1
|
Ma Z, Li J, Hu X, Cai Z, Dou X. Ultrasensitive, Specific, and Rapid Fluorescence Turn-On Nitrite Sensor Enabled by Precisely Modulated Fluorophore Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002991. [PMID: 33344140 PMCID: PMC7740093 DOI: 10.1002/advs.202002991] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/13/2020] [Indexed: 05/04/2023]
Abstract
The precise regulation of fluorophore binding sites in an organic probe is of great significance toward the design of fluorescent sensing materials with specific functions. In this study, a probe with specific fluorescence properties and nitrite detection ability is designed by precisely modulating benzothiazole binding sites. Only the fluorophore bond at the ortho-position of the aniline moiety can specifically recognize nitrite, which ensures that the reaction products displays a robust green emission. The unique 2-(2-amino-4-carboxyphenyl) benzothiazole (ortho-BT) shows superior nitrite detection performance, including a low detection limit (2.2 fg), rapid detection time (<5 s), and excellent specificity even in the presence of >40 types of strong redox active, colored substances, nitro compounds, and metal ions. Moreover, the probe is highly applicable for the rapid on-site and semiquantitative measurement of nitrite. The proposed probe design strategy is expected to start a new frontier for the exploration of probe design methodology.
Collapse
|
research-article |
5 |
33 |
2
|
Lin H, Ding L, Zhang B, Huang J. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172149. [PMID: 29892401 PMCID: PMC5990765 DOI: 10.1098/rsos.172149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/27/2018] [Indexed: 05/31/2023]
Abstract
A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.
Collapse
|
research-article |
7 |
26 |
3
|
Luka GS, Nowak E, Kawchuk J, Hoorfar M, Najjaran H. Portable device for the detection of colorimetric assays. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171025. [PMID: 29291093 PMCID: PMC5717667 DOI: 10.1098/rsos.171025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 05/03/2023]
Abstract
In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue-saturation-value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4-1.6 mg l-1, with a low detection limit of 0.2 mg l-1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings.
Collapse
|
research-article |
8 |
23 |
4
|
Charbaji A, Heidari-Bafroui H, Anagnostopoulos C, Faghri M. A New Paper-Based Microfluidic Device for Improved Detection of Nitrate in Water. SENSORS 2020; 21:s21010102. [PMID: 33375290 PMCID: PMC7794956 DOI: 10.3390/s21010102] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we report a simple and inexpensive paper-based microfluidic device for detecting nitrate in water. This device incorporates two recent developments in paper-based technology suitable for nitrate detection and has an optimized microfluidic design. The first technical advancement employed is an innovative fibrous composite material made up of cotton fibers and zinc microparticles that can be incorporated in paper-based devices and results in better nitrate reduction. The second is a detection zone with an immobilized reagent that allows the passage of a larger sample volume. Different acids were tested—citric and phosphoric acids gave better results than hydrochloric acid since this acid evaporates completely without leaving any residue behind on paper. Different microfluidic designs that utilize various fluid control technologies were investigated and a design with a folding detection zone was chosen and optimized to improve the uniformity of the signal produced. The optimized design allowed the device to achieve a limit of detection and quantification of 0.53 ppm and 1.18 ppm, respectively, for nitrate in water. This accounted for more than a 40% improvement on what has been previously realized for the detection of nitrate in water using paper-based technology.
Collapse
|
Journal Article |
5 |
20 |
5
|
Wang T, Xu X, Wang C, Li Z, Li D. A Novel Highly Sensitive Electrochemical Nitrite Sensor Based on a AuNPs/CS/Ti 3C 2 Nanocomposite. NANOMATERIALS 2022; 12:nano12030397. [PMID: 35159742 PMCID: PMC8840747 DOI: 10.3390/nano12030397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5–335.5 μM and 335.5–3355 μM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 μA mM−1 cm−2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.
Collapse
|
|
3 |
9 |
6
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
research-article |
3 |
8 |
7
|
Xi R, Zhang SH, Zhang L, Wang C, Wang LJ, Yan JH, Pan GB. Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite Sensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E606. [PMID: 30709039 PMCID: PMC6387133 DOI: 10.3390/s19030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
In recent years, nitrite pollution has become a subject of great concern for human lives, involving a number of fields, such as environment, food industry and biological process. However, the effective detection of nitrite is an instant demand as well as an unprecedented challenge. Here, a novel nitrite sensor was fabricated by electrochemical deposition of palladium and platinum (Pd-Pt) nanocomposites on porous gallium nitride (PGaN). The obtained Pd-Pt/PGaN sensor provides abundant electrocatalytic sites, endowing it with excellent performances for nitrite detection. The sensor also shows a low detection limit of 0.95 µM, superior linear ampere response and high sensitivity (150 µA/mM for 1 to 300 µM and 73 µA/mM for 300 to 3000 µM) for nitrite. In addition, the Pd-Pt/PGaN sensor was applied and evaluated in the determination of nitrite from the real environmental samples. The experimental results demonstrate that the sensor has good reproducibility and long-term stability. It provides a practical way for rapidly and effectively monitoring nitrite content in the practical application.
Collapse
|
research-article |
6 |
6 |
8
|
Ning J, Luo X, Wang M, Li J, Liu D, Rong H, Chen D, Wang J. Ultrasensitive Electrochemical Sensor Based on Polyelectrolyte Composite Film Decorated Glassy Carbon Electrode for Detection of Nitrite in Curing Food at Sub-Micromolar Level. Molecules 2018; 23:molecules23102580. [PMID: 30304828 PMCID: PMC6222513 DOI: 10.3390/molecules23102580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023] Open
Abstract
To ensure food quality and safety, developing cost-effective, rapid and precision analytical techniques for quantitative detection of nitrite is highly desirable. Herein, a novel electrochemical sensor based on the sodium cellulose sulfate/poly (dimethyl diallyl ammonium chloride) (NaCS/PDMDAAC) composite film modified glass carbon electrode (NaCS/PDMDAAC/GCE) was proposed toward the detection of nitrite at sub-micromolar level, aiming to make full use of the inherent properties of individual component (biocompatible, low cost, good electrical conductivity for PDMDAAC; non-toxic, abundant raw materials, good film forming ability for NaCS) and synergistic enhancement effect. The NaCS/PDMDAAC/GCE was fabricated by a simple drop-casting method. Electrochemical behaviors of nitrite at NaCS/PDMDAAC/GCE were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, the NaCS/PDMDAAC/GCE exhibits a wide linear response region of 4.0 × 10−8 mol·L−1~1.5 × 10−4 mol·L−1 and a low detection 1imit of 43 nmol·L−1. The NaCS/PDMDAAC shows a synergetic enhancement effect toward the oxidation of nitrite, and the sensing performance is much better than the previous reports. Moreover, the NaCS/PDMDAAC also shows good stability and reproducibility. The NaCS/PDMDAAC/GCE was successfully applied to the determination of nitrite in ham sausage with satisfactory results.
Collapse
|
|
7 |
5 |
9
|
Cassani MC, Castagnoli R, Gambassi F, Nanni D, Ragazzini I, Masciocchi N, Boanini E, Ballarin B. A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:4922. [PMID: 34300663 PMCID: PMC8309846 DOI: 10.3390/s21144922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
This paper investigates the electrochemical properties of a new Cu(II)-based metal-organic framework (MOF). Noted as Cu-YBDC, it is built upon a linker containing the propargyl carbamate functionality and immobilized on a glassy carbon electrode by drop-casting (GC/Cu-YBDC). Afterward, GC/Cu-YBDC was treated with HAuCl4 and the direct electro-deposition of Au nanoparticles was carried at 0.05 V for 600 s (GC/Au/Cu-YBDC). The performance of both electrodes towards nitrite oxidation was tested and it was found that GC/Au/Cu-YBDC exhibited a better electrocatalytic behavior toward the oxidation of nitrite than GC/Cu-YBDC with enhanced catalytic currents and a reduced nitrite overpotential from 1.20 to 0.90 V. Additionally GC/Au/Cu-YBDC showed a low limit of detection (5.0 μM), an ultrafast response time (<2 s), and a wide linear range of up to 8 mM in neutral pH.
Collapse
|
research-article |
4 |
3 |
10
|
Luka GS, Nowak E, Kawchuk J, Hoorfar M, Najjaran H. Portable device for the detection of colorimetric assays. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171025. [PMID: 29291093 DOI: 10.5061/dryad.pj475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 05/19/2023]
Abstract
In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue-saturation-value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4-1.6 mg l-1, with a low detection limit of 0.2 mg l-1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings.
Collapse
|
|
8 |
1 |
11
|
Wang F, Li Y, Yan C, Ma Q, Yang X, Peng H, Wang H, Du J, Zheng B, Guo Y. Bismuth-Decorated Honeycomb-like Carbon Nanofibers: An Active Electrocatalyst for the Construction of a Sensitive Nitrite Sensor. Molecules 2023; 28:molecules28093881. [PMID: 37175296 PMCID: PMC10180303 DOI: 10.3390/molecules28093881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 μA mM-1 cm-2) in a wide range of 0.1~800 μM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.
Collapse
|
|
2 |
|
12
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Algethami JS, Altholami RH, Harraz FA, Rahman MM. Efficient nitrite determination by electrochemical approach in liquid phase with ultrasonically prepared gold-nanoparticle-conjugated conducting polymer nanocomposites. Front Chem 2024; 12:1358353. [PMID: 39165336 PMCID: PMC11333211 DOI: 10.3389/fchem.2024.1358353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/22/2024] Open
Abstract
An electrochemical nitrite sensor probe is introduced herein using a modified flat glassy carbon electrode (GCE) and SrTiO3 material doped with spherical-shaped gold nanoparticles (Au-NPs) and polypyrrole carbon (PPyC) at a pH of 7.0 in a phosphate buffer solution. The nanocomposites (NCs) containing Au-NPs, PPyC, and SrTiO3 were synthesized by ultrasonication, and their properties were thoroughly characterized through structural, elemental, optical, and morphological analyses with various conventional spectroscopic methods, such as field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The peak currents due to nitrite oxidation were characterized in detail and analyzed using conventional cyclic voltammetry (CV) as well as differential pulse voltammetry (DPV) under ambient conditions. The sensor response increased significantly from 0.15 to 1.5 mM of nitrite ions, and the sensor was fabricated by coating a conducting agent (PEDOT:PSS) on the GCE to obtain the Au-NPs/PPyC/SrTiO3 NCs/PEDOT:PSS/GCE probe. The sensor's sensitivity was determined as 0.5 μA/μM∙cm2 from the ratio of the slope of the linear detection range by considering the active surface area (0.0316 cm2) of the flat GCE. In addition, the limit of detection was determined as 20.00 ± 1.00 µM, which was found to be satisfactory. The sensor's stability, pH optimization, and reliability were also evaluated in these analyses. Overall, the sensor results were found to be satisfactory. Real environmental samples were then analyzed to evaluate the sensor's reliability through DPV, and the results showed that the proposed novel electrochemical sensor holds great promise for mitigating water contamination in the real samples with the lab-made Au-NPs/PPyC/SrTiO3 NC. Thus, this study provides valuable insights for improving sensors for broad environmental monitoring applications using the electrochemical approach.
Collapse
|
research-article |
1 |
|
13
|
Fantinelli Franco F, Malik MH, Manjakkal L, Roshanghias A, Smith CJ, Gauchotte-Lindsay C. Optimizing Carbon Structures in Laser-Induced Graphene Electrodes Using Design of Experiments for Enhanced Electrochemical Sensing Characteristics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65489-65502. [PMID: 39539231 PMCID: PMC11615855 DOI: 10.1021/acsami.4c13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In this study, we explored the morphological and electrochemical properties of carbon-based electrodes derived from laser-induced graphene (LIG) and compared them to commercially available graphene-sheet screen-printed electrodes (GS-SPEs). By optimizing the laser parameters (average laser power, speed, and focus) using a design of experiments response surface (DoE-RS) approach, binder-free LIG electrodes were achieved in a single-step process. Traditional trial-and-error methods can be time-consuming and may not capture the interactions between all variables effectively. To address this, we focused on linear resistance and substrate delamination to streamline the DoE-RS optimization process. Two LIGs, designated LIG A and LIG B, were fabricated using distinct and optimized laser settings, which resulted in a sheet resistance of 25 ± 2 Ω/sq and 21 ± 1 Ω/sq, respectively. These LIGs, characterized by scanning electron microscopy, Raman spectroscopy, and contact angle analysis, exhibited a highly porous morphology with 13% pore coverage and a contact angle <50°, which significantly increased their hydrophilicity when compared to the GS-SPE. For the electrochemical studies, the oxidation of NO2- ion by the graphene-based working electrodes was investigated, as it allowed for the direct comparison of the LIGs to the GS-SPE. These included cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulsed voltammetry studies, which revealed that LIG electrodes displayed a remarkable 500% increase in peak current during NO2- oxidation compared to the GS-SPE. The LIGs also demonstrated improved stability and sensitivity (420 ± 30 and 570 ± 10 nAμM-1 cm-2) compared to the GS-SPE (73 ± 4 nAμM-1 cm-2) in the oxidation of NO2- ions; however, LIG B was more susceptible to ionic interference than LIG A. These findings highlight the value of applying statistical approaches such as DoE-RS to systematically improve the LIG fabrication process, enabling the rapid production of optimized LIGs that outperform conventional carbon-based electrodes.
Collapse
|
research-article |
1 |
|