1
|
Farine DR. A guide to null models for animal social network analysis. Methods Ecol Evol 2017; 8:1309-1320. [PMID: 29104749 PMCID: PMC5656331 DOI: 10.1111/2041-210x.12772] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Null models are an important component of the social network analysis toolbox. However, their use in hypothesis testing is still not widespread. Furthermore, several different approaches for constructing null models exist, each with their relative strengths and weaknesses, and often testing different hypotheses. In this study, I highlight why null models are important for robust hypothesis testing in studies of animal social networks. Using simulated data containing a known observation bias, I test how different statistical tests and null models perform if such a bias was unknown. I show that permutations of the raw observational (or ‘pre‐network’) data consistently account for underlying structure in the generated social network, and thus can reduce both type I and type II error rates. However, permutations of pre‐network data remain relatively uncommon in animal social network analysis because they are challenging to implement for certain data types, particularly those from focal follows and GPS tracking. I explain simple routines that can easily be implemented across different types of data, and supply R code that applies each type of null model to the same simulated dataset. The R code can easily be modified to test hypotheses with empirical data. Widespread use of pre‐network data permutation methods will benefit researchers by facilitating robust hypothesis testing.
Collapse
|
Journal Article |
8 |
231 |
2
|
Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, Loreau M, Maglianesi MA, Melián CJ, Pitteloud C, Roslin T, Rohr R, Saavedra S, Thuiller W, Woodward G, Zimmermann NE, Gravel D. Comparing species interaction networks along environmental gradients. Biol Rev Camb Philos Soc 2017; 93:785-800. [PMID: 28941124 DOI: 10.1111/brv.12366] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co-variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant-hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis-based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients.
Collapse
|
Review |
8 |
119 |
3
|
Brown JH, Fox BJ, Kelt DA. Assembly Rules: Desert Rodent Communities Are Structured at Scales from Local to Continental. Am Nat 2000; 156:314-321. [PMID: 29587502 DOI: 10.1086/303385] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
Journal Article |
25 |
67 |
4
|
Purves DW, Turnbull LA. Different but equal: the implausible assumption at the heart of neutral theory. J Anim Ecol 2010; 79:1215-25. [PMID: 20726922 PMCID: PMC3025117 DOI: 10.1111/j.1365-2656.2010.01738.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/09/2010] [Indexed: 11/28/2022]
Abstract
1. The core assumption of neutral theory is that all individuals in a community have equal fitness regardless of species, and regardless of the species composition of the community. But, real communities consist of species exhibiting large trait differences; hence these differences must be subject to perfect fitness-equalizing trade-offs for neutrality to hold. 2. Here we explain that perfect equalizing trade-offs are extremely unlikely to occur in reality, because equality of fitness among species is destroyed by: (i) any deviation in the functional form of the trade-off away from the one special form that gives equal fitness; (ii) spatial or temporal variation in performance; (iii) random species differences in performance. 3. In the absence of the density-dependent processes stressed by traditional niche-based community ecology, communities featuring small amounts of (i) or (ii) rapidly lose trait variation, becoming dominated by species with similar traits, and exhibit substantially lower species richness compared to the neutral case. Communities featuring random interspecific variation in traits (iii) lose all but a few fortuitous species. 4. Thus neutrality should be viewed, a priori, as a highly improbable explanation for the long-term co-occurrence of measurably different species within ecological communities. In contrast, coexistence via niche structure and density dependence, is robust to species differences in baseline fitness, and so remains plausible. 5. We conclude that: (i) co-occurring species will typically exhibit substantial differences in baseline fitness even when (imperfect) equalizing trade-offs have been taken into account; (ii) therefore, communities must be strongly niche structured, otherwise they would lose both trait variation and species richness; (iii) nonetheless, even in strongly niche-structured communities, it is possible that the abundance of species with similar traits are at least partially free to drift.
Collapse
|
research-article |
15 |
59 |
5
|
Si X, Baselga A, Leprieur F, Song X, Ding P. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J Anim Ecol 2016; 85:409-18. [PMID: 26619392 DOI: 10.1111/1365-2656.12478] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
Taxonomic diversity considers all species being equally different from each other and thus disregards species' different ecological functions. Exploring taxonomic and functional aspects of biodiversity simultaneously can better understand the processes of community assembly. We analysed taxonomic and functional alpha and beta diversities of breeding bird assemblages on land-bridge islands in the Thousand Island Lake, China. Given the high dispersal ability of most birds at this spatial scale (several kilometres), we predicted (i) selective extinction driving alpha and beta diversities after the creation of land-bridge islands of varying area and (ii) low taxonomic and functional beta diversities that were not correlated to spatial distance. Breeding birds were surveyed on 37 islands annually from 2007 to 2014. We decomposed beta diversity of breeding birds into spatial turnover and nestedness-resultant components, and related taxonomic and functional diversities to island area and isolation using power regression models (for alpha diversity) and multiple regression models on distance matrices (for beta diversity). We then ran simulations to assess the strength of the correlations between taxonomic and functional diversities. Results revealed that both taxonomic and functional alpha diversities increased with island area. The taxonomic nestedness-resultant and turnover components increased and decreased with difference in area, respectively, but functional counterparts did not. Isolation played a minor role in explaining alpha- and beta-diversity patterns. By partitioning beta diversity, we found low levels of overall taxonomic and functional beta diversities. The functional nestedness-resultant component dominated overall functional beta diversity, whereas taxonomic turnover was the dominant component for taxonomic beta diversity. The simulation showed that functional alpha and beta diversities were significantly correlated with taxonomic diversities, and the observed values of correlations were significantly different from null expectations of random extinction. Our assessment of island bird assemblages validated the predictions of no distance effects and low beta diversity due to pervasive dispersal events among islands and also suggested that selective extinction drives taxonomic and functional alpha and beta diversities. The contrasting turnover and nestedness-resultant components of taxonomic and functional beta diversities demonstrate the importance of considering the multifaceted nature of biodiversity when examining community assembly.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
51 |
6
|
Chacoff NP, Resasco J, Vázquez DP. Interaction frequency, network position, and the temporal persistence of interactions in a plant-pollinator network. Ecology 2017; 99:21-28. [PMID: 29082521 DOI: 10.1002/ecy.2063] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022]
Abstract
Ecological interactions are highly dynamic in time and space. Previous studies of plant-animal mutualistic networks have shown that the occurrence of interactions varies substantially across years. We analyzed interannual variation of a quantitative mutualistic network, in which links are weighted by interaction frequency. The network was sampled over six consecutive years, representing one of the longest time series for a community-wide mutualistic network. We estimated the interannual similarity in interactions and assessed the determinants of their persistence. The occurrence of interactions varied greatly among years, with most interactions seen in only one year (64%) and few (20%) in more than two years. This variation was associated with the frequency and position of interactions relative to the network core, so that the network consisted of a persistent core of frequent interactions and many peripheral, infrequent interactions. Null model analyses suggest that species abundances play a substantial role in generating these patterns. Our study represents an important step in the study of ecological networks, furthering our mechanistic understanding of the ecological processes driving the temporal persistence of interactions.
Collapse
|
Journal Article |
8 |
51 |
7
|
Dapper AL, Wade MJ. Relaxed Selection and the Rapid Evolution of Reproductive Genes. Trends Genet 2020; 36:640-649. [PMID: 32713599 DOI: 10.1016/j.tig.2020.06.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Evolutionary genomic studies find that reproductive protein genes, those directly involved in reproductive processes, diversify more rapidly than most other gene categories. Strong postcopulatory sexual selection acting within species is the predominant hypothesis proposed to account for the observed pattern. Recently, relaxed selection due to sex-specific gene expression has also been put forward to explain the relatively rapid diversification. We contend that relaxed selection due to sex-limited gene expression is the correct null model for tests of molecular evolution of reproductive genes and argue that it may play a more significant role in the evolutionary diversification of reproductive genes than previously recognized. We advocate for a re-evaluation of adaptive explanations for the rapid diversification of reproductive genes.
Collapse
|
Review |
5 |
46 |
8
|
Pigot AL, Etienne RS. A new dynamic null model for phylogenetic community structure. Ecol Lett 2015; 18:153-63. [PMID: 25560516 PMCID: PMC4674968 DOI: 10.1111/ele.12395] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion – often attributed to negative biotic interactions – are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
9
|
Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM. An integrated framework to improve the concept of resource specialisation. Ecol Lett 2014; 17:1341-50. [PMID: 25168335 DOI: 10.1111/ele.12347] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/14/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
Resource specialisation, although a fundamental component of ecological theory, is employed in disparate ways. Most definitions derive from simple counts of resource species. We build on recent advances in ecophylogenetics and null model analysis to propose a concept of specialisation that comprises affinities among resources as well as their co-occurrence with consumers. In the distance-based specialisation index (DSI), specialisation is measured as relatedness (phylogenetic or otherwise) of resources, scaled by the null expectation of random use of locally available resources. Thus, specialists use significantly clustered sets of resources, whereas generalists use over-dispersed resources. Intermediate species are classed as indiscriminate consumers. The effectiveness of this approach was assessed with differentially restricted null models, applied to a data set of 168 herbivorous insect species and their hosts. Incorporation of plant relatedness and relative abundance greatly improved specialisation measures compared to taxon counts or simpler null models, which overestimate the fraction of specialists, a problem compounded by insufficient sampling effort. This framework disambiguates the concept of specialisation with an explicit measure applicable to any mode of affinity among resource classes, and is also linked to ecological and evolutionary processes. This will enable a more rigorous deployment of ecological specialisation in empirical and theoretical studies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
36 |
10
|
Laube S, Zotz G. Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. ANNALS OF BOTANY 2006; 97:1103-14. [PMID: 16574691 PMCID: PMC2803392 DOI: 10.1093/aob/mcl067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS A possible role of host tree identity in the structuring of vascular epiphyte communities has attracted scientific attention for decades. Specifically, it has been suggested that each host tree species has a specific subset of the local species pool according to its own set of properties, e.g. physicochemical characteristics of the bark, tree architecture, or leaf phenology patterns. METHODS A novel, quantitative approach to this question is presented, taking advantage of a complete census of the vascular epiphyte community in 0.4 ha of undisturbed lowland forest in Panama. For three locally common host-tree species (Socratea exorrhiza, Marila laxiflora, Perebea xanthochyma) null models were created of the expected epiphyte assemblages assuming that epiphyte colonization reflected random distribution of epiphytes in the forest. KEY RESULTS In all three tree species, abundances of the majority of epiphyte species (69-81 %) were indistinguishable from random, while the remaining species were about equally over- or under-represented compared with their occurrence in the entire forest plot. Permutations based on the number of colonized trees (reflecting observed spatial patchiness) yielded similar results. Finally, a third analysis (canonical correspondence analysis) also confirmed host-specific differences in epiphyte assemblages. In spite of pronounced preferences of some epiphytes for particular host trees, no epiphyte species was restricted to a single host. CONCLUSIONS The epiphytes on a given tree species are not simply a random sample of the local species pool, but there are no indications of host specificity either.
Collapse
|
research-article |
19 |
35 |
11
|
Bersier LF, Dixon P, Sugihara G. Scale-Invariant or Scale-Dependent Behavior of the Link Density Property in Food Webs: A Matter of Sampling Effort? Am Nat 1999; 153:676-682. [PMID: 29585644 DOI: 10.1086/303200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
Journal Article |
26 |
32 |
12
|
Si X, Cadotte MW, Zeng D, Baselga A, Zhao Y, Li J, Wu Y, Wang S, Ding P. Functional and phylogenetic structure of island bird communities. J Anim Ecol 2017; 86:532-542. [PMID: 28191629 DOI: 10.1111/1365-2656.12650] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 11/30/2022]
Abstract
Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental filtering hypothesis. Our study demonstrates the importance of integrating multiple forms of diversity for understanding the effects of habitat loss and fragmentation, and further reveals that TIB could be extended to community measures by moving beyond assumptions of species equivalency in colonisation rates and extinction susceptibilities.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
31 |
13
|
Wiegand T, May F, Kazmierczak M, Huth A. What drives the spatial distribution and dynamics of local species richness in tropical forest? Proc Biol Sci 2018; 284:rspb.2017.1503. [PMID: 28931739 DOI: 10.1098/rspb.2017.1503] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/22/2017] [Indexed: 11/12/2022] Open
Abstract
Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m2). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers. We find that processes not included in classical neutral theory are needed to explain these fundamental patterns of the observed local forest dynamics. We identified a large spatio-temporal variability in the local number of recruits as the main missing mechanism, whereas variability of mortality rates contributed to a lesser extent. We also found that local tree numbers stabilize at typical values which can be explained by a simple analytical model. Our study emphasized the importance of spatio-temporal variability in recruitment beyond demographic stochasticity for explaining the local heterogeneity of tropical forests.
Collapse
|
Journal Article |
7 |
31 |
14
|
Yamaura Y, Connor EF, Royle JA, Itoh K, Sato K, Taki H, Mishima Y. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling. Ecol Evol 2016; 6:4836-48. [PMID: 27547317 PMCID: PMC4979711 DOI: 10.1002/ece3.2244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.
Collapse
|
research-article |
9 |
24 |
15
|
Cusack JJ, Kohl MT, Metz MC, Coulson T, Stahler DR, Smith DW, MacNulty DR. Weak spatiotemporal response of prey to predation risk in a freely interacting system. J Anim Ecol 2019; 89:120-131. [PMID: 30838656 PMCID: PMC7003944 DOI: 10.1111/1365-2656.12968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022]
Abstract
The extent to which prey space use actively minimizes predation risk continues to ignite controversy. Methodological reasons that have hindered consensus include inconsistent measurements of predation risk, biased spatiotemporal scales at which responses are measured and lack of robust null expectations. We addressed all three challenges in a comprehensive analysis of the spatiotemporal responses of adult female elk (Cervus elaphus) to the risk of predation by wolves (Canis lupus) during winter in northern Yellowstone, USA. We quantified spatial overlap between the winter home ranges of GPS‐collared elk and three measures of predation risk: the intensity of wolf space use, the distribution of wolf‐killed elk and vegetation openness. We also assessed whether elk varied their use of areas characterized by more or less predation risk across hours of the day, and estimated encounter rates between simultaneous elk and wolf pack trajectories. We determined whether observed values were significantly lower than expected if elk movements were random with reference to predation risk using a null model approach. Although a small proportion of elk did show a tendency to minimize use of open vegetation at specific times of the day, overall we highlight a notable absence of spatiotemporal response by female elk to the risk of predation posed by wolves in northern Yellowstone. Our results suggest that predator–prey interactions may not always result in strong spatiotemporal patterns of avoidance.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
24 |
16
|
Wei Y, de Lange SC, Pijnenburg R, Scholtens LH, Ardesch DJ, Watanabe K, Posthuma D, van den Heuvel MP. Statistical testing in transcriptomic-neuroimaging studies: A how-to and evaluation of methods assessing spatial and gene specificity. Hum Brain Mapp 2021; 43:885-901. [PMID: 34862695 PMCID: PMC8764473 DOI: 10.1002/hbm.25711] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
Multiscale integration of gene transcriptomic and neuroimaging data is becoming a widely used approach for exploring the molecular underpinnings of large‐scale brain organization in health and disease. Proper statistical evaluation of determined associations between imaging‐based phenotypic and transcriptomic data is key in these explorations, in particular to establish whether observed associations exceed “chance level” of random, nonspecific effects. Recent approaches have shown the importance of statistical models that can correct for spatial autocorrelation effects in the data to avoid inflation of reported statistics. Here, we discuss the need for examination of a second category of statistical models in transcriptomic‐neuroimaging analyses, namely those that can provide “gene specificity.” By means of a couple of simple examples of commonly performed transcriptomic‐neuroimaging analyses, we illustrate some of the potentials and challenges of transcriptomic‐imaging analyses, showing that providing gene specificity on observed transcriptomic‐neuroimaging effects is of high importance to avoid reports of nonspecific effects. Through means of simulations we show that the rate of reported nonspecific effects (i.e., effects that cannot be specifically linked to a specific gene or gene‐set) can run as high as 60%, with only less than 5% of transcriptomic‐neuroimaging associations observed through ordinary linear regression analyses showing both spatial and gene specificity. We provide a discussion, a tutorial, and an easy‐to‐use toolbox for the different options of null models in transcriptomic‐neuroimaging analyses.
Collapse
|
|
4 |
23 |
17
|
Ulrich W, Piwczyński M, Zaplata MK, Winter S, Schaaf W, Fischer A. Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties. Oecologia 2014; 175:985-95. [PMID: 24810325 PMCID: PMC4059990 DOI: 10.1007/s00442-014-2954-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/16/2014] [Indexed: 12/03/2022]
Abstract
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.
Collapse
|
research-article |
11 |
19 |
18
|
Murphy SJ, Salpeter K, Comita LS. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology 2018; 97:2074-2084. [PMID: 27859202 DOI: 10.1890/15-1801.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/21/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
Abstract
Herbaceous plants are a key component of tropical forests. Previous work indicates that herbs contribute substantially to the species richness of tropical plant communities. However, the processes structuring tropical herb diversity, and how they contrast with woody communities, have been underexplored. Within the understory of a 50-ha forest dynamics plot in central Panama, we compared the diversity, distribution, and abundance of vascular herbaceous plants with woody seedlings (i.e., tree and lianas <1 cm DBH and ≥20 cm tall). Beta-diversity was calculated for each community using a null model approach. We then assessed the similarity in alpha and beta-diversity among herbs, tree seedlings, and liana seedlings. Strengths of habitat associations were measured using permutational ANOVA among topographic habitat-types. Variance partitioning was then used to quantify the amount of variation in species richness and composition explained by spatial and environmental variables (i.e., topography, soils, and shade) for each growth form. Species richness and diversity were highest for tree seedlings, followed by liana seedlings and then herbs. In contrast, beta-diversity was 16-127% higher for herbs compared to woody seedlings, indicating higher spatial variation in this stratum. We observed no correlation between local richness or compositional uniqueness of herbs and woody seedlings across sites, indicating that different processes control the spatial patterns of woody and herbaceous diversity and composition. Habitat associations were strongest for herbs, as indicated by greater compositional dissimilarity among habitat types. Likewise, environmental variables explained a larger proportion of the variation in species richness and composition for herbs than for woody seedlings (richness = 25%, 14%, 12%; composition = 25%, 9%, 6%, for herbs, trees, and lianas, respectively). These differences between strata did not appear to be due to differences in lifespan alone, based on data from adult trees. Our results point to contrasting assembly mechanisms for herbaceous and woody communities, with herbs showing stronger niche-derived structure. Future research on tropical herbaceous communities is likely to yield new insights into the many processes structuring diverse plant communities.
Collapse
|
Journal Article |
7 |
19 |
19
|
Bässler C, Halbwachs H, Karasch P, Holzer H, Gminder A, Krieglsteiner L, Gonzalez RS, Müller J, Brandl R. Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecol Evol 2016; 6:582-92. [PMID: 26843941 PMCID: PMC4729255 DOI: 10.1002/ece3.1911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
Organisms have evolved a fascinating variety of strategies and organs for successful reproduction. Fruit bodies are the reproductive organ of fungi and vary considerably in size and shape among species. Our understanding of the mechanisms underlying the differences in fruit body size among species is still limited. Fruit bodies of saprotrophic fungi are smaller than those of mutualistic ectomycorrhizal fungi. If differences in fruit body size are determined by carbon acquisition, then mean reproductive traits of saprotrophic and ectomycorrhizal fungi assemblages should vary differently along gradients of resource availability as carbon acquisition seems more unpredictable and costly for saprotrophs than for ectomycorrhizal fungi. Here, we used 48 local inventories of fungal fruit bodies (plot size: 0.02 ha each) sampled along a gradient of resource availability (growing stock) across 3 years in the Bavarian Forest National Park in Germany to investigate regional and local factors that might influence the distribution of species with different reproductive traits, particularly fruit body size. As predicted, mean fruit body size of local assemblages of saprotrophic fungi was smaller than expected from the distribution of traits of the regional species pool across central and northern Europe, whereas that of ectomycorrhizal fungi did not differ from random expectation. Furthermore and also as expected, mean fruit body size of assemblages of saprotrophic fungi was significantly smaller than for assemblages of ectomycorrhizal species. However, mean fruit body sizes of not only saprotrophic species but also ectomycorrhizal species increased with resource availability, and the mean number of fruit bodies of both assemblages decreased. Our results indicate that the differences in carbon acquisition between saprotrophs and ectomycorrhizal species lead to differences in basic reproductive strategies, with implications for the breadth of their distribution. However, the differences in resource acquisition cannot explain detailed species distribution patterns at a finer, local scale based on their reproductive traits.
Collapse
|
research-article |
9 |
16 |
20
|
Purschke O, Michalski SG, Bruelheide H, Durka W. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecol Evol 2017; 7:11079-11091. [PMID: 29299283 PMCID: PMC5743486 DOI: 10.1002/ece3.3564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.
Collapse
|
research-article |
8 |
16 |
21
|
Authier M, Aubry LM, Cam E. Wolf in sheep's clothing: Model misspecification undermines tests of the neutral theory for life histories. Ecol Evol 2017; 7:3348-3361. [PMID: 28515871 PMCID: PMC5433986 DOI: 10.1002/ece3.2874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 02/06/2017] [Indexed: 11/24/2022] Open
Abstract
Understanding the processes behind change in reproductive state along life‐history trajectories is a salient research program in evolutionary ecology. Two processes, state dependence and heterogeneity, can drive the dynamics of change among states. Both processes can operate simultaneously, begging the difficult question of how to tease them apart in practice. The Neutral Theory for Life Histories (NTLH) holds that the bulk of variations in life‐history trajectories is due to state dependence and is hence neutral: Once previous (breeding) state is taken into account, variations are mostly random. Lifetime reproductive success (LRS), the number of descendants produced over an individual's reproductive life span, has been used to infer support for NTLH in natura. Support stemmed from accurate prediction of the population‐level distribution of LRS with parameters estimated from a state dependence model. We show with Monte Carlo simulations that the current reliance of NTLH on LRS prediction in a null hypothesis framework easily leads to selecting a misspecified model, biased estimates and flawed inferences. Support for the NTLH can be spurious because of a systematic positive bias in estimated state dependence when heterogeneity is present in the data but ignored in the analysis. This bias can lead to spurious positive covariance between fitness components when there is in fact an underlying trade‐off. Furthermore, neutrality implied by NTLH needs a clarification because of a probable disjunction between its common understanding by evolutionary ecologists and its translation into statistical models of life‐history trajectories. Irrespective of what neutrality entails, testing hypotheses about the dynamics of change among states in life histories requires a multimodel framework because state dependence and heterogeneity can easily be mistaken for each other.
Collapse
|
Journal Article |
8 |
15 |
22
|
Li L, Pujari L, Wu C, Huang D, Wei Y, Guo C, Zhang G, Xu W, Liu H, Wang X, Wang M, Sun J. Assembly Processes and Co-occurrence Patterns of Abundant and Rare Bacterial Community in the Eastern Indian Ocean. Front Microbiol 2021; 12:616956. [PMID: 34456881 PMCID: PMC8385211 DOI: 10.3389/fmicb.2021.616956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial communities are composed of many rare species and a few abundant species. Considering the disproportionate importance of rare species for ecosystem functioning, it is important to understand the mechanisms structuring the rare and abundant components of a diverse community in response to environmental changes. Here, we used a 16S ribosomal RNA gene sequencing approach to investigate the bacterial community diversity in the Eastern Indian Ocean (EIO) during the monsoon and intermonsoon. We employed a phylogenetic null model and network analysis to evaluate the assembly processes and co-occurrence pattern of the microbial community. We found that higher bacterial diversity was detected in the intermonsoon with high temperature and low Chlorophyll a concentrations and N/P ratios. The balance between ecological deterministic processes and stochastic processes varied with seasons in the EIO. Meanwhile, conditionally rare taxa (CRT) were more likely modulated by variable selection processes than always rare taxa (ART) and abundant taxa (AT) (CRT > ART > AT). By linking assembly process and species co-occurrence, we demonstrated that the microbial co-occurrence associations tended to be higher when deterministic processes (mainly variable selection) were weaker. This negative trend was observed in rare species rather than abundant species. The linkage could enhance our understanding of the underlying mechanisms underpinning the generation and maintenance of microbial community diversity.
Collapse
|
research-article |
4 |
14 |
23
|
Shi W, Wang Y, Xiang W, Li X, Cao K. Environmental filtering and dispersal limitation jointly shaped the taxonomic and phylogenetic beta diversity of natural forests in southern China. Ecol Evol 2021; 11:8783-8794. [PMID: 34257928 PMCID: PMC8258218 DOI: 10.1002/ece3.7711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
AIM The mechanisms underlying the maintenance of biodiversity remain to be elucidated. Taxonomic diversity alone remains an unresolved issue, especially in terms of the mechanisms of species co-existence. We hypothesized that phylogenetic information could help to elucidate the mechanism of community assembly and the services and functions of ecosystems. The aim of this study was to explore the mechanisms driving floral diversity in subtropical forests and evaluate the relative effects of these mechanisms on diversity variation, by combining taxonomic and phylogenetic information. LOCATION We examined 35 1-ha tree stem-mapped plots across eight national nature reserves in Guangxi Zhuang Autonomous Region, China. TAXON Trees. METHODS We quantified the taxonomic and phylogenetic β-diversity between each pair of plots using the (abundance-based) Rao's quadratic entropy and the (incidence-based) Sørensen dissimilarity indices. Using a null model approach, we compared the observed β-diversity with the expected diversity at random and calculated the standard effect size of the observed β-diversity deviation. Furthermore, we used distance-based redundancy analysis (dbRDA) to partition the variations in taxonomic and phylogenetic observed β-diversity and β-deviation into four parts to assess the environmental and spatial effects. RESULTS The taxonomic β-deviation was related to and higher than the phylogenetic β-deviation (r = .74). This indicated that the species turnover between pairwise plots was mainly the turnover of closely related species. Higher taxonomic and phylogenetic β-deviation were mainly concentrated in the pairwise karst and nonkarst forest plots, indicating that the species in karst forests and nonkarst forests were predominantly from distantly related clades. A large proportions of the variation in taxonomic and phylogenetic β-deviation were explained by the joint effect of environmental and spatial variables, while the contribution of environmental variables was greater than that of spatial variables, probably owing to the influence of the sampling scale dependence, integrality of sampling size and species pool, and the unique climatic and geomorphic characteristics. MAIN CONCLUSIONS Our study highlights the importance of phylogeny in biodiversity research. The incorporation of taxonomic and phylogenetic information provides a perspective to explore potential underlying mechanisms that have shaped species assemblages and phylogenetic patterns in biodiversity hotspots.
Collapse
|
research-article |
4 |
12 |
24
|
Sreekar R, Katabuchi M, Nakamura A, Corlett RT, Slik JWF, Fletcher C, He F, Weiblen GD, Shen G, Xu H, Sun IF, Cao K, Ma K, Chang LW, Cao M, Jiang M, Gunatilleke IAUN, Ong P, Yap S, Gunatilleke CVS, Novotny V, Brockelman WY, Xiang W, Mi X, Li X, Wang X, Qiao X, Li Y, Tan S, Condit R, Harrison RD, Koh LP. Spatial scale changes the relationship between beta diversity, species richness and latitude. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181168. [PMID: 30839691 PMCID: PMC6170539 DOI: 10.1098/rsos.181168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 06/09/2023]
Abstract
The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.
Collapse
|
research-article |
7 |
12 |
25
|
Rajala T, Olhede SC, Murrell DJ. When do we have the power to detect biological interactions in spatial point patterns? THE JOURNAL OF ECOLOGY 2019; 107:711-721. [PMID: 31007275 PMCID: PMC6472561 DOI: 10.1111/1365-2745.13080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 05/27/2023]
Abstract
Uncovering the roles of biotic interactions in assembling and maintaining species-rich communities remains a major challenge in ecology. In plant communities, interactions between individuals of different species are expected to generate positive or negative spatial interspecific associations over short distances. Recent studies using individual-based point pattern datasets have concluded that (a) detectable interspecific interactions are generally rare, but (b) are most common in communities with fewer species; and (c) the most abundant species tend to have the highest frequency of interactions. However, it is unclear how the detection of spatial interactions may change with the abundances of each species, or the scale and intensity of interactions. We ask if statistical power is sufficient to explain all three key results.We use a simple two-species model, assuming no habitat associations, and where the abundances, scale and intensity of interactions are controlled to simulate point pattern data. In combination with an approximation to the variance of the spatial summary statistics that we sample, we investigate the power of current spatial point pattern methods to correctly reject the null model of pairwise species independence.We show the power to detect interactions is positively related to both the abundances of the species tested, and the intensity and scale of interactions, but negatively related to imbalance in abundances. Differences in detection power in combination with the abundance distributions found in natural communities are sufficient to explain all the three key empirical results, even if all pairwise interactions are identical. Critically, many hundreds of individuals of both species may be required to detect even intense interactions, implying current abundance thresholds for including species in the analyses are too low. Sy n thesis. The widespread failure to reject the null model of spatial interspecific independence could be due to low power of the tests rather than any key biological process. Since we do not model habitat associations, our results represent a first step in quantifying sample sizes required to make strong statements about the role of biotic interactions in diverse plant communities. However, power should be factored into analyses and considered when designing empirical studies.
Collapse
|
research-article |
6 |
11 |