1
|
Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J. Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell 2020; 180:833-846.e16. [PMID: 32142677 DOI: 10.1016/j.cell.2020.02.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
335 |
2
|
Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 2008; 29:913-25. [PMID: 17275140 PMCID: PMC2896275 DOI: 10.1016/j.neurobiolaging.2006.12.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 12/21/2006] [Accepted: 12/28/2006] [Indexed: 01/05/2023]
Abstract
In Parkinson disease, wild-type alpha-synuclein accumulates during aging, whereas alpha-synuclein mutations lead to an early onset and accelerated course of the disease. The generation of new neurons is decreased in regions of neurogenesis in adult mice overexpressing wild-type human alpha-synuclein. We examined the subventricular zone/olfactory bulb neurogenesis in aged mice expressing either wild-type human or A53T mutant alpha-synuclein. Aging wild-type and mutant alpha-synuclein-expressing animals generated significantly fewer new neurons than their non-transgenic littermates. This decreased neurogenesis was caused by a reduction in cell proliferation within the subventricular zone of mutant alpha-synuclein mice. In contrast, no difference was detected in mice overexpressing the wild-type allele. Also, more TUNEL-positive profiles were detected in the subventricular zone, following mutant alpha-synuclein expression and in the olfactory bulb, following wild-type and mutant alpha-synuclein expression. The impaired neurogenesis in the olfactory bulb of different transgenic alpha-synuclein mice during aging highlights the need to further explore the interplay between olfactory dysfunction and neurogenesis in Parkinson disease.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
95 |
3
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
|
Review |
4 |
90 |
4
|
Maki T, Liang AC, Miyamoto N, Lo EH, Arai K. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Front Cell Neurosci 2013; 7:275. [PMID: 24421755 PMCID: PMC3872787 DOI: 10.3389/fncel.2013.00275] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 12/31/2022] Open
Abstract
White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders.
Collapse
|
Review |
12 |
77 |
5
|
Li H, Ham TR, Neill N, Farrag M, Mohrman AE, Koenig AM, Leipzig ND. A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenitor Cells to Treat Spinal Cord Injury. Adv Healthc Mater 2016; 5:802-12. [PMID: 26913590 DOI: 10.1002/adhm.201500810] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/20/2015] [Indexed: 01/06/2023]
Abstract
Spinal cord injury (SCI) causes permanent, often complete disruption of central nervous system (CNS) function below the damaged region, leaving patients without the ability to regenerate lost tissue. To engineer new CNS tissue, a unique spinal cord bridge is created to deliver stem cells and guide their organization and development with site-specifically immobilized growth factors. In this study, this bridge is tested, consisting of adult neural stem/progenitor cells contained within a methacrylamide chitosan (MAC) hydrogel and protected by a chitosan conduit. Interferon-γ (IFN-γ) and platelet-derived growth factor-AA (PDGF-AA) are recombinantly produced and tagged with an N-terminal biotin. They are immobilized to streptavidin-functionalized MAC to induce either neuronal or oligodendrocytic lineages, respectively. These bridges are tested in a rat hemisection model of SCI between T8 and T9. After eight weeks treatments including chitosan conduits result in a significant reduction in lesion area and macrophage infiltration around the lesion site (p < 0.0001). Importantly, neither immobilized IFN-γ nor PDGF-AA increased macrophage infiltration. Retrograde tracing demonstrates improved neuronal regeneration through the use of immobilized growth factors. Immunohistochemistry staining demonstrates that immobilized growth factors are effective in differentiating encapsulated cells into their anticipated lineages within the hydrogel, while qualitatively reducing glial fibrillary acid protein expression.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
67 |
6
|
Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 2011; 6:327-38. [PMID: 21466483 PMCID: PMC3199296 DOI: 10.2174/157488811797904362] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 03/15/2010] [Accepted: 02/22/2011] [Indexed: 11/22/2022]
Abstract
The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
63 |
7
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
57 |
8
|
Choi JY, Kim JY, Kim JY, Park J, Lee WT, Lee JE. M2 Phenotype Microglia-derived Cytokine Stimulates Proliferation and Neuronal Differentiation of Endogenous Stem Cells in Ischemic Brain. Exp Neurobiol 2017; 26:33-41. [PMID: 28243165 PMCID: PMC5326713 DOI: 10.5607/en.2017.26.1.33] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
Microglia play a key role in the immune response and inflammatory reaction that occurs in response to ischemic stroke. Activated microglia promote neuronal damage or protection in injured brain tissue. Extracellular signals polarize the microglia towards the M1/M2 phenotype. The M1/M2 phenotype microglia released pro- and anti-inflammatory cytokines which induce the activation of neural stem/progenitor cells (NSPCs). In this study, we investigated how the cytokines released by microglia affect the activation of NSPCs. First, we treated BV2 cells with a lipopolysaccharide (LPS; 20 ng/ml) for M1 phenotype microglia and interleukin-4 (IL-4; 20 ng/ml) for M2 phenotype microglia in BV2 cells. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 1 h. In ex vivo, brain sections containing the subventricular zone (SVZ) were cultured in conditioned media of M1 and M2 phenotype-conditioned media for 3 d. We measured the expression of cytokines in the conditioned media by RT-PCR and ELISA. The M2 phenotype microglia-conditioned media led to the proliferation and neural differentiation of NSPCs in the ipsilateral SVZ after ischemic stroke. The RT-PCR and ELISA results showed that the expression of TGF-α mRNA was significantly higher in the M2 phenotype microglia-conditioned media. These data support that M2 phenotype microglia-derived TGF-α is one of the key factors to enhance proliferation and neural differntiation of NSPCs after ischemic stroke.
Collapse
|
research-article |
8 |
54 |
9
|
Chen J, Zacharek A, Li A, Cui X, Roberts C, Lu M, Chopp M. Atorvastatin promotes presenilin-1 expression and Notch1 activity and increases neural progenitor cell proliferation after stroke. Stroke 2008; 39:220-6. [PMID: 18063826 PMCID: PMC2792764 DOI: 10.1161/strokeaha.107.490946] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/18/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Presenilin1 (PS1) regulates Notch1 signaling activity, which liberates Notch intracellular domain (NICD). Notch activation promotes neural progenitor cell (NPC) self-renewal in the developing brain. In this study, we tested whether atorvastatin-induced NPC proliferation after stroke is mediated by PS1 and Notch1 activation. METHODS PS1 and NICD expressions were measured in retired breeder rats subjected to middle cerebral artery occlusion that were left untreated or treated with atorvastatin. To investigate the mechanisms of atorvastatin-induced NPC self-renewal, subventricular zone (SVZ) neurosphere culture and knockdown of Notch1 gene expression by short interfering RNA were used. SVZ neurosphere formation, cell proliferation, real-time polymerase chain reaction, and Western blotting were performed. RESULTS Atorvastatin significantly increased the numbers of newly generated neuroblasts and promoted PS1 and NICD expression in the ipsilateral and homologous contralateral SVZ compared with saline-treated control rats. Increased SVZ neurosphere formation and cell proliferation were found in cultured neurospheres derived from normal rat and poststroke rat SVZs treated in vitro with atorvastatin compared with untreated neurospheres (P<0.05). Atorvastatin significantly increased PS1 and hairy and enhancer of split1 (Hes1) gene expression in cultured SVZ neurospheres. Inhibition of PS1 significantly decreased NICD expression. Short interfering RNA knockdown of Notch1 expression, decreased NPC proliferation, and NICD and hairy and enhancer of split1 expression in cultured neurosphere cells. CONCLUSIONS These data indicate that atorvastatin increases the NPC pool in older rats and that it also upregulates PS1 expression and Notch1 signaling activity, which in turn, facilitate an increase in SVZ NPC proliferation.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
52 |
10
|
Chen J, Dong X, Cheng X, Zhu Q, Zhang J, Li Q, Huang X, Wang M, Li L, Guo W, Sun B, Shu Q, Yi W, Li X. Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep 2021; 34:108905. [PMID: 33789105 DOI: 10.1016/j.celrep.2021.108905] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Ogt catalyzed O-linked N-acetylglucosamine (O-GlcNAcylation, O-GlcNAc) plays an important function in diverse biological processes and diseases. However, the roles of Ogt in regulating neurogenesis remain largely unknown. Here, we show that Ogt deficiency or depletion in adult neural stem/progenitor cells (aNSPCs) leads to the diminishment of the aNSPC pool and aberrant neurogenesis and consequently impairs cognitive function in adult mice. RNA sequencing reveals that Ogt deficiency alters the transcription of genes relating to cell cycle, neurogenesis, and neuronal development. Mechanistic studies show that Ogt directly interacts with Notch1 and catalyzes the O-GlcNAc modification of Notch TM/ICD fragment. Decreased O-GlcNAc modification of TM/ICD increases the binding of E3 ubiquitin ligase Itch to TM/ICD and promotes its degradation. Itch knockdown rescues neurogenic defects induced by Ogt deficiency in vitro and in vivo. Our findings reveal the essential roles and mechanisms of Ogt and O-GlcNAc modification in regulating mammalian neurogenesis and cognition.
Collapse
|
Journal Article |
4 |
47 |
11
|
Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proc Natl Acad Sci U S A 2022; 119:e2023784119. [PMID: 35333654 PMCID: PMC9060471 DOI: 10.1073/pnas.2023784119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SignificanceAdult hippocampal neurogenesis underpins learning, memory, and mood but diminishes with age and certain illnesses. The orphan nuclear receptor TLX/NR2E1 regulates neural stem and progenitor cell self-renewal and proliferation, but its orphan status has hindered its utilization as a therapeutic target to modulate adult neurogenesis. Here, we deorphanize TLX and report that oleic acid is an endogenous, metabolic ligand of TLX. These findings open avenues for future therapeutic modulation of TLX to counteract cognitive and mental decline in aging and diseases associated with decreased neurogenesis.
Collapse
|
|
3 |
36 |
12
|
Filippo TRM, Galindo LT, Barnabe GF, Ariza CB, Mello LE, Juliano MA, Juliano L, Porcionatto MA. CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells. Stem Cell Res 2013; 11:913-25. [PMID: 23851289 DOI: 10.1016/j.scr.2013.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 01/22/2023] Open
Abstract
Neural stem/progenitor cells (NSC) respond to injury after brain injuries secreting IL-1, IL-6, TNF-α, IL-4 and IL-10, as well as chemokine members of the CC and CXC ligand families. CXCL12 is one of the chemokines secreted at an injury site and is known to attract NSC-derived neuroblasts, cells that express CXCL12 receptor, CXCR4. Activation of CXCR4 by CXCL12 depends on two domains located at the N-terminal of the chemokine. In the present work we aimed to investigate if the N-terminal end of CXCL12, where CXCR4 binding and activation domains are located, was sufficient to induce NSC-derived neuroblast chemotaxis. Our data show that a synthetic peptide analogous to the first 21 amino acids of the N-terminal end of CXCL12, named PepC-C (KPVSLSYRCPCRFFESHIARA), is able to promote chemotaxis of neuroblasts in vivo, and stimulate chemotaxis and proliferation of CXCR4+ cells in vitro, without affecting NSC fate. We also show that PepC-C upregulates CXCL12 expression in vivo and in vitro. We suggest the N-terminal end of CXCL12 is responsible for a positive feedback loop to maintain a gradient of CXCL12 that attracts neuroblasts from the subventricular zone into an injury site.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
35 |
13
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
Review |
4 |
29 |
14
|
Chen M, Tominaga K, Pereira-Smith OM. Emerging role of the MORF/MRG gene family in various biological processes, including aging. Ann N Y Acad Sci 2010; 1197:134-41. [PMID: 20536842 PMCID: PMC2918256 DOI: 10.1111/j.1749-6632.2010.05197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular senescence is the dominant phenotype over immortality. In our studies to identify senescence-related genes, we cloned Morf4, which induced senescence in a subset of tumor cells. Morf4 is a member of a family of seven genes, and Morf-related genes (Mrg) on chromosomes 15 (Mrg15) and X (MrgX) are also expressed. In contrast to MORF4, MRG15 and MRGX are positive regulators of cell division. All three proteins interact with histone deacetylases and acetyltransferases, suggesting that they function in regulation of chromatin dynamics. Mrg15 knockout mice are embryonic lethal, and mouse embryonic fibroblasts derived from Mrg15 null embryos proliferate poorly, enter senescence rapidly, and have impaired DNA repair compared to the wild type. Mrg15 null embryonic neural stem and progenitor cells also have a decreased capacity for proliferation and differentiation. Further studies are needed to determine the function of this gene family in various biological processes, including neural stem and progenitor cell aging.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
29 |
15
|
Yeung ST, Myczek K, Kang AP, Chabrier MA, Baglietto-Vargas D, Laferla FM. Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 2014; 259:214-22. [PMID: 24316470 PMCID: PMC4438704 DOI: 10.1016/j.neuroscience.2013.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Neuronal loss is the most common and critical feature of a spectrum of brain traumas and neurodegenerative disorders such as Alzheimer's disease (AD). The capacity to generate new neurons in the central nervous system diminishes early during brain development and is restricted mainly to two brain areas in the mature brain: subventricular zone and subgranular zone. Extensive research on the impact of brain injury on endogenous neurogenesis and cognition has been conducted primarily using young animals, when neurogenesis is most active. However, a critical question remains to elucidate the effect of brain injury on endogenous neurogenesis and cognition in older animals, which is far more relevant for age-related neurodegenerative disorders such as AD. Therefore, we examined the impact of neuronal loss on endogenous neurogenesis in aged animals using CaM/Tet-DTA mice, a transgenic model of hippocampal cell loss. Additionally, we investigated whether the upregulation of adult neurogenesis could mitigate cognitive deficits following substantial hippocampal neuronal loss. Our findings demonstrate that aged CaM/Tet-DTA mice that sustain severe neuronal loss exhibit an upregulation of endogenous neurogenesis. However, despite this significant upregulation, neurogenesis alone is not able to mitigate the cognitive deficits observed. Our studies suggest that the aged brain has the capacity to stimulate neurogenesis post-injury; however, multiple therapeutic approaches, including upregulation of endogenous neurogenesis, will be necessary to recover brain function after severe neurodegeneration.
Collapse
|
research-article |
11 |
28 |
16
|
Lupo G, Gioia R, Nisi PS, Biagioni S, Cacci E. Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci 2019; 13:1179069519829040. [PMID: 30814846 PMCID: PMC6381424 DOI: 10.1177/1179069519829040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype.
Collapse
|
Review |
6 |
28 |
17
|
Traniello IM, Sîrbulescu RF, Ilieş I, Zupanc GKH. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol 2013; 74:514-30. [PMID: 24293183 DOI: 10.1002/dneu.22145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well-established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age-related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long-term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
18
|
Liu PP, Tang GB, Xu YJ, Zeng YQ, Zhang SF, Du HZ, Teng ZQ, Liu CM. MiR-203 Interplays with Polycomb Repressive Complexes to Regulate the Proliferation of Neural Stem/Progenitor Cells. Stem Cell Reports 2017; 9:190-202. [PMID: 28602614 PMCID: PMC5511050 DOI: 10.1016/j.stemcr.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
The polycomb repressive complexes 1 (PRC1) and 2 (PRC2) are two distinct polycomb group (PcG) proteins that maintain the stable silencing of specific sets of genes through chromatin modifications. Although the PRC2 component EZH2 has been known as an epigenetic regulator in promoting the proliferation of neural stem/progenitor cells (NSPCs), the regulatory network that controls this process remains largely unknown. Here we show that miR-203 is repressed by EZH2 in both embryonic and adult NSPCs. MiR-203 negatively regulates the proliferation of NSPCs. One of PRC1 components, Bmi1, is a downstream target of miR-203 in NSPCs. Conditional knockout of Ezh2 results in decreased proliferation ability of both embryonic and adult NSPCs. Meanwhile, ectopic overexpression of BMI1 rescues the proliferation defects exhibited by miR-203 overexpression or EZH2 deficiency in NSPCs. Therefore, this study provides evidence for coordinated function of the EZH2-miR-203-BMI1 regulatory axis that regulates the proliferation of NSPCs.
MiR-203 is repressed by EZH2 in NSPCs MiR-203 negatively regulates the proliferation of NSPCs Bmi1 is a downstream target of miR-203 in NSPCs MiR-203 is a mediator between PRC2 and PRC1 that modulates the proliferation of NSPCs
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
25 |
19
|
Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, Martin M, Nguyen TD, Nguyen TNQ, Gries M, Faßbender K, Conconi MT, Parnigotto PP, Schäfer KH. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med 2014; 18:1429-43. [PMID: 24780093 PMCID: PMC4124026 DOI: 10.1111/jcmm.12292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides (LPS) effects on enteric neural stem/progenitor cells (NSPCs). NSPCs were derived from the ENS and cultured under the influence of different LPS concentrations. LPS effects upon proliferation and differentiation of enteric NSPC cultures were assessed using immunochemistry, flow cytometry, western blot, Multiplex ELISA and real-time PCR. LPS enhances the proliferation of enteric NSPCs in a dose-dependent manner. It delays and modifies the differentiation of these cells. The expression of the LPS receptor toll-like receptor 4 on NSPCs could be demonstrated. Moreover, LPS induces the secretion of several cytokines. Flow cytometry data gives evidence for individual subgroups within the NSPC population. ENS-derived NSPCs respond to LPS in maintaining at least partially their stem cell character. In the case of inflammatory disease or trauma where the liberation and exposure to LPS will be increased, the expansion of NSPCs could be a first step towards regeneration of the ENS. The reduced and altered differentiation, as well as the induction of cytokine signalling, demonstrates that the stem cell niche may take part in the LPS-transmitted inflammatory processes in a direct and defined way.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |
20
|
Lupo G, Nisi PS, Esteve P, Paul YL, Novo CL, Sidders B, Khan MA, Biagioni S, Liu HK, Bovolenta P, Cacci E, Rugg-Gunn PJ. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline. Aging Cell 2018; 17:e12745. [PMID: 29504228 PMCID: PMC5946077 DOI: 10.1111/acel.12745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age‐associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ‐derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age‐dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age‐related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age‐associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age‐related neurogenic decline.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
24 |
21
|
Ara J, De Montpellier S. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain. Stem Cell Res 2013; 11:669-86. [PMID: 23721812 DOI: 10.1016/j.scr.2013.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/02/2013] [Accepted: 04/20/2013] [Indexed: 12/12/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
23 |
22
|
Lei S, Zhang P, Li W, Gao M, He X, Zheng J, Li X, Wang X, Wang N, Zhang J, Qi C, Lu H, Chen X, Liu Y. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats. ASN Neuro 2014; 6:6/6/1759091414558417. [PMID: 25388889 PMCID: PMC4357607 DOI: 10.1177/1759091414558417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05). Treatment with edaravone also decreased apoptosis of NSPCs (p < .01). Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
23 |
23
|
Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8:227. [PMID: 25165432 PMCID: PMC4131212 DOI: 10.3389/fncel.2014.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023] Open
Abstract
Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.
Collapse
|
Review |
11 |
23 |
24
|
Fukushima K, Miura Y, Sawada K, Yamazaki K, Ito M. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells. ACTA ACUST UNITED AC 2015; 21:54-64. [PMID: 26482803 DOI: 10.1177/1087057115610055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
Abstract
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development.
Collapse
|
Journal Article |
10 |
22 |
25
|
Zhang K, Yang Y, Ge H, Wang J, Chen X, Lei X, Zhong J, Zhang C, Xian J, Lu Y, Tan L, Feng H. Artesunate promotes the proliferation of neural stem/progenitor cells and alleviates Ischemia-reperfusion Injury through PI3K/Akt/FOXO-3a/p27 kip1 signaling pathway. Aging (Albany NY) 2020; 12:8029-8048. [PMID: 32379706 PMCID: PMC7244066 DOI: 10.18632/aging.103121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/24/2020] [Indexed: 01/02/2023]
Abstract
Stroke is one of the leading causes of death worldwide that also result in long-term disability. Endogenous neural stem/progenitor cells (NSPCs) within subventricular (SVZ) and dentate gyrus (DG) zone, stimulated by cerebral infarction, can promote neural function recovery. However, the proliferation of eNSPCs triggered by ischemia is not enough to induce neural repair, which may contribute to the permanent disability in stroke patients. In this study, our results showed that following the treatment with artesunate (ART, 150 mg/kg), the functional recovery was significantly improved, the infarct volume was notably reduced, and the expression of Nestin, a proliferation marker of NSPCs in the infarcted cortex, was also increased. Additionally, the proliferative activity of NSPCs with or without oxygen-glucose deprivation/reperfusion was significantly promoted by ART treatment, and the therapeutic concentration was 0.8 μmol/L (without OGD/R) or 0.4 μmol/L (with OGD/R) in the in vitro model. Furthermore, the effects of ART can be abolished by the treatment of PI3K inhibitor wortmannin. The expression levels of related molecules in PI3K/Akt/FOXO-3a/p27kip1 signaling pathway (p-AKT, p-FOXO-3a, p27kip1) were examined using western blotting. The results suggested ART could inhibit the transcriptional function of FOXO-3a by inducing its phosphorylation, subsequently downregulating p27kip1 and enhancing neural stem cell proliferation in the infarcted cortex via PI3K/AKT signaling, further alleviating ischemia-reperfusion injury after ischemic stroke.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
21 |