1
|
Song B, Lisa JA, Tobias CR. Linking DNRA community structure and activity in a shallow lagoonal estuarine system. Front Microbiol 2014; 5:460. [PMID: 25232351 PMCID: PMC4153293 DOI: 10.3389/fmicb.2014.00460] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/13/2014] [Indexed: 01/26/2023] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate respiration pathways in the microbial nitrogen cycle. Diversity and abundance of denitrifying bacteria have been extensively examined in various ecosystems. However, studies on DNRA bacterial diversity are limited, and the linkage between the structure and activity of DNRA communities has yet to be discovered. We examined the composition, diversity, abundance, and activities of DNRA communities at five sites along a salinity gradient in the New River Estuary, North Carolina, USA, a shallow temporal/lagoonal estuarine system. Sediment slurry incubation experiments with (15)N-nitrate were conducted to measure potential DNRA rates, while the abundance of DNRA communities was calculated using quantitative PCR of nrfA genes encoding cytochrome C nitrite reductase, commonly found in DNRA bacteria. A pyrosequencing method targeting nrfA genes was developed using an Ion Torrent sequencer to examine the diversity and composition of DNRA communities within the estuarine sediment community. We found higher levels of nrfA gene abundance and DNRA activities in sediments with higher percent organic content. Pyrosequencing analysis of nrfA genes revealed spatial variation of DNRA communities along the salinity gradient of the New River Estuary. Percent abundance of dominant populations was found to have significant influence on overall activities of DNRA communities. Abundance of dominant DNRA bacteria and organic carbon availability are important regulators of DNRA activities in the eutrophic New River Estuary.
Collapse
|
Journal Article |
11 |
65 |
2
|
Smith CJ, Dong LF, Wilson J, Stott A, Osborn AM, Nedwell DB. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient. Front Microbiol 2015; 6:542. [PMID: 26082763 PMCID: PMC4451412 DOI: 10.3389/fmicb.2015.00542] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/17/2015] [Indexed: 12/03/2022] Open
Abstract
This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed.
Collapse
|
Journal Article |
10 |
45 |
3
|
Pandey A, Suter H, He JZ, Hu HW, Chen D. Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Appl Environ Microbiol 2018; 84:e00870-18. [PMID: 29934331 PMCID: PMC6102975 DOI: 10.1128/aem.00870-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox), and biological N2 fixation (BNF) can influence the nitrogen (N) use efficiency of rice production. While the effect of N application on BNF is known, little is known about its effect on NO3- partitioning between DNRA, denitrification, and anammox. Here, we investigated the effect of N application on DNRA, denitrification, anammox, and BNF and on the abundance of relevant genes in three paddy soils in Australia. Rice was grown in a glasshouse with N fertilizer (150 kg N ha-1) and without N fertilizer for 75 days, and the rhizosphere and bulk soils were collected separately for laboratory incubation and quantitative PCR analysis. Nitrogen application reduced DNRA rates by >16% in all the soils regardless of the rhizospheric zone, but it did not affect the nrfA gene abundance. Without N, the amount and proportion of NO3- reduced by DNRA (0.42 to 0.52 μg g-1 soil day-1 and 45 to 55%, respectively) were similar to or higher than the amount and proportion reduced by denitrification. However, with N the amount of NO3- reduced by DNRA (0.32 to 0.40 μg g-1 soil day-1) was 40 to 50% lower than the amount of NO3- reduced by denitrification. Denitrification loss increased by >20% with N addition and was affected by the rhizospheric zones. Nitrogen loss was minimal through anammox, while BNF added 0.02 to 0.25 μg N g-1 soil day-1 We found that DNRA plays a significant positive role in paddy soil N retention, as it accounts for up to 55% of the total NO3- reduction, but this is reduced by N application.IMPORTANCE This study provides evidence that nitrogen addition reduces nitrogen retention through DNRA and increases nitrogen loss via denitrification in a paddy soil ecosystem. DNRA is one of the major NO3- reduction processes, and it can outcompete denitrification in NO3- consumption when rice paddies are low in nitrogen. A significant level of DNRA activity in paddy soils indicates that DNRA plays an important role in retaining nitrogen by reducing NO3- availability for denitrification and leaching. Our study shows that by reducing N addition to rice paddies, there is a positive effect from reduced nitrogen loss but, more importantly, from the conversion of NO3- to NH4+, which is the favored form of mineral nitrogen for plant uptake.
Collapse
|
research-article |
7 |
20 |
4
|
Bhowmik A, Cloutier M, Ball E, Bruns MA. Underexplored microbial metabolisms for enhanced nutrient recycling in agricultural soils. AIMS Microbiol 2017; 3:826-845. [PMID: 31294192 PMCID: PMC6604955 DOI: 10.3934/microbiol.2017.4.826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023] Open
Abstract
Worldwide, arable soils have been degraded through erosion and exhaustive cultivation, and substantial proportions of fertilizer nutrients are not taken up by crops. A central challenge in agriculture is to understand how soils and resident microbial communities can be managed to deliver nutrients to crops more efficiently with minimal losses to the environment. Throughout much of the twentieth century, intensive farming has caused substantial loss of organic matter and soil biological function. Today, more farmers recognize the importance of protecting soils and restoring organic matter through reduced tillage, diversified crop rotation, cover cropping, and increased organic amendments. Such management practices are expected to foster soil conditions more similar to those of undisturbed, native plant-soil systems by restoring soil biophysical integrity and re-establishing plant-microbe interactions that retain and recycle nutrients. Soil conditions which could contribute to desirable shifts in microbial metabolic processes include lower redox potentials, more diverse biogeochemical gradients, higher concentrations of labile carbon, and enrichment of carbon dioxide (CO2) and hydrogen gas (H2) in soil pores. This paper reviews recent literature on generalized and specific microbial processes that could become more operational once soils are no longer subjected to intensive tillage and organic matter depletion. These processes include heterotrophic assimilation of CO2; utilization of H2 as electron donor or reactant; and more diversified nitrogen uptake and dissimilation pathways. Despite knowledge of these processes occurring in laboratory studies, they have received little attention for their potential to affect nutrient and energy flows in soils. This paper explores how soil microbial processes could contribute to in situ nutrient retention, recycling, and crop uptake in agricultural soils managed for improved biological function.
Collapse
|
Review |
8 |
16 |
5
|
Cannon J, Sanford RA, Connor L, Yang WH, Chee-Sanford J. Optimization of PCR primers to detect phylogenetically diverse nrfA genes associated with nitrite ammonification. J Microbiol Methods 2019; 160:49-59. [PMID: 30905502 DOI: 10.1016/j.mimet.2019.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is now known to be a more prevalent process in terrestrial ecosystems than previously thought. The key enzyme, a pentaheme cytochrome c nitrite reductase NrfA associated with respiratory nitrite ammonification, is encoded by the nrfA gene in a broad phylogeny of bacteria. The lack of reliable and comprehensive molecular tools to detect diverse nrfA from environmental samples has hampered efforts to meaningfully characterize the genetic potential for DNRA in environmental systems. In this study, modifications were made to optimize the amplification efficiency of previously-designed PCR primers, targeting the diagnostic region of NrfA between the conserved third- and fourth heme binding domains, and to increase coverage to include detection of environmentally relevant Geobacteraceae-like nrfA. Using an alignment of the primers to >270 bacterial nrfA genes affiliated with 18 distinct clades, modifications to the primer sequences improved coverage, minimized amplification artifacts, and yielded the predicted product sizes from reference-, soil-, and groundwater DNA. Illumina sequencing of amplicons showed the successful recovery of nrfA gene fragments from environmental DNA based on alignments of the translated sequences. The new primers developed in this study are more efficient in PCR reactions, although gene targets with high GC content affect efficiency. Furthermore, the primers have a broader spectrum of detection and were validated rigorously for use in detecting nrfA from natural environments. These are suitable for conventional PCR, qPCR, and use in PCR access array technologies that allow multiplex gene amplification for downstream high throughput sequencing platforms.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
13 |
6
|
Wang A, Li X, Hao X, Luo X, Chen W, Huang Q. Ammonia level influences the assembly of dissimilatory nitrate reduction to ammonia bacterial community in soils under different heavy metal remediation treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156393. [PMID: 35660450 DOI: 10.1016/j.scitotenv.2022.156393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal remediation treatments might influence functional microbial community assembly. Dissimilatory nitrate reduction to ammonia (DNRA) contributes to the nitrogen retention processes in soil ecosystems. We assumed that remediation might reduce heavy metal toxicity and increase some available nutrients for the DNRA microbes, thus balancing the deterministic and stochastic process for DNRA community assembly. Here, we investigated the process of DNRA bacterial community assembly under different heavy metal remediation treatments (including control, biochar, limestone, rice straw, rice straw + limestone, and biochar + limestone) in an Alfisol soil. The abundance of DNRA bacteria diverged across treatments. The α-diversity of the DNRA bacterial community was correlated with pH, available phosphorus (AP), ammonium (NH4+), and extractable Fe (EFe). Metal Cd and Fe significantly affected the abundance of the nrfA gene. The β-diversity was associated with pH, NH4+, and EFe. Deterministic processes dominantly drove the assembly processes of the DNRA bacterial community. NH4+ level played an essential role in the assembly processes than the other soil physicochemical properties and metal availability. High, moderate, and low levels of NH4+ could advocate stochastic process plus selection, heterogeneous selection to stochastic process, and heterogeneous selection, respectively. Network analysis highlighted a predominant role of NH4+ in regulating DNRA bacterial community assembly. However, the relative abundance of modules and some keystone species also were influenced by pH and EFe, respectively. Therefore, the DNRA bacterial community assembly under different heavy metal remediation treatments in this study was dominantly driven by nitrogen availability. pH, phosphorus, and metal availability were auxiliary regulators on DNRA bacterial community.
Collapse
|
|
3 |
10 |
7
|
Yuan H, Jia B, Zeng Q, Zhou Y, Wu J, Wang H, Fang H, Cai Y, Li Q. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. CHEMOSPHERE 2022; 303:134664. [PMID: 35460675 DOI: 10.1016/j.chemosphere.2022.134664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.
Collapse
|
|
3 |
7 |
8
|
Nojiri Y, Kaneko Y, Azegami Y, Shiratori Y, Ohte N, Senoo K, Otsuka S, Isobe K. Dissimilatory Nitrate Reduction to Ammonium and Responsible Microbes in Japanese Rice Paddy Soil. Microbes Environ 2020; 35:ME20069. [PMID: 33028782 PMCID: PMC7734399 DOI: 10.1264/jsme2.me20069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022] Open
Abstract
Nitrification-denitrification processes in the nitrogen cycle have been extensively examined in rice paddy soils. Nitrate is generally depleted in the reduced soil layer below the thin oxidized layer at the surface, and this may be attributed to high denitrification activity. In the present study, we investigated dissimilatory nitrate reduction to ammonium (DNRA), which competes with denitrification for nitrate, in order to challenge the conventional view of nitrogen cycling in paddy soils. We performed paddy soil microcosm experiments using 15N tracer analyses to assess DNRA and denitrification rates and conducted clone library analyses of transcripts of nitrite reductase genes (nrfA, nirS, and nirK) in order to identify the microbial populations carrying out these processes. The results obtained showed that DNRA occurred to a similar extent to denitrification and appeared to be enhanced by a nitrate limitation relative to organic carbon. We also demonstrated that different microbial taxa were responsible for these distinct processes. Based on these results and previous field observations, nitrate produced by nitrification within the surface oxidized layer may be reduced not only to gaseous N2 via denitrification, but also to NH4+ via DNRA, within the reduced layer. The present results also indicate that DNRA reduces N loss through denitrification and nitrate leaching and provides ammonium to rice roots in rice paddy fields.
Collapse
|
research-article |
5 |
6 |
9
|
Zhang T, Zhuang X, Ahmad S, Lee T, Cao C, Ni SQ. Investigation of dissimilatory nitrate reduction to ammonium (DNRA) in urban river network along the Huangpu River, China: rates, abundances, and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23823-23833. [PMID: 34820753 DOI: 10.1007/s11356-021-17475-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an essential intermediate step in the nitrogen cycle, and different sediment physicochemical properties can affect the DNRA process. But the detailed research on the environmental nitrogen cycling in urban river networks based on DNRA communities and the functional gene nrfA is lacking. In this study, the flow line of the Huangpu River in Shanghai was analyzed using isotope tracer, quantitative real-time PCR, and high-throughput sequencing techniques to evaluate the role of DNRA on the stability of the river network and marine. The significant positive correlation between the rate of DNRA and sediment organic carbon was identified. At the genus level, Anaeromyxobacter is the most dominant. Notably, both heterotrophic and autotrophic DNRA species were discovered. This study added diversity to the scope of urban freshwater river network ecosystem studies by investigating the distribution of DNRA bacteria along the Huangpu River. It provided new insights into the biological nitrogen cycle of typical urban inland rivers in eastern China.
Collapse
|
|
3 |
3 |
10
|
Sharma G, Garg N, Hasan S, Saffarini D, Shirodkar S. Fumarate and nitrite reduction by Prevotella nigrescens and Prevotella buccae isolated from Chronic Periodontitis patients. Microb Pathog 2023; 176:106022. [PMID: 36739100 DOI: 10.1016/j.micpath.2023.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study is an investigation of anaerobic nitrite and fumarate reduction/respiration abilities of two characterised Prevotella species namely Prevotella nigrescens (SS6B) and Prevotella buccae (GS6B) isolated from the periodontal pockets of chronic periodontitis (ChP) patients. METHODS Isolation and identification of the periodontal bacteria from 20 patients showing clinical symptoms of ChP. Characterisation of anaerobic nitrite and fumarate reduction was done in P. nigrescens (SS6B) and P. buccae (GS6B) using reduction assays, inhibition assays with use of specific inhibitors, growth assays and enzyme activity assays. Degenerate PCR was used to detect and amplify nitrite reductase (nrfA) and fumarate reductase (frdA) gene sequences in these Prevotella isolates. In addition, molecular and in silico analysis of the amplified anaerobic reductase gene sequences was performed using NCBI conserved domain analysis, Interpro database and MegaX. RESULTS We provided experimental evidence for presence of active nitrite and fumarate reductase activities through enzyme activity, reduction, inhibitor and growth assays. Moreover, we were able to detect presence of 505 bps nrfA gene fragment and 400 bps frdA gene fragment in these Prevotella spp. These fragments show similarity to multiheme ammonia forming cytochrome c nitrite reductases and fumarate reductases flavoprotein subunit, respectively. CONCLUSION Anaerobic nitrite and fumarate respiration abilities in P. nigrescens and P. buccae isolates appear to be important for detoxification process and growth, respectively.
Collapse
|
|
2 |
|
11
|
Su W, Wang S, Yang J, Yu Q, Wirth S, Huang X, Qi W, Zhang X, Li H. Corpse decay of wild animals leads to the divergent succession of nrfA-type microbial communities. Appl Microbiol Biotechnol 2022; 106:5287-5300. [PMID: 35802158 DOI: 10.1007/s00253-022-12065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022]
Abstract
Animal carcasses introduce large amounts of nitrates and ammonium into the soil ecosystem. Some of this ammonium is transformed from nitrite through the nrfA-type microbial community. However, it is unclear how nrfA-type microorganisms respond to the decomposition of corpses. This study applied high-throughput sequencing to characterize the ecological succession of nrfA-type microbial communities in grassland soil. Our results showed that Cyclobacterium and Trueperella were the predominant genera for nrfA-type communities in soil with a decomposing corpse (experimental group), while Cyclobacterium and Archangium were dominant in soil without a corpse (control group). The alpha diversity indexes and the resistance and resilience indexes of the microbial communities initially increased and then decreased during decomposition. Compared with the control group, nrfA-encoding community structure in the experimental group gradually became divergent with succession and temporal turnover accelerated. Network analysis revealed that the microbial communities of the experimental group had more complex interactions than those of the control groups. Moreover, the bacterial community assembly in the experimental group was governed by stochastic processes, and the communities of the experimental group had a weaker dispersal capacity than those of the control group. Our results reveal the succession patterns of the nrfA-type microbial communities during degradation of wild animal corpses, which can offer references for demonstrating the ecological mechanism underlying the changes in the nrfA-type microbial community during carcass decay. KEY POINTS: • Corpse decay accelerates the temporal turnover of the nrfA-type community in soil. • Corpse decay changes the ecological succession of the nrfA-type community in soil. • Corpse decay leads to a complex co-occurrence pattern of the nrfA-type community in soil.
Collapse
|
|
3 |
|