1
|
Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Dupont L, Lista MJ, Jimenez-Guardeño JM, Laing AG, Wu Y, Joseph M, Muir L, van Gils MJ, Ng WM, Duyvesteyn HME, Zhao Y, Bowden TA, Shankar-Hari M, Rosa A, Cherepanov P, McCoy LE, Hayday AC, Neil SJD, Malim MH, Doores KJ. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity 2021; 54:1276-1289.e6. [PMID: 33836142 PMCID: PMC8015430 DOI: 10.1016/j.immuni.2021.03.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
103 |
2
|
Lu S, Xie XX, Zhao L, Wang B, Zhu J, Yang TR, Yang GW, Ji M, Lv CP, Xue J, Dai EH, Fu XM, Liu DQ, Zhang L, Hou SJ, Yu XL, Wang YL, Gao HX, Shi XH, Ke CW, Ke BX, Jiang CG, Liu RT. The immunodominant and neutralization linear epitopes for SARS-CoV-2. Cell Rep 2021; 34:108666. [PMID: 33503420 PMCID: PMC7837128 DOI: 10.1016/j.celrep.2020.108666] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.
B cell epitopes of SARS-CoV-2 are obtained using structure-based approaches The predicted epitopes effectively induce robust antibody responses D614 and G614 SARS-CoV-2 display different immunodominant epitopes Epitopes on S protein elicit D614 and/or G614 SARS-CoV-2-neutralizing antibodies
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
48 |
3
|
Niu L, Wittrock KN, Clabaugh GC, Srivastava V, Cho MW. A Structural Landscape of Neutralizing Antibodies Against SARS-CoV-2 Receptor Binding Domain. Front Immunol 2021; 12:647934. [PMID: 33995366 PMCID: PMC8113771 DOI: 10.3389/fimmu.2021.647934] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2, the novel coronavirus responsible for the ongoing COVID-19 pandemic, has been spreading rampantly. The global scientific community has responded rapidly to understand immune correlates of protection to develop vaccines and immunotherapeutics against the virus. The major goal of this mini review is to summarize current understanding of the structural landscape of neutralizing antibodies (nAbs) that target the receptor binding domain (RBD) of viral spike (S) glycoprotein. The RBD plays a critical role in the very first step of the virus life cycle. Better understanding of where and how nAbs bind the RBD should enable identification of sites of vulnerability and facilitate better vaccine design and formulation of immunotherapeutics. Towards this goal, we compiled 38 RBD-binding nAbs with known structures. Review of these nAb structures showed that (1) nAbs can be divided into five general clusters, (2) there are distinct non-neutralizing faces on the RBD, and (3) maximum of potentially four nAbs could bind the RBD simultaneously. Since most of these nAbs were isolated from virus-infected patients, additional analyses of vaccine-induced nAbs could facilitate development of improved vaccines.
Collapse
|
Review |
4 |
44 |
4
|
Cruz DJM, Kim CJ, Shin HJ. Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology 2006; 354:28-34. [PMID: 16950494 PMCID: PMC7111992 DOI: 10.1016/j.virol.2006.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/21/2006] [Accepted: 04/21/2006] [Indexed: 11/17/2022]
Abstract
Seven-mer phage random peptide libraries were panned against 2C10, a monoclonal antibody that showed neutralizing activities against PEDV. Recombinant M13 phages displaying the peptides SHRLP(Y/Q)(P/V) or GPRPVTH on the g3p minor coat protein showed strong binding affinity with 2C10 (70% and 30% of recovered phages, respectively) after multiple panning. Sequence analysis suggested that these peptides are similar with (1368)GPRLQPY(1374) found at the carboxy-terminal of the S protein. In neutralization inhibition assays, the two peptide motifs and a 24-mer synthetic peptide corresponding to the C-terminal endodomain of PEDV S protein were observed to compete for the antigen binding site of 2C10, as demonstrated by the loss or reduction of neutralizing activity of the monoclonal antibody. This new finding suggests that the newly discovered peptide motifs mimic a neutralizing epitope PEDV.
Collapse
|
research-article |
19 |
40 |
5
|
Loughney JW, Rustandi RR, Wang D, Troutman MC, Dick LW, Li G, Liu Z, Li F, Freed DC, Price CE, Hoang VM, Culp TD, DePhillips PA, Fu TM, Ha S. Soluble Human Cytomegalovirus gH/gL/pUL128-131 Pentameric Complex, but Not gH/gL, Inhibits Viral Entry to Epithelial Cells and Presents Dominant Native Neutralizing Epitopes. J Biol Chem 2015; 290:15985-95. [PMID: 25947373 DOI: 10.1074/jbc.m115.652230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 11/06/2022] Open
Abstract
Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.
Collapse
|
Journal Article |
10 |
38 |
6
|
Cai H, Orwenyo J, Giddens JP, Yang Q, Zhang R, LaBranche CC, Montefiori DC, Wang LX. Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses. Cell Chem Biol 2017; 24:1513-1522.e4. [PMID: 29107699 DOI: 10.1016/j.chembiol.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/08/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023]
Abstract
Eliciting broadly neutralizing antibody (bNAb) responses against HIV-1 is a major goal for a prophylactic HIV-1 vaccine. One approach is to design immunogens based on known broadly neutralizing epitopes. Here we report the design and synthesis of an HIV-1 glycopeptide immunogen derived from the V3 domain. We performed glycopeptide epitope mapping to determine the minimal glycopeptide sequence as the epitope of V3-glycan-specific bNAbs PGT128 and 10-1074. We further constructed a self-adjuvant three-component immunogen that consists of a 33-mer V3 glycopeptide epitope, a universal T helper epitope P30, and a lipopeptide (Pam3CSK4) that serves as a ligand of Toll-like receptor 2. Rabbit immunization revealed that the synthetic self-adjuvant glycopeptide could elicit substantial glycan-dependent antibodies that exhibited broader recognition of HIV-1 gp120s than the non-glycosylated V3 peptide. These results suggest that the self-adjuvant synthetic glycopeptides can serve as an important component to elicit glycan-specific antibodies in HIV vaccine design.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
37 |
7
|
Seow J, Khan H, Rosa A, Calvaresi V, Graham C, Pickering S, Pye VE, Cronin NB, Huettner I, Malim MH, Politis A, Cherepanov P, Doores KJ. A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination. Cell Rep 2022; 40:111276. [PMID: 35981534 PMCID: PMC9365860 DOI: 10.1016/j.celrep.2022.111276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.
Collapse
|
research-article |
3 |
26 |
8
|
Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep 2021; 30:2526-2539.e6. [PMID: 32101733 PMCID: PMC7138525 DOI: 10.1016/j.celrep.2020.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties. Botulinum neurotoxins (BoNTs) are extremely toxic biothreats. Lam et al. report the crystal structures and neutralizing mechanisms of six unique antitoxin VHHs against BoNT/A1 and BoNT/B1, the two major human pathogenic BoNTs. They then develop a platform for structure-based rational design of bifunctional VHH heterodimers with superior antitoxin potencies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
4 |
20 |
9
|
Hashimoto K, Hosoya M. Neutralizing epitopes of RSV and palivizumab resistance in Japan. Fukushima J Med Sci 2017; 63:127-134. [PMID: 28867684 PMCID: PMC5792496 DOI: 10.5387/fms.2017-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is one of the most important viral pathogen related to acute lower respiratory infection in young children. The virus surface envelope contains the G, F, and SH proteins as spike proteins. The F protein is considered to be a major antigenic target for the neutralizing (NT) epitope as only the F protein is essential for cell infection among the three viral envelope proteins, and it is more highly conserved than the G protein. Recently, four antigenic targets related to NT activity have been reported;site I, site II, site IV, and site zero (0). Site II is the target for palivizumab used throughout the world to suppress severe RSV infection as passive immunity in high-risk children since 1998. Under the recent conditions in which indications for palivizumab administered subjects are being expanded, palivizumab-resistant mutations have been confirmed overseas in children with RSV infection, although they remain infrequent. Therefore, continuous genetic analysis of the palivizumab-binding region of the F protein is necessary. In addition, as vaccine development progresses, RSV infection control is expected to improve greatly over the next decade.
Collapse
|
Review |
8 |
16 |
10
|
Shahar E, Haddas R, Goldenberg D, Lublin A, Bloch I, Bachner Hinenzon N, Pitcovski J. Newcastle disease virus: is an updated attenuated vaccine needed? Avian Pathol 2018; 47:467-478. [PMID: 29897786 DOI: 10.1080/03079457.2018.1488240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Newcastle disease virus (NDV) is a major cause of infectious mortality and morbidity in poultry worldwide. It is an enveloped virus with two outer-membrane proteins-haemagglutinin-neuraminidase (HN) and fusion protein (F)-that induce neutralizing antibodies. All NDV strains belong to one serotype. Yet, NDV vaccines, derived from genotype II, do not fully prevent infection or shedding of viruses from other genotypes. The aim of this study was to test if an updated vaccine is required. For this purpose, NDVs isolated from infected, albeit heavily vaccinated, flocks were genetically and immunologically characterized. Amino acid differences in F and HN protein sequences were identified between the vaccine strain and each of the isolates, some specifically at the neutralization sites. Whereas all tested isolates showed similar haemagglutination-inhibition (HI) titres, 100-100,000 times higher antibody-to-virus ratios were needed to neutralize viral propagation in embryos by the field isolates versus the vaccine strain. As a result, a model and an equation were developed to explain the phenomenon of escape in one-serotype viruses and to calculate the HI values needed for protection, depending on variation rate at key positions. In conclusion, to confer full protection against NDVs that differ from the vaccine strain at the neutralizing epitopes, very high levels of antibodies should be raised and maintained to compensate for the reduction in the number of effective epitopes; alternatively, an adjusted attenuated vaccine should be developed-a task made possible in the current era of reverse vaccinology.
Collapse
|
Journal Article |
7 |
15 |
11
|
Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein. Viruses 2015; 7:5632-42. [PMID: 26516903 PMCID: PMC4632404 DOI: 10.3390/v7102896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/20/2015] [Indexed: 01/19/2023] Open
Abstract
Human adenovirus type 55 (HAdV55) is a newly identified re-emergent acute respiratory disease (ARD) pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152), A55R2 (residues 179 to 187), A55R4 (residues 247 to 259) and A55R7 (residues 429 to 443), were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3) and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
13 |
12
|
Levanov L, Iheozor-Ejiofor RP, Lundkvist Å, Vapalahti O, Plyusnin A. Defining of MAbs-neutralizing sites on the surface glycoproteins Gn and Gc of a hantavirus using vesicular stomatitis virus pseudotypes and site-directed mutagenesis. J Gen Virol 2019; 100:145-155. [PMID: 30624178 DOI: 10.1099/jgv.0.001202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier four monoclonal antibodies (MAbs) against surface glycoproteins Gn and Gc of puumala virus (PUUV, genus Orthohantavirus, family Hantaviridae, order Bunyavirales) were generated and for three MAbs with neutralizing capacity the localization of binding epitopes was predicted using pepscan and phage-display techniques. In this work, we produced vesicular stomatitis virus (VSV) particles pseudotyped with the Gn and Gc glycoproteins of PUUV and applied site-directed mutagenesis to dissect the structure of neutralizing epitopes. Replacement of cysteine amino acid (aa) residues with alanines resulted in pseudotype particles with diminished (16 to 18 %) neut-titres; double Cys→Ala mutants, as well as mutants with bulky aromatic and charged residues replaced with alanines, have shown even stronger reduction in neut-titres (from 25 % to the escape phenotype). In silico modelling of the neut-epitopes supported the hypothesis that these critical residues are located on the surface of viral glycoprotein molecules and thus can be recognized by the antibodies indeed. A similar pattern was observed in experiments with mutant pseudotypes and sera collected from patients suggesting that these neut-epitopes are utilized in a course of human PUUV infection. These data will help understanding the mechanisms of hantavirus neutralization and assist construction of vaccine candidates.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
10 |
13
|
Murugananthan A, Shanthalingam S, Batra SA, Alahan S, Srikumaran S. Leukotoxin of Bibersteinia trehalosi Contains a Unique Neutralizing Epitope, and a Non-Neutralizing Epitope Shared with Mannheimia haemolytica Leukotoxin. Toxins (Basel) 2018; 10:toxins10060220. [PMID: 29848968 PMCID: PMC6024558 DOI: 10.3390/toxins10060220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/03/2022] Open
Abstract
Bibersteinia trehalosi and Mannheimia haemolytica, originally classified as Pasteurella haemolytica biotype T and biotype A, respectively, under Genus Pasteurella has now been placed under two different Genera, Bibersteinia and Mannheimia, based on DNA-DNA hybridization and 16S RNA studies. While M. haemolytica has been the predominant pathogen of pneumonia in ruminants, B. trehalosi is emerging as an important pathogen of ruminant pneumonia. Leukotoxin is the critical virulence factor of these two pathogens. While the leukotoxin of M. haemolytica has been well studied, the characterization of B. trehalosi leukotoxin has lagged behind. As the first step towards addressing this problem, we developed monoclonal antibodies (mAbs) against B. trehalosi leukotoxin and used them to characterize the leukotoxin epitopes. Two mAbs that recognized sequential epitopes on the leukotoxin were developed. One of them, AM113, neutralized B. trehalosi leukotoxin while the other, AM321, did not. The mAb AM113 revealed the existence of a neutralizing epitope on B. trehalosi leukotoxin that is not present on M. haemolytica leukotoxin. A previously developed mAb, MM601, revealed the presence of a neutralizing epitope on M. haemolytica leukotoxin that is not present on B. trehalosi leukotoxin. The mAb AM321 recognized a non-neutralizing epitope shared by the leukotoxins of B. trehalosi and M. haemolytica. The mAb AM113 should pave the way for mapping the leukotoxin-neutralizing epitope on B. trehalosi leukotoxin and the development of subunit vaccines and/or virus-vectored vaccines against this economically important respiratory pathogen of ruminants.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
10 |
14
|
Mapping the Neutralizing Epitopes of Enterotoxigenic Escherichia coli K88 (F4) Fimbrial Adhesin and Major Subunit FaeG. Appl Environ Microbiol 2019; 85:AEM.00329-19. [PMID: 30926730 DOI: 10.1128/aem.00329-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 02/02/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains that produce immunologically heterogeneous fimbriae and enterotoxins are the primary cause of neonatal diarrhea and postweaning diarrhea in young pigs. A multivalent vaccine inducing protective immunity against ideally all ETEC fimbriae and enterotoxins could be effective against diarrhea in young pigs. However, developing a vaccine to broadly protect against various ETEC virulence determinants has proven challenging. Recently developed structure- and epitope-based multiepitope fusion antigen (MEFA) technology that presents neutralizing epitopes of various virulence determinants at a backbone immunogen and that mimics epitope native immunogenicity suggests the feasibility of developing multivalent vaccines. With neutralizing epitopes from ETEC fimbria F18 and enterotoxins being identified, it becomes urgent to identify protective epitopes of K88 (F4) fimbriae, which play a major role in pig neonatal and postweaning diarrhea. In this study, we identified B-cell immunodominant epitopes in silico from the K88ac fimbrial major subunit (also adhesin) FaeG and embedded each epitope in a heterogeneous carrier for epitope fusions. We then immunized mice with each epitope fusion protein and examined epitope antigenicity and also neutralizing activities of epitope-induced antibodies. Data showed that while all nine FaeG epitope fusions induced antibodies to K88ac fimbria, anti-K88 IgG antibodies derived from epitopes MTGDFNGSVD (ep1), LNDLTNGGTK (ep2), GRTKEAFATP (ep3), ELRKPDGGTN (ep4), PMKNAGGTKVGAVKVN (ep5), and RENMEYTDGT (ep8) significantly inhibited adherence of K88ac fimbrial bacteria to porcine intestinal cell line IPEC-J2, indicating that these peptides were the neutralizing epitopes of K88ac fimbrial major subunit FaeG and suggesting the future application of FaeG epitopes in ETEC vaccine development.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) strains producing K88ac fimbriae and enterotoxins are a major cause of porcine neonatal diarrhea and postweaning diarrhea in the United States. Currently, there is no vaccine to induce broadly protective antiadhesin and antitoxin immunity against ETEC-associated diarrhea. To develop a broadly effective ETEC vaccine, we need to target the most important if not all ETEC virulence determinants. While conventional vaccinology approaches encounter difficulties at integrating or including heterogeneous ETEC fimbria and toxin antigens into a vaccine product, multiepitope fusion antigen (MEFA) structural vaccinology provides a new platform to combine neutralizing antigenic elements or epitopes from various heterogeneous virulence factors for broad immunity and protection. Identification of the neutralizing epitopes of K88ac fimbria from this study added the last antigens to an MEFA-based multivalent vaccine against ETEC-associated diarrhea in pigs. An effective vaccine against pig diarrhea can significantly improve swine health and well-being and reduce economic losses to the swine industry worldwide.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
15
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
6 |
16
|
Zhao R, Xiao Q, Li M, Ren W, Xia C, Liu X, Li Y, Tan T, Wu D, Sun L. Rational design of peptides for identification of linear epitopes and generation of neutralizing monoclonal antibodies against DKK2 for cancer therapy. Antib Ther 2020; 3:63-70. [PMID: 32391516 PMCID: PMC7194219 DOI: 10.1093/abt/tbaa004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022] Open
Abstract
Dickkopf-related protein 2 (DKK2)is a member of the Dickkopf family in Wnt signaling pathway. Recently, we found that antibodies against DKK2 could activate natural killer (NK) and CD8+ T cells in tumors and inhibit tumor growth. In this paper, we report the rational design of peptides for identification of linear epitopes and generation of neutralizing monoclonal anti-DKK2 antibodies. To break the immune tolerance, we designed and chemically synthesized six peptides corresponding to different regions of DKK2 as immunogens and found five of them could generate mouse polyclonal antibodies that can bind to the active recombinant human DKK2 protein. Neutralizing mouse monoclonal antibodies (5F8 and 1A10) against human DKK2 were successfully developed by immunizing the mice with two different peptides (34KLNSIKSSL42 and 240KVWKDATYS248) conjugated to Keyhole limpet hemocyanin (KLH). The monoclonal antibodies not only abolish DKK2’s suppression of Wnt signaling in vitro but also inhibits tumor growth in vivo. Currently, those two mAbs are undergoing humanization as immunotherapy candidates and may offer a new drug for treatment of human cancers.
Collapse
|
Journal Article |
5 |
3 |
17
|
Zong G, Toonstra C, Yang Q, Zhang R, Wang LX. Chemoenzymatic Synthesis and Antibody Binding of HIV-1 V1/V2 Glycopeptide-Bacteriophage Q β Conjugates as a Vaccine Candidate. Int J Mol Sci 2021; 22:ijms222212538. [PMID: 34830420 PMCID: PMC8617853 DOI: 10.3390/ijms222212538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qβ conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qβ), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qβ-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qβ conjugates synthesized represent a promising candidate of HIV-1 vaccine.
Collapse
|
|
4 |
1 |
18
|
Kaewchim K, Glab-ampai K, Mahasongkram K, Saenlom T, Thepsawat W, Chulanetra M, Choowongkomon K, Sookrung N, Chaicumpa W. Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies. Viruses 2023; 15:1252. [PMID: 37376552 PMCID: PMC10301551 DOI: 10.3390/v15061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79-98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus's infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350-354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.
Collapse
|
research-article |
2 |
|
19
|
Doores KJ. Humoral immunity to phlebovirus infection. Ann N Y Acad Sci 2023; 1530:23-31. [PMID: 37936483 PMCID: PMC10952791 DOI: 10.1111/nyas.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Phleboviruses are zoonotic pathogens found in parts of Africa, Asia, Europe, and North America and cause disease symptoms ranging from self-limiting febrile illness to severe disease, including hemorrhagic diathesis, encephalitis, and ocular pathologies. There are currently no approved preventative vaccines against phlebovirus infection or antivirals for the treatment of the disease. Here, we discuss the roles of neutralizing antibodies in phlebovirus infection, the antigenic targets present on the mature polyproteins Gn and Gc, progress in vaccine development, and the prospects of identifying conserved neutralizing epitopes across multiple phleboviruses. Further research in this area will pave the way for the rational design of pan-phlebovirus vaccines that will protect against both known phleboviruses but also newly emerging phleboviruses that may have pandemic potential.
Collapse
|
Review |
2 |
|
20
|
Lu Y, Zeng Y, Luo H, Qiao B, Meng Q, Dai Z, Chen N, Zhao L, Meng X, Zhang H, Xia J, Ping J. Molecular characteristic, evolution, and pathogenicity analysis of avian infectious bronchitis virus isolates associated with QX type in China. Poult Sci 2024; 103:104256. [PMID: 39288718 PMCID: PMC11421327 DOI: 10.1016/j.psj.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.
Collapse
|
research-article |
1 |
|
21
|
Plyusnin A, Kedari A, Rissanen I, Iheozor-Ejiofor RP, Lundkvist Å, Vapalahti O, Levanov L. Validation of an antigenic site targeted by monoclonal antibodies against Puumala virus. J Gen Virol 2023; 104. [PMID: 37801017 DOI: 10.1099/jgv.0.001901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.
Collapse
|
|
2 |
|
22
|
Wu X, Wang Q, Lu W, Wang Y, Han Z, Liang L, Gao S, Ma H, Luo X. The PCV3 Cap Virus-like Particle Vaccine with the Chimeric PCV2- Neutralizing Epitope Gene Is Effective in Mice. Vet Sci 2024; 11:264. [PMID: 38922011 PMCID: PMC11209062 DOI: 10.3390/vetsci11060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine circovirus infections. In this study, we used both E. coli and mammalian expression systems to express PCV3 Cap (Cap3) and a chimeric gene containing the PCV2-neutralizing epitope within the PCV3 Cap (Cap3-Cap2E), which were assembled into virus-like particle (VLP) vaccines. We found that Cap3 lacking nuclear localization signal (NLS) could not form VLPs, while Cap3 with a His-tag successfully assembled into VLPs. Additionally, the chimeric of PCV2-neutralizing epitopes did not interfere with the assembly process of VLPs. Various immunization approaches revealed that pCap3-Cap2E VLP vaccines were capable of activating high PCV3 Cap-specific antibody levels and effectively neutralizing both PCV3 and PCV2. Furthermore, pCap3-Cap2E VLPs demonstrated a potent ability to activate cellular immunity, protecting against PCV3 infection and preventing lung damage in mice. In conclusion, this study successfully developed a PCV3 Cap VLP vaccine incorporating chimeric PCV2-neutralizing epitope genes, providing new perspectives for PCV3 vaccine development.
Collapse
|
research-article |
1 |
|
23
|
Anzai I, Fujita J, Ono C, Kosaka Y, Miyamoto Y, Shichinohe S, Takada K, Torii S, Taguwa S, Suzuki K, Makino F, Kajita T, Inoue T, Namba K, Watanabe T, Matsuura Y. Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain. Microbiol Spectr 2024; 12:e0365523. [PMID: 38415660 PMCID: PMC10986471 DOI: 10.1128/spectrum.03655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Although the global crisis caused by the coronavirus disease 2019 (COVID-19) pandemic is over, the global epidemic of the disease continues. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, initiates infection via the binding of the receptor-binding domain (RBD) of its spike protein to the human angiotensin-converting enzyme II (ACE2) receptor, and this interaction has been the primary target for the development of COVID-19 therapeutics. Here, we identified neutralizing antibodies against SARS-CoV-2 by screening mouse monoclonal antibodies and characterized an antibody, CSW1-1805, that targets a narrow region at the RBD ridge of the spike protein. CSW1-1805 neutralized several variants in vitro and completely protected mice from SARS-CoV-2 infection. Cryo-EM and biochemical analyses revealed that this antibody recognizes the loop region adjacent to the ACE2-binding interface with the RBD in both a receptor-inaccessible "down" state and a receptor-accessible "up" state and could stabilize the RBD conformation in the up-state. CSW1-1805 also showed different binding orientations and complementarity determining region properties compared to other RBD ridge-targeting antibodies with similar binding epitopes. It is important to continuously characterize neutralizing antibodies to address new variants that continue to emerge. Our characterization of this antibody that recognizes the RBD ridge of the spike protein will aid in the development of future neutralizing antibodies.IMPORTANCESARS-CoV-2 cell entry is initiated by the interaction of the viral spike protein with the host cell receptor. Therefore, mechanistic findings regarding receptor recognition by the spike protein help uncover the molecular mechanism of SARS-CoV-2 infection and guide neutralizing antibody development. Here, we characterized a SARS-CoV-2 neutralizing antibody that recognizes an epitope, a loop region adjacent to the receptor-binding interface, that may be involved in the conformational transition of the receptor-binding domain (RBD) of the spike protein from a receptor-inaccessible "down" state into a receptor-accessible "up" state, and also stabilizes the RBD in the up-state. Our mechanistic findings provide new insights into SARS-CoV-2 receptor recognition and guidance for neutralizing antibody development.
Collapse
Grants
- JP16H06429, JP16K21723, JP16H06432 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP16H06429, JP16K21723, JP16H06434 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H02521 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15042 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21H02736 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP25K000013 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K22630 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP223fa627002, JP22am0401030, JP23fk0108659, JP20jk0210021, JP22gm1610010, JP19fk0108113 Japan Agency for Medical Research and Development (AMED)
- JP223fa627002 Japan Agency for Medical Research and Development (AMED)
- JP19fk0108113, JP20fk0108281, JP20pc0101047 Japan Agency for Medical Research and Development (AMED)
- JP20fk0108401, JP21fk0108493 Japan Agency for Medical Research and Development (AMED)
- JP21am0101117, JP17pc0101020 Japan Agency for Medical Research and Development (AMED)
- JPMJOP1861 MEXT | Japan Science and Technology Agency (JST)
- JPMJMS2025 MEXT | Japan Science and Technology Agency (JST)
Collapse
|
research-article |
1 |
|