1
|
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S. Decoding odor quality and intensity in the Drosophila brain. eLife 2014; 3:e04147. [PMID: 25512254 PMCID: PMC4270039 DOI: 10.7554/elife.04147] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022] Open
Abstract
To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information. DOI:http://dx.doi.org/10.7554/eLife.04147.001 Organisms need to sense and adapt to their environment in order to survive. Senses such as vision and smell allow an organism to absorb information about the external environment and translate it into a meaningful internal image. This internal image helps the organism to remember incidents and act accordingly when they encounter similar situations again. A typical example is when organisms are repeatedly attracted to odors that are essential for survival, such as food and pheromones, and are repulsed by odors that threaten survival. Strutz et al. addressed how attractiveness or repulsiveness of a smell, and also the strength of a smell, are processed by a part of the olfactory system called the lateral horn in fruit flies. This involved mapping the neuronal patterns that were generated in the lateral horn when a fly was exposed to particular odors. Strutz et al. found that a subset of neurons called inhibitory projection neurons processes information about whether the odor is attractive or repulsive, and that a second subset of these neurons process information about the intensity of the odor. Other insects, such as honey bees and hawk moths, have olfactory systems with a similar architecture and might also employ a similar spatial approach to encode information regarding the intensity and identity of odors. Locusts, on the other hand, employ a temporal approach to encoding information about odors. The work of Strutz et al. shows that certain qualities of odors are contained in a spatial map in a specific brain region of the fly. This opens up the question of how the information in this spatial map influences decisions made by the fly. DOI:http://dx.doi.org/10.7554/eLife.04147.002
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
109 |
2
|
Hagiwara A, Pal SK, Sato TF, Wienisch M, Murthy VN. Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits 2012; 6:18. [PMID: 22529781 PMCID: PMC3329886 DOI: 10.3389/fncir.2012.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 02/04/2023] Open
Abstract
Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.
Collapse
|
research-article |
13 |
59 |
3
|
Sandoz JC, Deisig N, de Brito Sanchez MG, Giurfa M. Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Front Behav Neurosci 2007; 1:5. [PMID: 18958187 PMCID: PMC2525855 DOI: 10.3389/neuro.08.005.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/30/2007] [Indexed: 11/21/2022] Open
Abstract
Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most influential animal models for the study of general odor processing and learning at behavioral, cellular and molecular levels. Accordingly, the anatomy of the bee brain is well characterized and electro- and opto-physiological recording techniques at different stages of the olfactory circuit are possible in the laboratory. Here we review pheromone communication in honeybees and analyze the different stages of olfactory processing in the honeybee brain, focusing on available data on pheromone detection, processing and representation at these different stages. In particular, we argue that the traditional distinction between labeled-line and across-fiber pattern processing, attributed to pheromone and general odors respectively, may not be so clear in the case of honeybees, especially for social-pheromones. We propose new research avenues for stimulating future work in this area.
Collapse
|
Journal Article |
18 |
50 |
4
|
Czesnik D, Schild D, Kuduz J, Manzini I. Cannabinoid action in the olfactory epithelium. Proc Natl Acad Sci U S A 2007; 104:2967-72. [PMID: 17301239 PMCID: PMC1815290 DOI: 10.1073/pnas.0609067104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Indexed: 11/18/2022] Open
Abstract
The perception of odors is influenced by a variety of neuromodulators, and there is growing evidence that modulation already takes place in the olfactory epithelium. Here we report on cannabinergic actions in the olfactory epithelium of Xenopus laevis tadpoles. First we show that CB1 receptor-specific antagonists AM251, AM281, and LY320135 modulate odor-evoked calcium changes in olfactory receptor neurons. Second, we localize CB1-like immunoreactivity on dendrites of olfactory receptor neurons. Finally, we describe the cannabinergic influence on odor-induced spike-associated currents in individual olfactory receptor neurons. Here we demonstrate that the cannabinergic system has a profound impact on peripheral odor processing and discuss its possible function.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
50 |
5
|
Derntl B, Schöpf V, Kollndorfer K, Lanzenberger R. Menstrual cycle phase and duration of oral contraception intake affect olfactory perception. Chem Senses 2013; 38:67-75. [PMID: 23071141 PMCID: PMC3522517 DOI: 10.1093/chemse/bjs084] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although a significant impact of cycle phase on olfactory thresholds has been shown in females, limited data exist regarding discrimination and identification. Therefore, we investigated a broader range of olfactory performance and analyzed the impact of cycle phase and oral contraception. We measured 80 healthy Caucasians, including 20 females taking oral contraceptives and 40 females without oral contraception who were further divided into follicular and luteal phase. Olfactory performance of all participants was assessed twice using the "Sniffin' Sticks" battery and intensity and pleasantness ratings of n-butanol were collected. Data analysis revealed that females outperformed males in odor discrimination and odor identification. In the luteal phase, higher thresholds and higher intensity ratings for n-butanol emerged. Duration of oral contraception correlated positively with olfactory performance pointing to better performance with longer intake. Hence, our data show that odor performance is affected by menstrual cycle phase and duration of oral contraception intake and thus can be modulated by hormonal changes.
Collapse
|
research-article |
12 |
37 |
6
|
Kuebler LS, Olsson SB, Weniger R, Hansson BS. Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 2011; 5:7. [PMID: 21772814 PMCID: PMC3128929 DOI: 10.3389/fncir.2011.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/27/2011] [Indexed: 12/03/2022] Open
Abstract
Animals typically perceive natural odor cues in their olfactory environment as a complex mixture of chemically diverse components. In insects, the initial representation of an odor mixture occurs in the first olfactory center of the brain, the antennal lobe (AL). The contribution of single neurons to the processing of complex mixtures in insects, and in particular moths, is still largely unknown. Using a novel multicomponent stimulus system to equilibrate component and mixture concentrations according to vapor pressure, we performed intracellular recordings of projection and interneurons in an attempt to quantitatively characterize mixture representation and integration properties of single AL neurons in the moth. We found that the fine spatiotemporal representation of 2–7 component mixtures among single neurons in the AL revealed a highly combinatorial, non-linear process for coding host mixtures presumably shaped by the AL network: 82% of mixture responding projection neurons and local interneurons showed non-linear spike frequencies in response to a defined host odor mixture, exhibiting an array of interactions including suppression, hypoadditivity, and synergism. Our results indicate that odor mixtures are represented by each cell as a unique combinatorial representation, and there is no general rule by which the network computes the mixture in comparison to single components. On the single neuron level, we show that those differences manifest in a variety of parameters, including the spatial location, frequency, latency, and temporal pattern of the response kinetics.
Collapse
|
Journal Article |
14 |
32 |
7
|
Kárpáti Z, Tasin M, Cardé RT, Dekker T. Early quality assessment lessens pheromone specificity in a moth. Proc Natl Acad Sci U S A 2013; 110:7377-82. [PMID: 23589889 PMCID: PMC3645593 DOI: 10.1073/pnas.1216145110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pheromone orientation in moths is an exemplar of olfactory acuity. To avoid heterospecific mating, males respond to female-produced blends with high specificity and temporal resolution. A finely tuned sensory to projection neuron network secures specificity, and this network is thought to assess pheromone quality continually during orientation. We tested whether male moths do indeed evaluate each pheromone encounter and surprisingly found that male European corn borer moths instead generalize across successive encounters. Although initially highly ratio specific, once "locked on" to the pheromone plume the acceptable ratio can vary widely, and even unattractive blends can become attractive. We further found that this "mental shortcut" may be a consequence of the fact that sensory neurons exposed to frequent encounters do not reliably encode blend ratios. Neurons tuned to either of the two pheromone components adapt differentially in plumes containing the preferred blend ratio (97:3) and cause the olfactory sensory signal to "evolve," even in narrowly tuned pheromonal circuits. However, apparently the brain interprets these shifting signals as invariant "gestalts." Generalization in pheromone perception may mitigate stabilizing selection and allow introgression between sympatric strains, such as in the European corn borer, that otherwise appear isolated by pheromonal differences. Generalization may also be important in responses to general odorants, as circuits underlying these display vast sensitivity differences, complex interactions, and temporal intricacies.
Collapse
|
research-article |
12 |
24 |
8
|
Kumar A, Barkai E, Schiller J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 2021; 10:70383. [PMID: 34698637 PMCID: PMC8575458 DOI: 10.7554/elife.70383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
The piriform cortex (PCx) is essential for learning of odor information. The current view postulates that odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is ‘hardwired.’ Here, we revisit this notion by studying location- and pathway-dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only a few local NMDA-spikes delivered at theta frequency, while global spike timing-dependent plasticity (STDP) protocols failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes that can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.
Collapse
|
|
4 |
15 |
9
|
Christensen TA, D'Alessandro G, Lega J, Hildebrand JG. Morphometric modeling of olfactory circuits in the insect antennal lobe: I. Simulations of spiking local interneurons. Biosystems 2001; 61:143-53. [PMID: 11716974 PMCID: PMC2773206 DOI: 10.1016/s0303-2647(01)00163-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhibitory local interneurons (LNs) play a critical role in shaping the output of olfactory glomeruli in both the olfactory bulb of vertebrates and the antennal lobe of insects and other invertebrates. In order to examine how the complex geometry of LNs may affect signaling in the antennal lobe, we constructed detailed multi-compartmental models of single LNs from the sphinx moth, Manduca sexta, using morphometric data from confocal-microscopic images. Simulations clearly revealed a directionality in LNs that impeded the propagation of injected currents from the sub-micron-diameter glomerular dendrites toward the much larger-diameter integrating segment (IS) in the coarse neuropil. Furthermore, the addition of randomly-firing synapses distributed across the LN dendrites (simulating the noisy baseline activity of afferent input recorded from LNs in the odor-free state) led to a significant depolarization of the LN. Thus the background activity typically recorded from LNs in vivo could influence synaptic integration and spike transformation in LNs through voltage-dependent mechanisms. Other model manipulations showed that active currents inserted into the IS can help synchronize the activation of inhibitory synapses in glomeruli across the antennal lobe. These data, therefore, support experimental findings suggesting that spiking inhibitory LNs can operate as multifunctional units under different ambient odor conditions. At low odor intensities, (i.e. subthreshold for IS spiking), they participate in local, mostly intra-glomerular processing. When activated by elevated odor concentrations, however, the same neurons will fire overshooting action potentials, resulting in the spread of inhibition more globally across the antennal lobe. Modulation of the passive and active properties of LNs may, therefore, be a deciding factor in defining the multi-glomerular representations of odors in the brain.
Collapse
|
research-article |
24 |
13 |
10
|
Schneider NY, Chaudy S, Epstein AL, Viollet C, Benani A, Pénicaud L, Grosmaître X, Datiche F, Gascuel J. Centrifugal projections to the main olfactory bulb revealed by transsynaptic retrograde tracing in mice. J Comp Neurol 2020; 528:1805-1819. [PMID: 31872441 DOI: 10.1002/cne.24846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments showed that the arcuate nucleus of the hypothalamus, as a major site for regulation of food intake, sends only very indirect projections onto the MOB. Indirect projections to MOB also originate from the solitary nucleus which is involved in energy homeostasis. Other indirect projections have been evidenced in areas of the reward circuit such as VTA and accumbens nucleus. In contrast, direct projections to the MOB arise from melanin-concentrating hormone and orexin neurons in the lateral hypothalamus. Functional significances of these projections are discussed in relation to the role of food odors in feeding and reward-related behavior.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
10 |
11
|
Mohamed AAM, Hansson BS, Sachse S. Third-Order Neurons in the Lateral Horn Enhance Bilateral Contrast of Odor Inputs Through Contralateral Inhibition in Drosophila. Front Physiol 2019; 10:851. [PMID: 31354516 PMCID: PMC6629933 DOI: 10.3389/fphys.2019.00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
The survival and reproduction of Drosophila melanogaster depends heavily on its ability to determine the location of an odor source and either to move toward or away from it. Despite the very small spatial separation between the two antennae and the redundancy in sensory neuron projection to both sides of the brain, Drosophila can resolve the concentration gradient by comparing the signal strength between the two antennae. When an odor stimulates the antennae asymmetrically, ipsilateral projection neurons from the first olfactory center are more strongly excited compared to the contralateral ones. However, it remains elusive how higher-order neurons process such asymmetric or lateralized odor inputs. Here, we monitored and analyzed for the first time the activity patterns of a small cluster of third-order neurons (so-called ventrolateral protocerebrum neurons) to asymmetric olfactory stimulation using two-photon calcium imaging. Our data demonstrate that lateralized odors evoke distinct activation of these neurons in the left and right brain hemisphere as a result of contralateral inhibition. Moreover, using laser transection experiments we show that this contralateral inhibition is mediated by presynaptic neurons most likely located in the lateral horn. Finally, we propose that this inhibitory interaction between higher-order neurons facilitates odor lateralization and plays a crucial role in olfactory navigation behavior of Drosophila, a theory that needs to be experimentally addressed in future studies.
Collapse
|
research-article |
6 |
9 |
12
|
Tang BB, Wei X, Guo G, Yu F, Ji M, Lang H, Liu J. The effect of odor exposure time on olfactory cognitive processing: An ERP study. J Integr Neurosci 2019; 18:87-93. [PMID: 31091853 DOI: 10.31083/j.jin.2019.01.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/29/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of stimulus time duration on central nervous odor processing. Twenty-one young healthy males participate in our study. There are three odor mixtures in this study and every odor mixture has two different duration time (300 ms; 500 ms). The odor was presented via a computer - controlled olfactometer and EEG was recorded from 64 scalp locations. At behavioral level, the longer the odor stimulus was presented, the greater the concentration was perceived by participants. Electrophysiological data showed that longer duration time lengthened the latency of Negative waves of about 200 ms appeared in stimulation (N2) and Positive waves of about 300 ms appeared in stimulation (P3) components, besides, have a larger N2 amplitude than the shorter duration time condition in the mid-frontal and left frontal-temporal areas. These results revealed that duration time of odor mixture do have an influence on the central nervous odor processing.
Collapse
|
|
6 |
4 |
13
|
Daly KC, Bradley S, Chapman PD, Staudacher EM, Tiede R, Schachtner J. Space Takes Time: Concentration Dependent Output Codes from Primary Olfactory Networks Rapidly Provide Additional Information at Defined Discrimination Thresholds. Front Cell Neurosci 2016; 9:515. [PMID: 26834563 PMCID: PMC4712294 DOI: 10.3389/fncel.2015.00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
As odor concentration increases, primary olfactory network representations expand in spatial distribution, temporal complexity and duration. However, the direct relationship between concentration dependent odor representations and the psychophysical thresholds of detection and discrimination is poorly understood. This relationship is absolutely critical as thresholds signify transition points whereby representations become meaningful to the organism. Here, we matched stimulus protocols for psychophysical assays and intracellular recordings of antennal lobe (AL) projection neurons (PNs) in the moth Manduca sexta to directly compare psychophysical thresholds and the output representations they elicit. We first behaviorally identified odor detection and discrimination thresholds across an odor dilution series for a panel of structurally similar odors. We then characterized spatiotemporal spiking patterns across a population of individually filled and identified AL PNs in response to those odors at concentrations below, at, and above identified thresholds. Using spatial and spatiotemporal based analyses we observed that each stimulus produced unique representations, even at sub-threshold concentrations. Mean response latency did not decrease and the percent glomerular activation did not increase with concentration until undiluted odor. Furthermore, correlations between spatial patterns for odor decreased, but only significantly with undiluted odor. Using time-integrated Euclidean distance (ED) measures, we determined that added spatiotemporal information was present at the discrimination but not detection threshold. This added information was evidenced by an increase in integrated distance between the sub-detection and discrimination threshold concentrations (of the same odor) that was not present in comparison of the sub-detection and detection threshold. After consideration of delays for information to reach the AL we find that it takes ~120-140 ms for the AL to output identity information. Overall, these results demonstrate that as odor concentration increases, added information about odor identity is embedded in the spatiotemporal representation at the discrimination threshold.
Collapse
|
Journal Article |
9 |
2 |
14
|
Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, Gervais R. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci 2000; 20:7752-9. [PMID: 11027238 PMCID: PMC6772882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Neural correlates of responses to emotionally valenced olfactory, visual, and auditory stimuli were examined using positron emission tomography. Twelve volunteers were scanned using the water bolus method. For each sensory modality, regional cerebral blood flow (rCBF) during presentation of both pleasant and unpleasant stimuli was compared with that measured during presentation of neutral stimuli. During the emotionally valenced conditions, subjects performed forced-choice pleasant and unpleasant judgments. During the neutral conditions, subjects were asked to select at random one of a two key-press buttons. All stimulations were synchronized with inspiration, using an airflow olfactometer, to present the same number of stimuli for each sensory modality. A no-stimulation control condition was also performed in which no stimulus was presented. For all three sensory modalities, emotionally valenced stimuli led to increased rCBF in the orbitofrontal cortex, the temporal pole, and the superior frontal gyrus, in the left hemisphere. Emotionally valenced olfactory and visual but not auditory stimuli produced additional rCBF increases in the hypothalamus and the subcallosal gyrus. Only emotionally valenced olfactory stimuli induced bilateral rCBF increases in the amygdala. These findings suggest that pleasant and unpleasant emotional judgments recruit the same core network in the left hemisphere, regardless of the sensory modality. This core network is activated in addition to a number of circuits that are specific to individual sensory modalities. Finally, the data suggest a superior potency of emotionally valenced olfactory over visual and auditory stimuli in activating the amygdala.
Collapse
|
research-article |
25 |
|