1
|
Taooka Y, Chen J, Yednock T, Sheppard D. The integrin alpha9beta1 mediates adhesion to activated endothelial cells and transendothelial neutrophil migration through interaction with vascular cell adhesion molecule-1. J Cell Biol 1999; 145:413-20. [PMID: 10209034 PMCID: PMC2133104 DOI: 10.1083/jcb.145.2.413] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The integrin alpha9beta1 has been shown to be widely expressed on smooth muscle and epithelial cells, and to mediate adhesion to the extracellular matrix proteins osteopontin and tenascin-C. We have found that the peptide sequence this integrin recognizes in tenascin-C is highly homologous to the sequence recognized by the closely related integrin alpha4beta1, in the inducible endothelial ligand, vascular cell adhesion mole-cule-1 (VCAM-1). We therefore sought to determine whether alpha9beta1 also recognizes VCAM-1, and whether any such interaction would be biologically significant. In this report, we demonstrate that alpha9beta1 mediates stable cell adhesion to recombinant VCAM-1 and to VCAM-1 induced on human umbilical vein endothelial cells by tumor necrosis factor-alpha. Furthermore, we show that alpha9beta1 is highly and selectively expressed on neutrophils and is critical for neutrophil migration on VCAM-1 and tenascin-C. Finally, alpha9beta1 and alpha4 integrins contribute to neutrophil chemotaxis across activated endothelial monolayers. These observations suggest a possible role for alpha9beta1/VCAM-1 interactions in extravasation of neutrophils at sites of acute inflammation.
Collapse
|
research-article |
26 |
215 |
2
|
Shen XF, Cao K, Jiang JP, Guan WX, Du JF. Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med 2017; 21:1687-1697. [PMID: 28244690 PMCID: PMC5571534 DOI: 10.1111/jcmm.13112] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis remains a leading cause of death worldwide, despite advances in critical care, and understanding of the pathophysiology and treatment strategies. No specific therapy or drugs are available for sepsis. Neutrophils play a critical role in controlling infection under normal conditions, and it is suggested that their migration and antimicrobial activity are impaired during sepsis which contribute to the dysregulation of immune responses. Recent studies further demonstrated that interruption or reversal of the impaired migration and antimicrobial function of neutrophils improves the outcome of sepsis in animal models. In this review, we provide an overview of the associated mediators and signal pathways involved which govern the survival, migration and antimicrobial function of neutrophils in sepsis, and discuss the potential of neutrophils as a target to specifically diagnose and/or predict the outcome of sepsis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
209 |
3
|
Sônego F, Castanheira FVES, Ferreira RG, Kanashiro A, Leite CAVG, Nascimento DC, Colón DF, Borges VDF, Alves-Filho JC, Cunha FQ. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol 2016; 7:155. [PMID: 27199981 PMCID: PMC4844928 DOI: 10.3389/fimmu.2016.00155] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022] Open
Abstract
Sepsis, an overwhelming inflammatory response syndrome secondary to infection, is one of the costliest and deadliest medical conditions worldwide. Neutrophils are classically considered to be essential players in the host defense against invading pathogens. However, several investigations have shown that impairment of neutrophil migration to the site of infection, also referred to as neutrophil paralysis, occurs during severe sepsis, resulting in an inability of the host to contain and eliminate the infection. On the other hand, the neutrophil antibacterial arsenal contributes to tissue damage and the development of organ dysfunction during sepsis. In this review, we provide an overview of the main events in which neutrophils play a beneficial or deleterious role in the outcome of sepsis.
Collapse
|
Review |
9 |
157 |
4
|
Nourshargh S, Renshaw SA, Imhof BA. Reverse Migration of Neutrophils: Where, When, How, and Why? Trends Immunol 2016; 37:273-286. [PMID: 27055913 DOI: 10.1016/j.it.2016.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
127 |
5
|
Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, Glenadel Q, Tibbitts T, Rowley AM, DiNitto JP, Brophy EE, O’Hearn EL, Ali JA, Winkler DG, Goldstein SI, O’Hearn P, Martin CM, Hoyt JG, Soglia JR, Cheung C, Pink MM, Proctor JL, Palombella VJ, Tremblay MR, Castro AC. Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett 2016; 7:862-7. [PMID: 27660692 DOI: 10.1021/acsmedchemlett.6b00238] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Optimization of isoquinolinone PI3K inhibitors led to the discovery of a potent inhibitor of PI3K-γ (26 or IPI-549) with >100-fold selectivity over other lipid and protein kinases. IPI-549 demonstrates favorable pharmacokinetic properties and robust inhibition of PI3K-γ mediated neutrophil migration in vivo and is currently in Phase 1 clinical evaluation in subjects with advanced solid tumors.
Collapse
|
Journal Article |
9 |
112 |
6
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
|
Review |
6 |
85 |
7
|
Canetti C, Silva JS, Ferreira SH, Cunha FQ. Tumour necrosis factor-alpha and leukotriene B(4) mediate the neutrophil migration in immune inflammation. Br J Pharmacol 2001; 134:1619-28. [PMID: 11739237 PMCID: PMC1572894 DOI: 10.1038/sj.bjp.0704403] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We investigated the mediators responsible for neutrophil migration induced by ovalbumin (OVA) in immunized mice and the mechanisms involved in their release. 2. OVA administration promoted dose- and time-dependent neutrophil migration in immunized, but not in non-immunized mice, which was mediated by leukotriene B(4) (LTB(4)) and tumour necrosis factor (TNF)alpha, since it was inhibited by LTB(4) synthesis inhibitor (MK 886) or by LTB(4) receptor antagonist (CP 105,696), by dexamethasone and by antiserum to TNFalpha (82, 85, 63 and 87%, respectively). Confirming TNFalpha involvement, OVA challenge in immunized p55 TNF receptor deficient mice (p55(-/-)) did not promote neutrophil migration (control: 2.90 +/- 0.68; p55(-/-): 0.92+/-0.23 x 10(6) neutrophils cavity(-1)). 3. OVA-stimulated peritoneal cells from immunized mice released a neutrophil chemotactic factor which mimicked, in naive mice, neutrophil migration induced by OVA. 4. Supernatant chemotactic activity is due to TNFalpha and LTB(4), since its release was inhibited by MK 886 (93%) and dexamethasone (90%), and significant amounts of these mediators were detected. 5. TNFalpha and LTB(4) released by OVA challenge seem to act through a sequential mechanism, since MK 886 inhibited (88%) neutrophil migration induced by TNFalpha. Moreover, peritoneal cells stimulated with TNFalpha released LTB(4). 6. CD(4)(+) T cells are responsible for TNFalpha release, because the depletion of this subset prevented the release of TNFalpha (control: 400 +/- 25; immunized: 670 +/- 40; CD(4)(+) depleted: 435 +/- 18 pg ml(-1)). 7. In conclusion, neutrophil migration induced by OVA depends on TNFalpha released by CD(4)(+) cells, which acts through an LTB(4)-dependent mechanism.
Collapse
|
research-article |
24 |
63 |
8
|
Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci U S A 2021; 118:2019097118. [PMID: 33397815 DOI: 10.1073/pnas.2019097118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
54 |
9
|
Thomas DG, Doran AC, Fotakis P, Westerterp M, Antonson P, Jiang H, Jiang XC, Gustafsson JÅ, Tabas I, Tall AR. LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Rep 2019; 25:3774-3785.e4. [PMID: 30590048 PMCID: PMC6446575 DOI: 10.1016/j.celrep.2018.11.100] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 01/31/2023] Open
Abstract
The activation of liver X receptor (LXR) promotes cholesterol efflux and repression of inflammatory genes with anti-atherogenic consequences. The mechanisms underlying the repressive activity of LXR are controversial and have been attributed to cholesterol efflux or to transrepression of activator protein-1 (AP-1) activity. Here, we find that cholesterol efflux contributes to LXR repression, while the direct repressive functions of LXR also play a key role but are independent of AP-1. We use assay for transposase-accessible chromatin using sequencing (ATAC-seq) to show that LXR reduces chromatin accessibility in cis at inflammatory gene enhancers containing LXR binding sites. Targets of this repressive activity are associated with leukocyte adhesion and neutrophil migration, and LXR agonist treatment suppresses neutrophil recruitment in a mouse model of sterile peritonitis. These studies suggest a model of repression in which liganded LXR binds in cis to canonical nuclear receptor binding sites and represses pro-atherogenic leukocyte functions in tandem with the induction of LXR targets mediating cholesterol efflux. Thomas et al. show the roles of cholesterol efflux and direct repression in anti-inflammatory effects of LXR and establish the mechanism of LXR cis-repression using ATAC-seq. LXR agonists suppress neutrophil migration genes and neutrophil recruitment during inflammation, highlighting a potential role for these compounds in the control of neutrophil-predominant inflammatory conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
47 |
10
|
Szabady RL, McCormick BA. Control of neutrophil inflammation at mucosal surfaces by secreted epithelial products. Front Immunol 2013; 4:220. [PMID: 23914188 PMCID: PMC3728559 DOI: 10.3389/fimmu.2013.00220] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022] Open
Abstract
The human intestine is a large and delicately balanced organ, responsible for efficiently absorbing nutrients and selectively eliminating disease-causing pathogens. The gut architecture consists of a single layer of epithelial cells that forms a barrier against the food antigens and resident microbiota within the lumen. This barrier is augmented by a thick layer of mucus on the luminal side and an underlying lamina propria containing a resident population of immune cells. Attempted breaches of the intestinal barrier by pathogenic bacteria result in the rapid induction of a coordinated innate immune response that includes release of antimicrobial peptides, activation of pattern recognition receptors, and recruitment of various immune cells. In recent years, the role of epithelial cells in initiating this immune response has been increasingly appreciated. In particular, epithelial cells are responsible for the release of a variety of factors that attract neutrophils, the body's trained bacterial killers. In this review we will highlight recent research that details a new understanding of how epithelial cells directionally secrete specific compounds at distinct stages of the inflammatory response in order to coordinate the immune response to intestinal microbes. In addition to their importance during the response to infection, evidence suggests that dysregulation of these pathways may contribute to pathologic inflammation during inflammatory bowel disease. Therefore, a continued understanding of the mechanisms by which epithelial cells control neutrophil migration into the intestine will have tremendous benefits in both the understanding of biological processes and the identification of potential therapeutic targets.
Collapse
|
Journal Article |
12 |
43 |
11
|
Tavares-Murta BM, Cunha FQ, Ferreira SH. The intravenous administration of tumor necrosis factor alpha, interleukin 8 and macrophage-derived neutrophil chemotactic factor inhibits neutrophil migration by stimulating nitric oxide production. Br J Pharmacol 1998; 124:1369-74. [PMID: 9723947 PMCID: PMC1565525 DOI: 10.1038/sj.bjp.0701965] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The i.v. administration of tumor necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8) and the recently described macrophage-derived neutrophil chemotactic factor (MNCF) inhibits the recruitment of neutrophils to the inflammatory site. 2. Pretreatment of mice with the NO synthase antagonist, NG-monomethyl-L-arginine (L-NMMA, 15-60 mg kg(-1)), but not the inactive enantiomer D-NMMA (30 mg kg(-1)), prevented in a dose-dependent manner the TNF-alpha, IL-8 and MNCF-mediated inhibition of neutrophil migration into thioglycollate-challenged peritoneal cavities. 3. Treatment of the neutrophils with TNFalpha (10(-7) M), IL-8 (10(-7) M) or MNCF blocked their migration towards FMLP in the chemotaxis assay. The pretreatment of the neutrophils with L-NMMA (50-200 microM) prevented in a dose-dependent manner the inhibition of FMLP-induced chemotaxis by IL-8, but did not alter the inhibition caused by TNF-alpha or MNCF. Different concentrations of the NO donors, S-nitroso-N-acetylpenicillamine (SNAP) or 3-morpholino-sydnonimine (SIN-1), did not alter this chemotaxis. 4. Preincubating the neutrophils with L-NMMA (200 microM) significantly increased the TNF-alpha (10(-7) M) and MNCF-mediated neutrophil adhesion to unstimulated endothelial cells, but had no effect on IL-8 (10(-7) M)-mediated adhesion. 5. Although NO donors did not directly affect the mechanisms of neutrophil motility, NO is involved in the in vitro inhibitory action of IL-8 on chemotaxis. The TNF-alpha and MNCF-mediated inhibition of neutrophil migration seems to be indirect, by affecting the mechanisms of adhesion. It was concluded that TNF-alpha-, IL-8- and MNCF-mediated inhibition of neutrophil migration is associated with the stimulation of NO production.
Collapse
|
research-article |
27 |
40 |
12
|
Gabrielli E, Sabbatini S, Roselletti E, Kasper L, Perito S, Hube B, Cassone A, Vecchiarelli A, Pericolini E. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans. Virulence 2016; 7:819-25. [PMID: 27127904 PMCID: PMC5029300 DOI: 10.1080/21505594.2016.1184385] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Secretory aspartyl proteinases (Saps) of Candida albicans are key virulence traits which cause inflammasome-dependent, aseptic inflammation in a mouse model of vaginitis. In this paper, neutrophil migration in response to Sap2, Sap6 and chemo-attractive products released from Sap-treated vaginal epithelium was measured in vitro, ex vivo and in vivo. Our results show that Sap2 and Sap6 induce neutrophil migration and production of potent chemoattractive chemokines such as IL-8 and MIP-2 by vaginal epithelial cells. Our data suggest that at least part of MIP-2 production depends upon IL-1β activity. The vaginal fluid of Candida-infected mice contained a heat-labile inhibitor of neutrophil candidacidal activity that was absent from the vaginal fluid of Sap-treated mice. Overall, our data provide additional information on the capacity of C. albicans Saps to cause aseptic vaginal inflammation and highlight the potential role of some chemokines released from vaginal epithelial cells in this phenomenon.
Collapse
|
Journal Article |
9 |
37 |
13
|
De Filippo K, Rankin SM. The Secretive Life of Neutrophils Revealed by Intravital Microscopy. Front Cell Dev Biol 2020; 8:603230. [PMID: 33240898 PMCID: PMC7683517 DOI: 10.3389/fcell.2020.603230] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocyte within the blood stream and for many years the dogma has been that these cells migrate rapidly into tissues in response to injury or infection, forming the first line of host defense. While it has previously been documented that neutrophils marginate within the vascular beds of the lung and liver and are present in large numbers within the parenchyma of tissues, such as spleen, lymph nodes, and bone marrow (BM), the function of these tissue resident neutrophils under homeostasis, in response to pathogen invasion or injury has only recently been explored, revealing the unexpected role of these cells as immunoregulators or immune helpers and also unraveling their heterogeneity and plasticity. Neutrophils are highly motile cells and the use of intravital microscopy (IVM) to image cells within their environment with little manipulation has dramatically increased our understanding of the function, migratory behavior, and interaction of these short-lived cells with other innate and adaptive immune cells. Contrary to previous dogma, these studies have shown that marginated and tissue resident neutrophils are the first responders to pathogens and injury, critical in limiting the spread of infection and contributing to the orchestration of the subsequent immune response. The interplay of neutrophils, with other neutrophils, leukocytes, and stroma cells can also modulate and tune their early and late response in order to eradicate pathogens, minimize tissue damage, and, in certain circumstances, contribute to tissue repair. In this review, we will follow the extraordinary journey of neutrophils from their origin in the BM to their death, exploring their role as tissue resident cells in the lung, spleen, lymph nodes, and skin and outlining the importance of neutrophil subsets, their functions under homeostasis, and in response to infection. Finally, we will comment on how understanding these processes in greater detail at a molecular level can lead to development of new therapeutics.
Collapse
|
Review |
5 |
32 |
14
|
Santos DR, Calixto JB, Souza GEP. Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats. Br J Pharmacol 2003; 139:271-8. [PMID: 12770932 PMCID: PMC1573837 DOI: 10.1038/sj.bjp.0705236] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1 This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B(1) and B(2) receptors, tumour necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1beta) and selectins in this response. 2 LPS (5 ng to 10 micro g cavity(-1)) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity(-1) (saline: 0.46+/-0.1; LPS: 43+/-3.70 x 10(6) cells cavity(-1) at 6 h). 3 Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73+/-0.16 x 10(6) cells cavity(-1)). A more robust response to BK (3.2+/-0.25 x 10(6) cells cavity(-1)) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1beta or TNF-alpha (15 pmol: 23+/-2.2 x 10(6) and 75 pmol: 29.5+/-2 x 10(6) cells cavity(-1), respectively). Nevertheless, the B(1) agonist des-Arg(9)-BK (600 nmol) failed to induce neutrophil migration. 4 HOE-140 (1 and 2 mg kg(-1)), a B(2) receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1beta or TNF-alpha. des-Arg(9)-[Leu(8)]-BK, B(1) receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. 5 Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg(-1)), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity(-1)), and the nonspecific selectin inhibitor fucoidin (10 mg kg(-1)). 6 TNF-alpha levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5-1 h and gradually declining thereafter up to 6 h. IL-1beta levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1beta and TNF-alpha levels in pouch fluid triggered by both stimuli. 7 These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B(2) receptors coupled to synthesis/release of TNF-alpha and IL-1beta.
Collapse
|
research-article |
22 |
31 |
15
|
Li N, Liu H, Xue Y, Xu Z, Miao X, Guo Y, Li Z, Fan Z, Xu Y. Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med 2023; 15:e16592. [PMID: 36722664 PMCID: PMC9994483 DOI: 10.15252/emmm.202216592] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Alcoholic liver disease (ALD) accounts for a large fraction of patients with cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of Brahma-related gene 1 (Brg1) in ALD pathogenesis and implication in ALD intervention. We report that Brg1 expression was elevated in mouse models of ALD, in hepatocyte exposed to alcohol, and in human ALD specimens. Manipulation of Brg1 expression in hepatocytes influenced the development of ALD in mice. Flow cytometry showed that Brg1 deficiency specifically attenuated hepatic infiltration of Ly6G+ neutrophils in the ALD mice. RNA-seq identified C-X-C motif chemokine ligand 14 (CXCL14) as a potential target for Brg1. CXCL14 knockdown alleviated whereas CXCL14 over-expression enhanced ALD pathogenesis in mice. Importantly, pharmaceutical inhibition of Brg1 with a small-molecule compound PFI-3 or administration of an antagonist to the CXCL14 receptor ameliorated ALD pathogenesis in mice. Finally, a positive correlation between Brg1 expression, CXCL14 expression, and neutrophil infiltration was detected in ALD patients. In conclusion, our data provide proof-of-concept for targeting the Brg1-CXCL14 axis in ALD intervention.
Collapse
|
research-article |
2 |
23 |
16
|
Elferink JG, de Koster BM. The stimulation of human neutrophil migration by angiotensin IL: its dependence on Ca2+ and the involvement of cyclic GMP. Br J Pharmacol 1997; 121:643-8. [PMID: 9208129 PMCID: PMC1564728 DOI: 10.1038/sj.bjp.0701167] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Angiotensin II had a bimodal effect on human neutrophil migration. Low concentrations of angiotensin II stimulated random migration. At a concentration of 10(-10) M it caused a maximal increase of migration; migration increased from 47.2 +/- 2.1 microns in the absence of angiotensin II, to 73.1 +/- 2.2 microns with 10(-10) M angiotensin II present in the lower compartment of the Boyden chamber (n = 5, P < 0.001). Stimulation of migration by angiotensin II was partly chemotactic and partly chemokinetic. Angiotensin II concentrations of 10(-8) M and higher inhibited chemotactic peptide-stimulated chemotaxis. 2. The stimulant effect of angiotensin II on migration was completely dependent on extracellular Ca2+. In the presence of 1 mM Ca2+, angiotensin II stimulated migration to 76.1 +/- 1.7 microns, while migration in the absence of Ca2+ was 42.2 +/- 1.9 microns (n = 4, P < 0.001). Different types of calcium channel blockers either moderately or strongly inhibited angiotensin II-activated migration. Stimulation of migration by angiotensin II in intact cells required higher concentrations of Ca2+ than in electroporated cells. This supports the view that there is an influx of Ca2+ through the plasma membrane, and a requirement of calcium for an intracellular target. 3. Angiotensin II-stimulated migration was inhibited by pertussis toxin; from 71.6 +/- 2.0 microns in the absence, to 43.6 +/- 1.5 microns in the presence of pertussis toxin (n = 4, P < 0.001). Migration of electroporated neutrophils stimulated by angiotensin II was synergistically enhanced by GTP gamma S. This suggests that one or more G-proteins are involved in the activating effect of angiotensin II. 4. Inhibitors of soluble guanylate cyclase and antagonists of cyclic GMP-dependent kinase strongly inhibited the activating effect of angiotensin II. The results suggest that the activating effect of angiotensin II is mediated by cyclic GMP and by cyclic GMP-dependent kinase.
Collapse
|
research-article |
28 |
19 |
17
|
de Oliveira THC, Marques PE, Poosti F, Ruytinx P, Amaral FA, Brandolini L, Allegretti M, Proost P, Teixeira MM. Intravital Microscopic Evaluation of the Effects of a CXCR2 Antagonist in a Model of Liver Ischemia Reperfusion Injury in Mice. Front Immunol 2018; 8:1917. [PMID: 29379500 PMCID: PMC5770890 DOI: 10.3389/fimmu.2017.01917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Ischemia-reperfusion (IR) is a major contributor to graft rejection after liver transplantation. During IR injury, an intense inflammatory process occurs in the liver. Neutrophils are considered central players in the events that lead to liver injury. CXC chemokines mediate hepatic inflammation following reperfusion. However, few studies have demonstrated in real-time the behavior of recruited neutrophils. We used confocal intravital microscopy (IVM) to image neutrophil migration in the liver and to analyze in real-time parameters of neutrophil recruitment in the inflamed tissue in animals treated or not with reparixin, an allosteric antagonist of CXCR1/2 receptors. Materials and methods WT and LysM-eGFP mice treated with reparixin or saline were subjected to 60 min of ischemia followed by different times of reperfusion. Mice received Sytox orange intravenously to show necrotic DNA in IVM. The effect of reparixin on parameters of local and systemic reperfusion-induced injury was also investigated. Results IR induced liver injury and inflammation, as evidenced by high levels of alanine aminotransferase and myeloperoxidase activity, chemokine and cytokine production, and histological outcome. Treatment with reparixin significantly decreased neutrophil influx. Moreover, reparixin effectively suppressed the increase in serum concentrations of TNF-α, IL-6, and CCL3, and the reperfusion-associated tissue damage. The number of neutrophils in the liver increased between 6 and 24 h of reperfusion, whereas the distance traveled, velocity, neutrophil size and shape, and cluster formation reached a maximum 6 h after reperfusion and then decreased gradually. In vivo imaging revealed that reparixin significantly decreased neutrophil infiltration and movement and displacement of recruited cells. Moreover, neutrophils had a smaller size and less elongated shape in treated mice. Conclusion Imaging of the liver by confocal IVM was successfully implemented to describe neutrophil behavior in vivo during liver injury by IR. Treatment with reparixin decreased not only the recruitment of neutrophils in tissues but also their activation state and capacity to migrate within the liver. CXCR1/2 antagonists may be a promising therapy for patients undergoing liver transplantation.
Collapse
|
Journal Article |
7 |
19 |
18
|
Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S. A C-terminal CXCL8 peptide based on chemokine-glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 2019; 157:173-184. [PMID: 31013364 DOI: 10.1111/imm.13063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
17 |
19
|
Lauridsen HM, Pober JS, Gonzalez AL. A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment. FASEB J 2013; 28:1166-80. [PMID: 24297702 DOI: 10.1096/fj.13-240986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), platelet-endothelial cell adhesion molecule 1 (PECAM-1), CD99, and interleukin 8 (IL-8). After TNF-α activation, the ECs supported greater neutrophil adhesion (66.1 vs. 23.7% of input cells) and transmigration (35.1 vs. 7.20% of input cells) than did the PCs, but the composites behaved comparably (no significant difference) to ECs in both assays. TNF-α-activated EC-conditioned medium (CM) increased transmigration across the PCs, whereas TNF-α-activated PC-CM decreased transmigration across the ECs, and culturing on PC-derived BM decreased both adhesion to and transmigration across the ECs. Anti-very late antigen 4 (VLA-4; on neutrophils) inhibited adhesion to TNF-α-activated composites, but not to ECs alone. Anti-CD99 (expressed on all 3 cell types) inhibited transmigration across the composites (14.5% of control) more than across the ECs (39.0% of control), and venular shear stress reduced transmigration across the ECs (17.3% of static) more than across the composites (36.7% of static). These results provide proof of concept that our composite human EC/PC/BM venular construct can reveal new interactions in the inflammatory cascade.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
15 |
20
|
Ahmad W, Jantan I, Kumolosasi E, Bukhari SNA. Immunostimulatory effects of the standardized extract of Tinospora crispa on innate immune responses in Wistar Kyoto rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2961-73. [PMID: 26089645 PMCID: PMC4468953 DOI: 10.2147/dddt.s85405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tinospora crispa (TC) has been used in folkloric medicine for the treatment of various diseases and has been reported for several pharmacological activities. However, the effects of TC extract on the immune system are largely unknown. Therefore, the present study was aimed to investigate the immunomodulatory effects of a standardized 80% ethanol extract of the stem of TC on innate immune responses. Male Wistar Kyoto rats were treated daily at 100 mg/kg, 200 mg/kg, and 400 mg/kg doses of the extract for 21 days by oral gavage. The immunomodulatory potential of TC was evaluated by determining its effect on chemotaxis and phagocytic activity of neutrophils isolated from the blood of rats. To further elucidate the mechanism of action, its effects on the proliferation of T- and B-lymphocytes and T-lymphocytes subsets (CD4+ and CD8+) and on the secretion of Th1 and Th2 cytokines were also monitored. The main components of the extracts, syringin and magnoflorine, were identified and quantitatively analyzed in the extracts by using a validated reversed-phase high-performance liquid chromatography method. It was observed that the chemotactic activity of neutrophils obtained from extract-treated rats increased as compared to controls. A dose-dependent increase in the number of migrated cells and phagocytosis activity of neutrophils was observed. Dose-dependent increase was also observed in the T- and B-lymphocytes proliferation stimulated with concanavalin A (5 μg/mL) and lipopolysaccharide (10 μg/mL), and was statistically significant at 400 mg/kg (P>0.01). Apart from cell-mediated immune response, the concentrations of Th1 (TNF-α, IL-2, and IFN-γ) and Th2 (IL-4) cytokines were significantly increased in sera of rats treated with different doses as compared with the control group. From these findings, it can be concluded that TC possesses immunostimulatory activity and has therapeutic potential for the prevention of immune diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
14 |
21
|
Teixeira JM, Dias EV, Parada CA, Tambeli CH. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats. THE JOURNAL OF PAIN 2016; 18:132-143. [PMID: 27818192 DOI: 10.1016/j.jpain.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/15/2023]
Abstract
Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade. PERSPECTIVE P2X7 receptors could be promising therapeutic targets in the treatment of knee joint disease symptoms, especially in women, who are more affected than men by these conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
12 |
22
|
Cao Q, Li B, Wang X, Sun K, Guo Y. Therapeutic inhibition of CXC chemokine receptor 2 by SB225002 attenuates LPS-induced acute lung injury in mice. Arch Med Sci 2018; 14:635-644. [PMID: 29765453 PMCID: PMC5949915 DOI: 10.5114/aoms.2017.64980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/15/2014] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Sustained neutrophilic infiltration is known to contribute to organ damage, such as acute lung injury (ALI). CXC chemokine receptor 2 (CXCR2) is the major receptor regulating inflammatory neutrophil recruitment in acute and chronic inflamed tissues. The purpose of this study was to investigate the functional relevance of the CXCR2 inhibitor SB225002 in LPS-induced acute lung injury. MATERIAL AND METHODS Male C57BL/6 mice were randomly divided into the following four experimental groups (n = 10 per group): untreated group (control group, Ctr); LPS-treated ALI group (LPS group, LPS); LPS + PBS-treated group (LPS + PBS); and SB225002-treated ALI group (LPS + SB225002). Twenty-four hours after treatment, the blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected and wet/dry ratio, protein concentration, myeloperoxidase (MPO) activity, neutrophil infiltration, and inflammatory cytokine secretion in lung tissue were measured. The pathologic changes in the lungs were examined using optical microscopy. Survival rates were recorded at 120 h in all four groups, in other experiments. RESULTS Histology findings revealed that the SB225002-treated group had significantly milder lung injury compared to the LPS-induced ALI and the PBS-treated control groups. Treatment with SB225002 significantly attenuated LPS-induced lung injury and suppressed the inflammatory responses in damaged lung tissue. Compared to the PBS-treated control group, treatment with SB225002 dramatically decreased the lung wet/dry ratio, protein concentration, and infiltration of neutrophils in lung tissue. Therefore, SB225002 treatment appeared to inhibit the production of inflammatory cytokines and increase survival time compared to the PBS-treated control group. CONCLUSIONS Together, these data demonstrated that inhibition of CXCR2 signaling by SB225002 could ameliorate LPS-induced acute lung injury, by reducing neutrophil recruitment and vascular permeability. SB225002 may be further developed as a potential novel treatment for LPS-induced ALI.
Collapse
|
research-article |
7 |
11 |
23
|
Souto FO, Castanheira FVS, Trevelin SC, Lima BHF, Cebinelli GCM, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Alves-Filho JC, Cunha FQ. Liver X Receptor Activation Impairs Neutrophil Functions and Aggravates Sepsis. J Infect Dis 2021; 221:1542-1553. [PMID: 31783409 DOI: 10.1093/infdis/jiz635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-β, the consequences of their activation, particularly during sepsis, remain unknown. METHODS We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
9 |
24
|
Shen XF, Zhao Y, Cao K, Guan WX, Li X, Zhang Q, Zhao Y, Ding YT, Du JF. Wip1 Deficiency Promotes Neutrophil Recruitment to the Infection Site and Improves Sepsis Outcome. Front Immunol 2017; 8:1023. [PMID: 28878779 PMCID: PMC5572246 DOI: 10.3389/fimmu.2017.01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 02/04/2023] Open
Abstract
Sepsis is defined as an uncontrolled host response to infection, and no specific therapy or drugs have been used in clinical trials currently. Discovering new therapeutic targets for sepsis treatment has always been a central problem in the field of sepsis research. Neutrophils stand at the first line in controlling infection and have been identified to be dysregulated with impaired migration and antimicrobial function during sepsis. Based on our previous results on demonstrating wild-type p53-induced phosphatase 1 in controlling neutrophil development, we explored the possible relationship among Wip1, neutrophils, and sepsis in the present study. Wip1-deficient mice exhibited improved outcomes in cecal ligation and puncture (CLP)-induced sepsis model with enhanced bacterial clearance and less multi-organ damage. The protection seen in Wip1 KO mice was mainly due to an increased accumulation of neutrophils in the primary infectious locus mediated by the decreased internalization of CXCR2, as well as by an increased antimicrobial function. Additionally, we also identified a negative correlation between CXCR2 and Wip1 in human neutrophils during sepsis. Pharmacological inhibition of Wip1 with its inhibitor can also prevent the internalization of CXCR2 on human neutrophils treated with lipopolysaccharides in vitro and significantly improve the outcome in CLP-induced sepsis model. Taken together, our results demonstrate that Wip1 can negatively regulate neutrophil migration and antimicrobial immunity during sepsis and inhibition of Wip1 can be a potential therapeutic target for sepsis treatment.
Collapse
|
Journal Article |
8 |
6 |
25
|
Ghazalee NS, Jantan I, Arshad L, Haque MA. Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats. Phytother Res 2019; 33:929-938. [PMID: 30618097 DOI: 10.1002/ptr.6285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022]
Abstract
Zingiber zerumbet rhizome has been used in traditional medicine mainly for the treatment of various immune-inflammatory related ailments and has been shown to exhibit a wide spectrum of biological effects especially antioxidant and anti-inflammatory activities. The present study was aimed to investigate the immunosuppressive effects of the standardized 80% ethanol extract of Z. zerumbet at 100, 200, and 400 mg/kg on the innate immune responses in male Wistar rats. The immune parameters determined were chemotaxis of neutrophils, Mac-1 expression, engulfment of Escherichia coli by neutrophils, reactive oxygen species production, and plasma lysozyme and ceruloplasmin levels. Zerumbone was qualitatively and quantitatively determined in the extract by using a validated reversed-phase HPLC, whereas liquid chromatography tandem-mass spectrometry (LC -MS/MS) was used to profile the secondary metabolites. Z. zerumbet significantly inhibited the migration of neutrophils, expressions of CD11b/CD18 integrin, phagocytic activity, and production of reactive oxygen species in a dose-dependent manner. The extract also dose-dependently inhibited the expressions of lysozyme and ceruloplasmin in the rat plasma. Z. zerumbet extract possessed strong inhibitory effects on the innate immune responses and has potential to be developed into an effective immunosuppressive agent.
Collapse
|
|
6 |
5 |