1
|
Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 2013; 110:577-86. [PMID: 23596328 DOI: 10.1152/jn.00164.2013] [Citation(s) in RCA: 559] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
559 |
2
|
Abstract
Cochlear synaptic loss, rather than hair cell death, is the earliest sign of damage in both noise- and age-related hearing impairment (Kujawa and Liberman, 2009; Sergeyenko et al., 2013). Here, we compare cochlear aging after two types of noise exposure: one producing permanent synaptic damage without hair cell loss and another producing neither synaptopathy nor hair cell loss. Adult mice were exposed (8-16 kHz, 100 or 91 dB SPL for 2 h) and then evaluated from 1 h to ∼ 20 months after exposure. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses (ABRs). Cochlear whole mounts and plastic sections were studied to quantify hair cells, cochlear neurons, and the synapses connecting them. The synaptopathic noise (100 dB) caused 35-50 dB threshold shifts at 24 h. By 2 weeks, thresholds had recovered, but synaptic counts and ABR amplitudes at high frequencies were reduced by up to ∼ 45%. As exposed animals aged, synaptopathy was exacerbated compared with controls and spread to lower frequencies. Proportional ganglion cell losses followed. Threshold shifts first appeared >1 year after exposure and, by ∼ 20 months, were up to 18 dB greater in the synaptopathic noise group. Outer hair cell losses were exacerbated in the same time frame (∼ 10% at 32 kHz). In contrast, the 91 dB exposure, producing transient threshold shift without acute synaptopathy, showed no acceleration of synaptic loss or cochlear dysfunction as animals aged, at least to ∼ 1 year after exposure. Therefore, interactions between noise and aging may require an acute synaptopathy, but a single synaptopathic exposure can accelerate cochlear aging.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
254 |
3
|
Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 2013; 111:552-64. [PMID: 24198321 DOI: 10.1152/jn.00184.2013] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Perceptual abnormalities such as hyperacusis and tinnitus often occur after acoustic overexposure. Although such exposure can also result in permanent threshold elevation, some individuals with noise-induced hyperacusis or tinnitus show clinically normal thresholds. Recent work in animals has shown that a "neuropathic" noise exposure can cause immediate, permanent degeneration of the cochlear nerve despite complete threshold recovery and lack of hair cell damage (Kujawa SG, Liberman MC. J Neurosci 29: 14077-14085, 2009; Lin HW, Furman AC, Kujawa SG, Liberman MC. J Assoc Res Otolaryngol 12: 605-616, 2011). Here we ask whether this noise-induced primary neuronal degeneration results in abnormal auditory behavior, based on the acoustic startle response (ASR) and prepulse inhibition (PPI) of startle. Responses were measured in mice exposed either to a "neuropathic" noise or to a lower-intensity, "nonneuropathic" noise and in unexposed control mice. Mice with cochlear neuropathy displayed hyperresponsivity to sound, evidenced by enhanced ASR and PPI, while exposed mice without neuronal loss showed control-like responses. Gap PPI tests, often used to assess tinnitus, revealed limited gap detection deficits in mice with cochlear neuropathy only for certain gap-startle latencies, inconsistent with the presence of tinnitus "filling in the gap." Despite significantly reduced wave 1 of the auditory brainstem response, representing cochlear nerve activity, later peaks were unchanged or enhanced, suggesting compensatory neural hyperactivity in the auditory brainstem. Considering the rapid postexposure onset of both cochlear neuropathy and exaggerated startle-based behavior, the results suggest a role for cochlear primary neuronal degeneration, per se, in the central neural excitability that could underlie the generation of hyperacusis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
244 |
4
|
Hoffman HJ, Dobie RA, Losonczy KG, Themann CL, Flamme GA. Declining Prevalence of Hearing Loss in US Adults Aged 20 to 69 Years. JAMA Otolaryngol Head Neck Surg 2017; 143:274-285. [PMID: 27978564 PMCID: PMC5576493 DOI: 10.1001/jamaoto.2016.3527] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance As the US population ages, effective health care planning requires understanding the changes in prevalence of hearing loss. Objective To determine if age- and sex-specific prevalence of adult hearing loss has changed during the past decade. Design, Setting, and Participants We analyzed audiometric data from adults aged 20 to 69 years from the 2011-2012 cycle of the US National Health and Nutrition Examination Survey, a cross-sectional, nationally representative interview and examination survey of the civilian, noninstitutionalized population, and compared them with data from the 1999-2004 cycles. Logistic regression was used to examine unadjusted, age- and sex-adjusted, and multivariable-adjusted associations with demographic, noise exposure, and cardiovascular risk factors. Data analysis was performed from April 28 to June 3, 2016. Interventions Audiometry and questionnaires. Main Outcomes and Measures Speech-frequency hearing impairment (HI) defined by pure-tone average of thresholds at 4 frequencies (0.5, 1, 2, and 4 kHz) greater than 25 decibels hearing level (HL), and high-frequency HI defined by pure-tone average of thresholds at 3 frequencies (3, 4, and 6 kHz) greater than 25 decibels HL. Results Based on 3831 participants with complete threshold measurements (1953 men and 1878 women; mean [SD] age, 43.6 [14.4] years), the 2011-2012 nationally weighted adult prevalence of unilateral and bilateral speech-frequency HI was 14.1% (27.7 million) compared with 15.9% (28.0 million) for the 1999-2004 cycles; after adjustment for age and sex, the difference was significant (odds ratio [OR], 0.70; 95% CI, 0.56-0.86). Men had nearly twice the prevalence of speech-frequency HI (18.6% [17.8 million]) as women (9.6% [9.7 million]). For individuals aged 60 to 69 years, speech-frequency HI prevalence was 39.3% (95% CI, 30.7%-48.7%). In adjusted multivariable analyses for bilateral speech-frequency HI, age was the major risk factor (60-69 years: OR, 39.5; 95% CI, 10.5-149.4); however, male sex (OR, 1.8; 95% CI, 1.1-3.0), non-Hispanic white (OR, 2.3; 95% CI, 1.3-3.9) and non-Hispanic Asian race/ethnicity (OR, 2.1; 95% CI, 1.1-4.2), lower educational level (less than high school: OR, 4.2; 95% CI, 2.1-8.5), and heavy use of firearms (≥1000 rounds fired: OR, 1.8; 95% CI, 1.1-3.0) were also significant risk factors. Additional associations for high-frequency HI were Mexican-American (OR, 2.0; 95% CI, 1.3-3.1) and other Hispanic race/ethnicity (OR, 2.4; 95% CI, 1.4-4.0) and the combination of loud and very loud noise exposure occupationally and outside of work (OR, 2.4; 95% CI, 1.4-4.2). Conclusions and Relevance Adult hearing loss is common and associated with age, other demographic factors (sex, race/ethnicity, and educational level), and noise exposure. Age- and sex-specific prevalence of HI continues to decline. Despite the benefit of delayed onset of HI, hearing health care needs will increase as the US population grows and ages.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
226 |
5
|
Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG. Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 2014; 8:26. [PMID: 24600357 PMCID: PMC3930880 DOI: 10.3389/fnsys.2014.00026] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Abstract
Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.
Collapse
|
Journal Article |
11 |
204 |
6
|
Abstract
The classic view of sensorineural hearing loss has been that the primary damage targets are hair cells and that auditory nerve loss is typically secondary to hair cell degeneration. Recent work has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of the synaptic connections between hair cells and the auditory nerve. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained a "hidden hearing loss" for two reasons: 1) the neuronal cell bodies survive for years despite loss of synaptic connection with hair cells, and 2) the degeneration is selective for auditory nerve fibers with high thresholds. Although not required for threshold detection when quiet, these high-threshold fibers are critical for hearing in noisy environments. Research suggests that primary neural degeneration is an important contributor to the perceptual handicap in sensorineural hearing loss, and it may be key to the generation of tinnitus and other associated perceptual anomalies. In cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from surviving auditory neurons and re-establishment of their peripheral synapses; thus, treatments may be on the horizon.
Collapse
|
Review |
8 |
165 |
7
|
Abstract
Dramatic results from recent animal experiments show that noise exposure can cause a selective loss of high-threshold auditory nerve fibers without affecting absolute sensitivity permanently. This cochlear neuropathy has been described as hidden hearing loss, as it is not thought to be detectable using standard measures of audiometric threshold. It is possible that hidden hearing loss is a common condition in humans and may underlie some of the perceptual deficits experienced by people with clinically normal hearing. There is some evidence that a history of noise exposure is associated with difficulties in speech discrimination and temporal processing, even in the absence of any audiometric loss. There is also evidence that the tinnitus experienced by listeners with clinically normal hearing is associated with cochlear neuropathy, as measured using Wave I of the auditory brainstem response. To date, however, there has been no direct link made between noise exposure, cochlear neuropathy, and perceptual difficulties. Animal experiments also reveal that the aging process itself, in the absence of significant noise exposure, is associated with loss of auditory nerve fibers. Evidence from human temporal bone studies and auditory brainstem response measures suggests that this form of hidden loss is common in humans and may have perceptual consequences, in particular, regarding the coding of the temporal aspects of sounds. Hidden hearing loss is potentially a major health issue, and investigations are ongoing to identify the causes and consequences of this troubling condition.
Collapse
|
Review |
11 |
161 |
8
|
Fridberger A, Flock A, Ulfendahl M, Flock B. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 1998; 95:7127-32. [PMID: 9618550 PMCID: PMC22763 DOI: 10.1073/pnas.95.12.7127] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 microm (SE 2 microm). Partial or complete recovery was seen within 30-45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.
Collapse
|
research-article |
27 |
141 |
9
|
Abstract
INTRODUCTION Approximately 5% of the population worldwide suffers from industrial, military or recreational noise-induced hearing loss (NIHL) at a great economic cost and detriment to the quality of life of the affected individuals. This review discusses pharmacological strategies to attenuate NIHL that have been developed in animal models and that are now beginning to be tested in field trials. AREAS COVERED The review describes the epidemiology, pathology and pathophysiology of NIHL in experimental animals and humans. The underlying molecular mechanisms of damage are then discussed as a basis for therapeutic approaches to ameliorate the loss of auditory function. Finally, studies in military, industrial and recreational settings are evaluated. Literature was searched using the terms 'noise-induced hearing loss' and 'noise trauma'. EXPERT OPINION NIHL, in principle, can be prevented. With the current pace of development, oral drugs to protect against NIHL should be available within the next 5-10 years. Positive results from ongoing trials combined with additional laboratory tests might accelerate the time from the bench to clinical treatment.
Collapse
|
Review |
14 |
120 |
10
|
Fernandez KA, Guo D, Micucci S, De Gruttola V, Liberman MC, Kujawa SG. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2019; 427:43-57. [PMID: 31887361 DOI: 10.1016/j.neuroscience.2019.11.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Abstract
Prior work has provided extensive documentation of threshold sensitivity and sensory hair cell losses after noise exposure. It is now clear, however, that cochlear synaptic loss precedes such losses, at least at low-moderate noise doses, silencing affected neurons. To address questions of whether, and how, cochlear synaptopathy and underlying mechanisms change as noise dose is varied, we assessed cochlear physiologic and histologic consequences of a range of exposures varied in duration from 15 min to 8 h and in level from 85 to 112 dB SPL. Exposures delivered to adult CBA/CaJ mice produced acute elevations in hair cell- and neural-based response thresholds ranging from trivial (∼5 dB) to large (∼50 dB), followed by varying degrees of recovery. Males appeared more noise vulnerable for some conditions of exposure. There was little to no inner hair cell (IHC) loss, but outer hair cell (OHC) loss could be substantial at highest frequencies for highest noise doses. Synapse loss was an early manifestation of noise injury and did not scale directly with either temporary or permanent threshold shift. With increasing noise dose, synapse loss grew to ∼50%, then declined for exposures yielding permanent hair cell injury/loss. All synaptopathic, but no non-synaptopathic exposures produced persistent neural response amplitude declines; those additionally yielding permanent OHC injury/loss also produced persistent reductions in OHC-based responses and exaggerated neural amplitude declines. Findings show that widespread cochlear synaptopathy can be present with and without noise-induced sensory cell loss and that differing patterns of cellular injury influence synaptopathic outcomes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
99 |
11
|
Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 2017; 11:192. [PMID: 28736517 PMCID: PMC5500902 DOI: 10.3389/fncel.2017.00192] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
A significant number of studies support the idea that inflammatory responses are intimately associated with drug-, noise- and age-related hearing loss (DRHL, NRHL and ARHL). Consequently, several clinical strategies aimed at reducing auditory dysfunction by preventing inflammation are currently under intense scrutiny. Inflammation, however, is a normal adaptive response aimed at restoring tissue functionality and homeostasis after infection, tissue injury and even stress under sterile conditions, and suppressing it could have unintended negative consequences. Therefore, an appropriate approach to prevent or ameliorate DRHL, NRHL and ARHL should involve improving the resolution of the inflammatory process in the cochlea rather than inhibiting this phenomenon. The resolution of inflammation is not a passive response but rather an active, highly controlled and coordinated process. Inflammation by itself produces specialized pro-resolving mediators with critical functions, including essential fatty acid derivatives (lipoxins, resolvins, protectins and maresins), proteins and peptides such as annexin A1 and galectins, purines (adenosine), gaseous mediators (NO, H2S and CO), as well as neuromodulators like acetylcholine and netrin-1. In this review article, we describe recent advances in the understanding of the resolution phase of inflammation and highlight therapeutic strategies that might be useful in preventing inflammation-induced cochlear damage. In particular, we emphasize beneficial approaches that have been tested in pre-clinical models of inflammatory responses induced by recognized ototoxic drugs such as cisplatin and aminoglycoside antibiotics. Since these studies suggest that improving the resolution process could be useful for the prevention of inflammation-associated diseases in humans, we discuss the potential application of similar strategies to prevent or mitigate DRHL, NRHL and ARHL.
Collapse
|
Review |
8 |
91 |
12
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
|
Review |
9 |
90 |
13
|
The more the worse: the grade of noise-induced hearing loss associates with the severity of tinnitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3071-9. [PMID: 20948948 PMCID: PMC2954569 DOI: 10.3390/ijerph7083071] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/20/2010] [Accepted: 07/29/2010] [Indexed: 11/16/2022]
Abstract
Tinnitus disturbs lives and negatively affects the quality of life of about 2% of the adult world population. Research has shown that the main cause of tinnitus is hearing loss. To analyze a possible association of the degree of hearing loss with the severity of tinnitus, we have performed a retrospective study using admission data on 531 patients suffering from chronic tinnitus. We have found that 83% of our tinnitus patients had a high frequency hearing loss corresponding to a noise-induced hearing loss (NIHL). There was a significant correlation between the mean hearing loss and the tinnitus loudness (p < 0.0001). Interestingly, patients suffering from decompensated chronic tinnitus had a greater degree of hearing loss than the patients with compensated form of tinnitus. In addition, we demonstrate that the degree of hearing loss positively correlates with the two subscales ("intrusiveness" and "auditory perceptional difficulties") of the Tinnitus Questionnaire. Our retrospective study provides indirect evidence supporting the hypothesis that the degree of noise-induced hearing loss influences the severity of tinnitus.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
80 |
14
|
Wood MB, Zuo J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front Cell Neurosci 2017; 11:106. [PMID: 28446866 PMCID: PMC5388681 DOI: 10.3389/fncel.2017.00106] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cells of the immune system have been shown to infiltrate the cochlea after acoustic trauma or ototoxic drug treatment; however, the contribution of the immune system to hair cell loss in the inner ear is incompletely understood. Most studies have concentrated on the immediate innate response to hair cell damage using CD45 as a broad marker for all immune cells. More recent studies have used RNA sequencing, GeneChip arrays and quantitative PCR to analyze gene expression in the entire cochlea after auditory trauma, leading to a better understanding of the chemokines and cytokines that attract immune cells to the cochlea. Immune suppression by blocking cytokines or immune receptors has been proven to suppress hair cell damage. However, it is now understood that not all immune cells are detrimental to the cochlea. CX3CR1+ resident macrophages protect hair cells from damage mediated by infiltrating immune cells. Systemically, the immune response is associated with both protection and pathology, and it has been implicated in the regeneration of certain tissues after injury. This review focuses on the studies of immune cells in various models of hearing loss and highlights the steps that can be taken to elucidate the connection between the immune response and hearing loss. The interplay between the immune system and tissues that were previously thought to be immune privileged, such as the cochlea, is an emerging research field, to which additional studies of the immune component of the cochlear response to injury will make an important contribution.
Collapse
|
Review |
8 |
78 |
15
|
Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc Natl Acad Sci U S A 2019; 116:8010-8017. [PMID: 30936319 DOI: 10.1073/pnas.1821844116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noise overexposure causes oxidative stress, leading to auditory hair cell damage. Adaptive peroxisome proliferation involving pejvakin, a peroxisome-associated protein from the gasdermin family, has been shown to protect against this harmful oxidative stress. However, the role of pejvakin in peroxisome dynamics and homeostasis remains unclear. Here we show that sound overstimulation induces an early and rapid selective autophagic degradation of peroxisomes (pexophagy) in auditory hair cells from wild-type, but not pejvakin-deficient (Pjvk -/-), mice. Noise overexposure triggers recruitment of the autophagosome-associated protein MAP1LC3B (LC3B; microtubule-associated protein 1 light chain 3β) to peroxisomes in wild-type, but not Pjvk -/-, mice. We also show that pejvakin-LC3B binding involves an LC3-interacting region within the predicted chaperone domain of pejvakin. In transfected cells and in vivo transduced auditory hair cells, cysteine mutagenesis experiments demonstrated the requirement for both C328 and C343, the two cysteine residues closest to the C terminus of pejvakin, for reactive oxygen species-induced pejvakin-LC3B interaction and pexophagy. The viral transduction of auditory hair cells from Pjvk -/- mice in vivo with both Pjvk and Lc3b cDNAs completely restored sound-induced pexophagy, fully prevented the development of oxidative stress, and resulted in normal levels of peroxisome proliferation, whereas Pjvk cDNA alone yielded only a partial correction of the defects. Overall, our results demonstrate that pexophagy plays a key role in noise-induced peroxisome proliferation and identify defective pexophagy as a cause of noise-induced hearing loss. They suggest that pejvakin acts as a redox-activated pexophagy receptor/adaptor, thereby identifying a previously unknown function of gasdermin family proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
76 |
16
|
Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK. J Neurosci 2017; 36:7497-510. [PMID: 27413159 DOI: 10.1523/jneurosci.0782-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy.
Collapse
|
Journal Article |
8 |
73 |
17
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
|
Review |
2 |
69 |
18
|
Masterson EA, Deddens JA, Themann CL, Bertke S, Calvert GM. Trends in worker hearing loss by industry sector, 1981-2010. Am J Ind Med 2015; 58:392-401. [PMID: 25690583 PMCID: PMC4557728 DOI: 10.1002/ajim.22429] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The purpose of this study was to estimate the incidence and prevalence of hearing loss for noise-exposed U.S. workers by industry sector and 5-year time period, covering 30 years. METHODS Audiograms for 1.8 million workers from 1981-2010 were examined. Incidence and prevalence were estimated by industry sector and time period. The adjusted risk of incident hearing loss within each time period and industry sector as compared with a reference time period was also estimated. RESULTS The adjusted risk for incident hearing loss decreased over time when all industry sectors were combined. However, the risk remained high for workers in Healthcare and Social Assistance, and the prevalence was consistently high for Mining and Construction workers. CONCLUSIONS While progress has been made in reducing the risk of incident hearing loss within most industry sectors, additional efforts are needed within Mining, Construction and Healthcare and Social Assistance.
Collapse
|
research-article |
10 |
66 |
19
|
Plack CJ, Léger A, Prendergast G, Kluk K, Guest H, Munro KJ. Toward a Diagnostic Test for Hidden Hearing Loss. Trends Hear 2016; 20:2331216516657466. [PMID: 27604783 PMCID: PMC5017571 DOI: 10.1177/2331216516657466] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
Abstract
Cochlear synaptopathy (or hidden hearing loss), due to noise exposure or aging, has been demonstrated in animal models using histological techniques. However, diagnosis of the condition in individual humans is problematic because of (a) test reliability and (b) lack of a gold standard validation measure. Wave I of the transient-evoked auditory brainstem response is a noninvasive electrophysiological measure of auditory nerve function and has been validated in the animal models. However, in humans, Wave I amplitude shows high variability both between and within individuals. The frequency-following response, a sustained evoked potential reflecting synchronous neural activity in the rostral brainstem, is potentially more robust than auditory brainstem response Wave I. However, the frequency-following response is a measure of central activity and may be dependent on individual differences in central processing. Psychophysical measures are also affected by intersubject variability in central processing. Differential measures may help to reduce intersubject variability due to unrelated factors. A measure can be compared, within an individual, between conditions that are affected differently by cochlear synaptopathy. Validation of the metrics is also an issue. Comparisons with animal models, computational modeling, auditory nerve imaging, and human temporal bone histology are all potential options for validation, but there are technical and practical hurdles and difficulties in interpretation. Despite the obstacles, a diagnostic test for hidden hearing loss is a worthwhile goal, with important implications for clinical practice and health surveillance.
Collapse
|
research-article |
9 |
60 |
20
|
Zuniga MG, Dinkes RE, Davalos-Bichara M, Carey JP, Schubert MC, King WM, Walston J, Agrawal Y. Association between hearing loss and saccular dysfunction in older individuals. Otol Neurotol 2012; 33:1586-92. [PMID: 23064383 PMCID: PMC3498596 DOI: 10.1097/mao.0b013e31826bedbc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE 1) Describe the association between hearing loss and dysfunction of each of the 5 vestibular end-organs--the horizontal, superior, and posterior semicircular canals; saccule; and utricle--in older individuals. 2) Evaluate whether hearing loss and vestibular end-organ deficits share any risk factors. STUDY DESIGN Cross-sectional study. SETTING Academic medical center. PATIENTS Fifty-one individuals age 70 years or older. INTERVENTIONS Audiometry, head-thrust dynamic visual acuity (htDVA), sound-evoked cervical vestibular-evoked myogenic potential (cVEMP), and tap-evoked ocular VEMP (oVEMP). MAIN OUTCOME MEASURES Audiometric pure-tone averages (PTA), htDVA LogMAR scores as a measure of semicircular canal function in each canal plane, and cVEMP and oVEMP amplitudes as a measure of saccular and utricular function, respectively. RESULTS We observed a significant correlation between hearing loss at high frequencies and reduced cVEMP amplitudes (or reduced saccular function; r = -0.37, p < 0.0001) in subjects age 70 years or older. In contrast, hearing loss was not associated with oVEMP amplitudes (or utricular function), or htDVA LogMAR scores (or semicircular canal function) in any of the canal planes. Age and noise exposure were significantly associated with measures of both cochlear and saccular dysfunction. CONCLUSION The concomitant decline in the cochlear and saccular function associated with aging may reflect their common embryologic origin in the pars inferior of the labyrinth. Noise exposure seems to be related to both saccular and cochlear dysfunction. These findings suggest a potential benefit of screening individuals with presbycusis-particularly those with significant noise exposure history-for saccular dysfunction, which may contribute to fall risk in the elderly.
Collapse
|
research-article |
13 |
60 |
21
|
Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res 2008; 245:5-17. [PMID: 18790034 PMCID: PMC2610263 DOI: 10.1016/j.heares.2008.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
|
Research Support, N.I.H., Extramural |
17 |
59 |
22
|
Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL, Sperber M, Sellon JB, Sarlus H, Pregernig G, Shuster B, Song Y, Mitra S, Orvis J, Margulies Z, Ogawa Y, Shults C, Depireux DA, Palermo AT, Canlon B, Burns J, Elkon R, Hertzano R. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 2021; 36:109758. [PMID: 34592158 PMCID: PMC8709734 DOI: 10.1016/j.celrep.2021.109758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
57 |
23
|
Masterson EA, Themann CL, Luckhaupt SE, Li J, Calvert GM. Hearing difficulty and tinnitus among U.S. workers and non-workers in 2007. Am J Ind Med 2016; 59:290-300. [PMID: 26818136 DOI: 10.1002/ajim.22565] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hearing loss and tinnitus are two potentially debilitating physical conditions affecting many people in the United States. The purpose of this study was to estimate the prevalence of hearing difficulty, tinnitus, and their co-occurrence within U.S. METHODS Data from the 2007 National Health Interview Survey (NHIS) were examined. Weighted prevalence and adjusted prevalence ratios for self-reported hearing difficulty, tinnitus, and their co-occurrence were estimated and compared by demographic, among workers with and without occupational noise exposure, and across industries and occupations. RESULTS Seven percent of U.S. workers never exposed to occupational noise had hearing difficulty, 5% had tinnitus and 2% had both conditions. However, among workers who had ever been exposed to occupational noise, the prevalence was 23%, 15%, and 9%, respectively (P < 0.0001). CONCLUSIONS Hearing difficulty and tinnitus are prevalent in the U.S.; especially among noise-exposed workers. Improved strategies for hearing conservation or better implementation are needed.
Collapse
|
|
9 |
55 |
24
|
Konings A, Van Laer L, Michel S, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Vandevelde A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G. Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations. Eur J Hum Genet 2009; 17:329-35. [PMID: 18813331 PMCID: PMC2986160 DOI: 10.1038/ejhg.2008.172] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/09/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most important occupational health hazards. Millions of people worldwide are exposed daily to harmful levels of noise. NIHL is a complex disease resulting from an interaction between genetic and environmental factors. Although the environmental risk factors have been studied extensively, little is known about the genetic factors. Heat-shock proteins (HSPs) are induced after exposure to severe noise. When first induced by exposure to moderate sound levels, they can protect the ear from damage from excessive noise exposure. This protection is highly variable between individuals. An association of HSP70 genes with NIHL has been described by Yang et al (2006) in a Chinese sample set of noise-exposed workers. In this study, three polymorphisms (rs1043618, rs1061581 and rs2227956) in HSP70-1, HSP70-2 and HSP70-hom, respectively, were genotyped in 206 Swedish and 238 Polish DNA samples of noise-exposed subjects and analyzed. One SNP, rs2227956 in HSP70-hom, resulted in a significant association with NIHL in both sample sets. In addition, rs1043618 and rs1061581 were significant in the Swedish sample set. Analysis of the haplotypes composed of the three SNPs revealed significant associations between NIHL and haplotype GAC in both sample sets and with haplotype CGT in the Swedish sample set. In conclusion, this study replicated the association of HSP70 genes with NIHL in a second and third independent noise-exposed sample set, hereby adding to the evidence that HSP70 genes may be NIHL susceptibility genes.
Collapse
|
research-article |
16 |
54 |
25
|
Kaur T, Clayman AC, Nash AJ, Schrader AD, Warchol ME, Ohlemiller KK. Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice. Front Neurosci 2019; 13:620. [PMID: 31263398 PMCID: PMC6585312 DOI: 10.3389/fnins.2019.00620] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Noise trauma causes loss of synaptic connections between cochlear inner hair cells (IHCs) and the spiral ganglion neurons (SGNs). Such synaptic loss can trigger slow and progressive degeneration of SGNs. Macrophage fractalkine signaling is critical for neuron survival in the injured cochlea, but its role in cochlear synaptopathy is unknown. Fractalkine, a chemokine, is constitutively expressed by SGNs and signals via its receptor CX3CR1 that is expressed on macrophages. The present study characterized the immune response and examined the function of fractalkine signaling in degeneration and repair of cochlear synapses following noise trauma. Adult mice wild type, heterozygous and knockout for CX3CR1 on a C57BL/6 background were exposed for 2 h to an octave band noise at 90 dB SPL. Noise exposure caused temporary shifts in hearing thresholds without any evident loss of hair cells in CX3CR1 heterozygous mice that have intact fractalkine signaling. Enhanced macrophage migration toward the IHC-synaptic region was observed immediately after exposure in all genotypes. Synaptic immunolabeling revealed a rapid loss of ribbon synapses throughout the basal turn of the cochlea of all genotypes. The damaged synapses spontaneously recovered in mice with intact CX3CR1. However, CX3CR1 knockout (KO) animals displayed enhanced synaptic degeneration that correlated with attenuated suprathreshold neural responses at higher frequencies. Exposed CX3CR1 KO mice also exhibited increased loss of IHCs and SGN cell bodies compared to exposed heterozygous mice. These results indicate that macrophages can promote repair of damaged synapses after moderate noise trauma and that repair requires fractalkine signaling.
Collapse
|
Journal Article |
6 |
53 |