food preservative.
Collapse
|
research-article |
5 |
21 |
10
|
Ko YM, Park JH, Yoon KS. Nitrite formation from vegetable sources and its use as a preservative in cooked sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1774-1783. [PMID: 27469979 DOI: 10.1002/jsfa.7974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Due to the potential health risk associated with nitrites, nitrite alternatives from natural sources in meat products have been investigated. We compared the nitrate contents of young radish, lettuce and commercial vegetable powder (cabbage and Chinese cabbage). We also investigated the effect of incubation time and salt addition on vegetable nitrite formation from vegetable sources. The antioxidant and antimicrobial effects of vegetable nitrite in cooked sausage were also compared with sodium nitrite. RESULTS Young radish produced the greatest amount of nitrite after 24 h of incubation at 38 °C. On average, an approximately 32% reduction of nitrite was observed in sausage during 4 weeks of storage. Lipid oxidation in sausage was significantly prevented by vegetable nitrite produced from vegetable powder or young radish. The colour of the sausage prepared with young radish was most similar to that of the sausage with sodium nitrite. The addition of young radish to sausage significantly prevented the growth of Listeria monocytogenes at 4 °C and Staphylococcus aureus at 8 °C. CONCLUSION Young radish was more effective as a natural antioxidant and antimicrobial agent as compared to commercial vegetable powder, which is currently used to make natural meat products, indicating that young radish has a high potential as a natural preservative. © 2016 Society of Chemical Industry.
Collapse
|
Evaluation Study |
8 |
20 |
11
|
Nazareth TM, Corrêa JAF, Pinto ACSM, Palma JB, Meca G, Bordin K, Luciano FB. Evaluation of gaseous allyl isothiocyanate against the growth of mycotoxigenic fungi and mycotoxin production in corn stored for 6 months. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5235-5241. [PMID: 29652439 DOI: 10.1002/jsfa.9061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Brazil produces approximately 63 million tons of corn kernels annually, which is commonly contaminated with fungi and mycotoxins. The objective of this study was to evaluate the efficacy of gaseous allyl isothiocyanate (AITC) to inhibit the growth of Aspergillus parasiticus and Fusarium verticillioides, and mycotoxin production (aflatoxins B1 , B2 , G1 and G2 , fumonisins B1 and B2 ) in corn during 180 days of storage. RESULTS AITC at 50 µL L-1 resulted in a significant reduction of the fungal population (P < 0.05) after 180 days, decreasing 3.17 log(CFU g-1 ) and 3.9 log(CFU g-1 ) of A. parasiticus and F. verticillioides respectively in comparison with the control. In addition, 10 and 50 µL L-1 treatments prevented the production of fumonisin B1 for the whole period. Aflatoxins were not detected in either control or treated groups. Residual levels of AITC in corn treated with 10 µL L-1 and 50 µL L-1 were detected up to 14 days and 30 days respectively. CONCLUSION Prophylactic treatment with AITC reduced the fungal population and inhibited fumonisin B1 production in stored corn, exhibiting great potential to be applied in corn silos to prevent fungi contamination and minimize mycotoxin levels. © 2018 Society of Chemical Industry.
Collapse
|
|
7 |
17 |
12
|
Pires PGS, Pires PDS, Cardinal KM, Leuven AFR, Kindlein L, Andretta I. Effects of rice protein coatings combined or not with propolis on shelf life of eggs. Poult Sci 2019; 98:4196-4203. [PMID: 31041444 DOI: 10.3382/ps/pez155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/22/2019] [Indexed: 01/05/2023] Open
Abstract
Although eggs are an excellent protein source, they are a perishable product. Many methods exist to extend shelf life of food and one of them is the use of protein coatings that may be combined with antimicrobial substances, as propolis. The effectiveness of rice protein coatings plus propolis on maintaining interior quality and eggshell breaking strength of fresh eggs was evaluated during storage at 20°C for 6 wk. Egg quality was assessed by weight loss, Haugh unit (HU), albumen pH, yolk index (YI), shell strength, and scanning electron microscopy in uncoated eggs (control treatment) and eggs coated with rice protein concentrate and propolis at 5 or 10%. The HU and YI were higher in coated eggs (P < 0.001). Weight loss increased (P < 0.001) during long-term storage. Uncoated eggs showed the highest weight loss (5.39%), whereas rice protein (4.27%) and rice protein plus propolis at 5% (4.11%) and 10% (4.40%) solutions were effective in preventing weight lost (P < 0.001). Uncoated eggs had the worst (P < 0.001) HU (58.47), albumen pH (9.48), and YI (0.33) after 6 wk of storage. The eggs coated with rice protein and rice protein plus propolis presented results with similar intern quality between them during all the storage period. Scanning electron microscopy demonstrated a lower surface porosity in coated eggshell, indicating that the use of the coating may provide a protective barrier against the transfer of gases and moisture. In conclusion rice protein and propolis treatments helped to maintain egg quality for a longer time compared to uncoated eggs. These could be a viable alternative for maintaining the internal quality of fresh eggs during long-term storage at room temperature.
Collapse
|
Journal Article |
6 |
16 |
13
|
Mechanism of Action against Food Spoilage Yeasts and Bioactivity of Tasmannia lanceolata, Backhousia citriodora and Syzygium anisatum Plant Solvent Extracts. Foods 2018; 7:foods7110179. [PMID: 30380618 PMCID: PMC6262597 DOI: 10.3390/foods7110179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Bioactive properties of solvent extracts of Tasmannia lanceolata, Backhousia citriodora and Syzygium anisatum investigated. The antimicrobial activities evaluated using agar disc diffusion method against two bacteria (Escherichia coli and Staphylococcus aureus) and six weak-acid resistant yeasts (Candida albicans, Candida krusei, Dekkera anomala, Rhodotorula mucilaginosa, Saccharomyces cerevisiae and Schizosaccharomyces pombe). The antioxidant activities determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays. Quantification of major active compounds using ultra-high performance liquid chromatography. Extracts showed broad-spectrum antifungal activity against weak-acid resistant yeasts in comparison to the standard antifungal agents, fluconazole and amphotericin B. Dekkera anomala being the most sensitive and strongly inhibited by all extracts, while Escherichia coli the least sensitive. Polygodial, citral and anethole are the major bioactive compounds identified in Tasmannia lanceolata, Backhousia citriodora and Syzygium anisatum, respectively. Hexane extracts contain the highest amount of bioactive compounds and demonstrate the strongest antimicrobial activities. Methanol and ethanol extracts reveal the highest phenolic content and antioxidant properties. Fluorescence microscopic results indicate the mechanism of action of Backhousia citriodora against yeast is due to damage of the yeast cell membrane through penetration causing swelling and lysis leading to cell death.
Collapse
|
Journal Article |
7 |
13 |
14
|
Sindi A, Badsha MB, Nielsen B, Ünlü G. Antimicrobial Activity of Six International Artisanal Kefirs Against Bacillus cereus, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus. Microorganisms 2020; 8:E849. [PMID: 32512951 PMCID: PMC7356263 DOI: 10.3390/microorganisms8060849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Kefir, a fermented dairy beverage, exhibits antimicrobial activity due to many metabolic products, including bacteriocins, generated by lactic acid bacteria. In this study, the antimicrobial activities of artisanal kefir products from Fusion Tea (A), Britain (B), Ireland (I), Lithuania (L), the Caucuses region (C), and South Korea (K) were investigated against select foodborne pathogens. Listeria monocytogenes CWD 1198, Salmonella enterica serovar Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579 were inhibited by artisanal kefirs made with kefir grains from diverse origins. Kefirs A, B, and I inhibited all bacterial indicator strains examined at varying levels, except Escherichia coli ATCC 12435 (non-pathogenic, negative control). Kefirs K, L, and C inhibited all indicator strains, except S. aureus ATCC 25923 and E. coli ATCC 12435. Bacteriocins present in artisanal kefirs were determined to be the main antimicrobials in all kefirs examined. Kefir-based antimicrobials are being proposed as promising natural biopreservatives as per the results of the study.
Collapse
|
research-article |
5 |
11 |
15
|
Basiouni S, Fayed MAA, Tarabees R, El-Sayed M, Elkhatam A, Töllner KR, Hessel M, Geisberger T, Huber C, Eisenreich W, Shehata AA. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020; 10:metabo10090353. [PMID: 32878015 PMCID: PMC7570345 DOI: 10.3390/metabo10090353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry.
Collapse
|
Journal Article |
5 |
10 |
16
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
|
Review |
4 |
9 |
17
|
Hill LE, Oliveira DA, Hills K, Giacobassi C, Johnson J, Summerlin H, Taylor TM, Gomes CL. A Comparative Study of Natural Antimicrobial Delivery Systems for Microbial Safety and Quality of Fresh-Cut Lettuce. J Food Sci 2017; 82:1132-1141. [PMID: 28425569 DOI: 10.1111/1750-3841.13709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
Abstract
Nanoencapsulation can provide a means to effectively deliver antimicrobial compounds and enhance the safety of fresh produce. However, to date there are no studies which directly compares how different nanoencapsulation systems affect fresh produce safety and quality. This study compared the effects on quality and safety of fresh-cut lettuce treated with free and nanoencapsulated natural antimicrobial, cinnamon bark extract (CBE). A challenge study compared antimicrobial efficacy of 3 different nanoencapsulated CBE systems. The most effective antimicrobial treatment against Listeria monocytogenes was chitosan-co-poly-N-isopropylacrylamide (chitosan-PNIPAAM) encapsulated CBE, with a reduction on bacterial load up to 2 log10 CFU/g (P < 0.05) compared to the other encapsulation systems when fresh-cut lettuce was stored at 5 °C and 10 °C for 15 d. Subsequently, chitosan-PNIPAAM-CBE nanoparticles (20, 40, and 80 mg/mL) were compared to a control and free CBE (400, 800, and 1600 μg/mL) for its effects on fresh-cut lettuce quality over 15 d at 5 °C. By the 10th day, the most effective antimicrobial concentration was 80 mg/mL for chitosan-PNIPAAM-CBE, up to 2 log10 CFU/g reduction (P < 0.05), compared with the other treatments. There was no significant difference between control and treated samples up to day 10 for the quality attributes evaluated. Chitosan-PNIPAAM-CBE nanoparticles effectively inhibited spoilage microorganisms' growth and extended fresh-cut lettuce shelf-life. Overall, nanoencapsulation provided a method to effectively deliver essential oil and enhanced produce safety, while creating little to no detrimental quality changes on the fresh-cut lettuce.
Collapse
|
Comparative Study |
8 |
6 |
18
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Gomez-Perez LS, Mejias N, Vidal RL, Grunenwald F, Aguilera LE, Valenzuela-Barra G. Comprehensive Evaluation of the Bioactive Composition and Neuroprotective and Antimicrobial Properties of Vacuum-Dried Broccoli ( Brassica oleracea var. italica) Powder and Its Antioxidants. Molecules 2023; 28:molecules28020766. [PMID: 36677826 PMCID: PMC9860602 DOI: 10.3390/molecules28020766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, vacuum drying (VD) was employed as an approach to protect the bioactive components of and produce dried broccoli powders with a high biological activity. To achieve these goals, the effects of temperature (at the five levels of 50, 60, 70, 80 and 90 °C) and constant vacuum pressure (10 kPa) were evaluated. The results show that, with the increasing temperature, the drying time decreased. Based on the statistical tests, the Brunauer-Emmett-Teller (BET) model was found to fit well to sorption isotherms, whereas the Midilli and Kucuk model fit well to the drying kinetics. VD has a significant impact on several proximate composition values. As compared with the fresh sample, VD significantly reduced the total phenol, flavonoid and glucosinolate contents. However, it was shown that VD at higher temperatures (80 and 90 °C) contributed to a better antioxidant potential of broccoli powder. In contrast, 50 °C led to a better antimicrobial and neuroprotective effects, presumably due to the formation of isothiocyanate (ITC). Overall, this study demonstrates that VD is a promising technique for the development of extracts from broccoli powders that could be used as natural preservatives or as a neuroprotective agent.
Collapse
|
research-article |
2 |
5 |
19
|
Pablos C, Fernández A, Thackeray A, Marugán J. Effects of natural antimicrobials on prevention and reduction of bacterial cross-contamination during the washing of ready-to-eat fresh-cut lettuce. FOOD SCI TECHNOL INT 2017; 23:403-414. [PMID: 28675971 DOI: 10.1177/1082013217697851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbiological safety of the fresh-cut produce may not be guaranteed if the quality of wash water is not maintained. The use of natural antimicrobials as alternative to chlorine may offer interesting possibilities for disinfecting wash water. Antimicrobial properties of allyl- and benzyl-isothiocyanates, respectively, and chitosan against Salmonella spp. were evaluated by standard plate count. Minimal inhibitory concentration values were observed for benzyl-isothiocyanate and chitosan, corresponding to 50 and 1000 mgl-1, respectively. A 5 min washing of 25 g fresh-cut lettuce was performed. Transfer of Salmonella from the water to the produce was observed. Benzyl-isothiocyanate addition of 75 mgl-1 before starting the washing process gave rise to a complete removal of total bacteria and Salmonella in the wash water after 24 h before starting the second cycle. Antimicrobial benzyl-isothiocyanate effects have been demonstrated to persist after 48 h.
Collapse
|
|
8 |
4 |
20
|
Sun L, Rogiers G, Michiels CW. The Natural Antimicrobial trans-Cinnamaldehyde Interferes with UDP-N-Acetylglucosamine Biosynthesis and Cell Wall Homeostasis in Listeria monocytogenes. Foods 2021; 10:foods10071666. [PMID: 34359536 PMCID: PMC8307235 DOI: 10.3390/foods10071666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Trans-cinnamaldehyde (t-CIN), an antimicrobial compound from cinnamon essential oil, is of interest because it inhibits various foodborne pathogens. In the present work, we investigated the antimicrobial mechanisms of t-CIN in Listeria monocytogenes using a previously isolated yvcK::Himar1 transposon mutant which shows hypersensitivity to t-CIN. Time-lapse microscopy revealed that t-CIN induces a bulging cell shape followed by lysis in the mutant. Complementation with wild-type yvcK gene completely restored the tolerance of yvcK::Himar1 strain to t-CIN and the cell morphology. Suppressor mutants which partially reversed the t-CIN sensitivity of the yvcK::Himar1 mutant were isolated from evolutionary experiments. Three out of five suppression mutations were in the glmU-prs operon and in nagR, which are linked to the biosynthesis of the peptidoglycan precursor uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlmU catalyzes the last two steps of UDP-GlcNAc biosynthesis and NagR represses the uptake and utilization of N-acetylglucosamine. Feeding N-acetylglucosamine or increasing the production of UDP-GlcNAc synthetic enzymes fully or partially restored the t-CIN tolerance of the yvcK mutant. Together, these results suggest that YvcK plays a pivotal role in diverting substrates to UDP-GlcNAc biosynthesis in L. monocytogenes and that t-CIN interferes with this pathway, leading to a peptidoglycan synthesis defect.
Collapse
|
Journal Article |
4 |
3 |
21
|
Carboni G, Marova I, Zara G, Zara S, Budroni M, Mannazzu I. Evaluation of Recombinant Kpkt Cytotoxicity on HaCaT Cells: Further Steps towards the Biotechnological Exploitation Yeast Killer Toxins. Foods 2021; 10:foods10030556. [PMID: 33800189 PMCID: PMC8000969 DOI: 10.3390/foods10030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The soil yeast Tetrapisispora phaffii secretes a killer toxin, named Kpkt, that shows β-glucanase activity and is lethal to wine spoilage yeasts belonging to Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. When expressed in Komagataella phaffii, recombinant Kpkt displays a wider spectrum of action as compared to its native counterpart, being active on a vast array of wine yeasts and food-related bacteria. Here, to gather information on recombinant Kpkt cytotoxicity, lyophilized preparations of this toxin (LrKpkt) were obtained and tested on immortalized human keratinocyte HaCaT cells, a model for the stratified squamous epithelium of the oral cavity and esophagus. LrKpkt proved harmless to HaCaT cells at concentrations up to 36 AU/mL, which are largely above those required to kill food-related yeasts and bacteria in vitro (0.25-2 AU/mL). At higher concentrations, it showed a dose dependent effect that was comparable to that of the negative control and therefore could be ascribed to compounds, other than the toxin, occurring in the lyophilized preparations. Considering the dearth of studies regarding the effects of yeast killer toxins on human cell lines, these results represent a first mandatory step towards the evaluation the possible risks associated to human intake. Moreover, in accordance with that observed on Ceratitis capitata and Musca domestica, they support the lack of toxicity of this toxin on non-target eukaryotic models and corroborate the possible exploitation of killer toxins as natural antimicrobials in the food and beverages industries.
Collapse
|
Journal Article |
4 |
3 |
22
|
Ogwaro BA, O’Gara EA, Hill DJ, Gibson H. A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt. Foods 2021; 10:foods10112847. [PMID: 34829130 PMCID: PMC8618451 DOI: 10.3390/foods10112847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
The antimicrobial activity of the essential oils of black pepper (BPE) and cinnamon bark (CE) extracts against E. fergusonii was assessed in pasteurized full cream milk during and post-fermentation. The milk was fermented with 1% (v/v) of Lactobacillus delbrueckii subspecies bulgaricus (NCIMB 11778) and Streptococcus thermophilus (NCIMB 10387) (approx. 106 cfu/mL each) and incubated and stored at 25 °C for 5 days (144 h) or at 43 °C for 24 h and then stored at 25 °C for 120 h. The milk was spiked with E. fergusonii at the start of fermentation by the lactic acid bacteria (pre-fermentation contamination) for after fermentation (post fermentation contamination). BPE and CE were applied at concentrations based on their minimum inhibitory concentration of 0.5% and 0.25% respectively as follows: 0.5% BPE alone; 0.125% BPE with 0.1875% CE; 0.25% BPE with 0.125% CE; 0.375% BPE with 0.0625% CE; 0.25% CE alone. Results showed that during fermentation at 25 °C, E. fergusonii grew to a similar level (approx. 109 CFU/mL) in control samples and 108 CFU/mL when BPE or CE were added alone. Whereas, in the samples with the combined essential oils, the bacterium grew to 106–107 CFU/mL only. During the milk fermentation at 43 °C, E. fergusonii grew to approx. 109 CFU/mL in samples without treatment. However, it was not detected in samples containing mixed BPE with CE after 8, 10 and 12 h of fermentation. Subsequent storage at 25 °C resulted in undetectable levels of the bacterium in all the samples treated with BPE or CE after 24 h of storage. These results indicated that BPE in combination with CE reduced growth during fermentation and was bactericidal during storage.
Collapse
|
|
4 |
2 |
23
|
Tang X, Guo X, Duo Y, Qian X. Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane. Polymers (Basel) 2023; 15:3585. [PMID: 37688211 PMCID: PMC10490351 DOI: 10.3390/polym15173585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
With the continuous improvement of the standard of living, people are increasingly inclined towards natural, green, and environmentally friendly products. Plant-based products that are safe, natural, non-toxic, and beneficial to human health are often more favored. Poly(lactic acid) (PLA) is a polymer obtained through lactate polymerization using renewable plant resources such as corn and has excellent biocompatibility and biodegradability. It is widely used in the field of food packaging. Wormwood oil (WO) is an oil extracted from the stems and leaves of Artemisia plants, and it has broad-spectrum antibacterial properties. In this article, through electrospinning technology, wormwood oil was directly incorporated into PLA, giving the PLA nanofiber membrane antioxidant and antibacterial functions. Various parameters such as voltage (11 KV, 13 KV, 15 KV), spinning solution concentration (8%, 10%, 12%), distance (15 cm, 17 cm, 19 cm), and feeding rate (0.4 mL/h, 0.5 mL/h, 0.6 mL/h) were explored, and the resulting spun fibers were characterized. Through SEM characterization, it was found that when the spinning voltage was 13 KV, the spinning solution concentration was 10%, the distance was 17 cm, and the feeding rate was 0.5 mL/h, the nanofiber membrane had a smooth morphology without bead formation, with an average diameter of 260 nm. The nanofiber membrane was characterized using FTIR, TG, and SEM, confirming the successful incorporation of artemisia essential oil into PLA. The prepared antimicrobial nanofilm was subjected to antimicrobial testing, and the results showed that as the concentration of the essential oil increased, the inhibition zones also increased. When wormwood oil concentration was 4%, the diameter of the inhibition zone for Staphylococcus aureus increased from 1.0 mm to 3.5 mm, while the diameter of the inhibition zone for Escherichia coli increased from 2.0 mm to 4.5 mm.
Collapse
|
research-article |
2 |
2 |
24
|
Herskovitz JE, Worobo RW, Goddard JM. The Role of Solid Support Bound Metal Chelators on System-Dependent Synergy and Antagonism with Nisin. J Food Sci 2019; 84:580-589. [PMID: 30714624 DOI: 10.1111/1750-3841.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/01/2022]
Abstract
Active packaging can enhance the performance of natural antimicrobials in controlling food spoilage and waste, while addressing consumer demands for cleaner labels. Yet, synergies are system dependent, with some conditions counterintuitively promoting antagonistic effects. In particular, metal chelators can improve performance of certain natural antimicrobials and have been incorporated in nonmigratory metal chelating active packaging technologies. However, the influence of chelating ligand chemistry on antimicrobial efficacy has not been investigated in microbial spoilage models. The effect of three commercial chelating resins on the growth of Alicyclobacillus acidoterrestris ATCC 49025, a thermoduric acidophilic spore-former, in growth media and apple juice was investigated. Dowex MAC-3, Chelex 100, and Lewatit TP260 were used as models for metal chelating active packaging containing carboxylic acid (CA), iminodiacetic acid (IDA), and aminomethylphosphonic acid (AMPA) ligands. Diameters (CA = 472.4 ± 117.2 μm, IDA = 132.93 ± 26.71 μm, and AMPA = 498.3 ± 29.24 μm), dissociation kinetics (CA = 6.44 ± 0.109, IDA = -0.977 ± 9.94, AMPA = 7.43 ± 0.193), and metal chelating capacities (CA = 1.16 × 10-4 mol/g, IDA = 1.52 × 10-3 mol/g, and AMPA = 4.67 × 10-4 mol/g) were used to distinguish differences in antimicrobial efficacies. Growth of A. acidoterrestris in acidified Potato Dextrose Broth over 24 hr with chelating resins indicated early death phase for CA and IDA resins and bactericidal for AMPA resin. However, viability in commercial apple juice with the inclusion of nisin and chelating resins was variable, with IDA resin significantly (P < 0.05) increasing viability while the effect of CA and AMPA resins remained elusive. This work emphasizes the importance of biological repeatability and correct statistical modeling in identifying conditions under which the antimicrobial intervention of nisin in real food systems, such as acidic beverages and juices, are synergistic or antagonistic. PRACTICAL APPLICATION: New technologies to control microbial food spoilage and waste need to be explored to address consumers on-going demands for reducing additive use. Solid support bound metal chelators can both promote and control microbial growth when used in conjunction with nisin, a natural antimicrobial. This work explores how system conditions can render a given technology either synergistic or antagonistic, and highlights the importance of sufficient biological replicates in experimental design.
Collapse
|
Journal Article |
6 |
1 |
25
|
Gonçalves SM, de Melo NR, da Silva JP, Chávez DW, Gouveia FS, Rosenthal A. Antimicrobial packaging and high hydrostatic pressure: Combined effect in improving the safety of coalho cheese. FOOD SCI TECHNOL INT 2020; 27:301-312. [PMID: 32903099 DOI: 10.1177/1082013220953238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Active cellulose acetate films incorporated with oregano essential oil (antimicrobial film) were previously subjected to high hydrostatic pressure treatment (300 MPa/5 min (FHP1) or 400 MPa/10 min (FHP2)) and investigated for possible changes in their antimicrobial efficiency. In parallel, the efficiency of the antimicrobial films, high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min), or a combination of antimicrobial film and high hydrostatic pressure, was tested on coalho cheese, experimentally contaminated with Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus, stored for 21 days under refrigeration. Investigations in culture media (agar, brain-heart infusion broth, and micro-atmosphere) detected antimicrobial efficiency for all films, with or without high hydrostatic pressure, against the three bacteria. However, the data indicated that the treatment with 300 MPa/5 min may have impaired the migration of oregano essential oil from FHP1, justifying its lower efficiency in solid medium and brain-heart infusion broth. In cheese samples, the combination of antimicrobial film and 400 MPa/10 min caused greater reductions in counts for the three microorganisms, at zero time throughout the entire coalho cheese storage. Only antimicrobial film or combination (antimicrobial film and high hydrostatic pressure) were able to control microbial multiplication during the 21 days. Therefore, the results confirm that the individual use of high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min) at the level evaluated can allow bacterial multiplication during storage and that the combination of antimicrobial packaging and high hydrostatic pressure has greater potential to ensure a safer coalho cheese.
Collapse
|
|
5 |
1 |