1
|
Beliveau BJ, Kishi JY, Nir G, Sasaki HM, Saka SK, Nguyen SC, Wu CT, Yin P. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc Natl Acad Sci U S A 2018; 115:E2183-E2192. [PMID: 29463736 PMCID: PMC5877937 DOI: 10.1073/pnas.1714530115] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligonucleotide (oligo)-based FISH has emerged as an important tool for the study of chromosome organization and gene expression and has been empowered by the commercial availability of highly complex pools of oligos. However, a dedicated bioinformatic design utility has yet to be created specifically for the purpose of identifying optimal oligo FISH probe sequences on the genome-wide scale. Here, we introduce OligoMiner, a rapid and robust computational pipeline for the genome-scale design of oligo FISH probes that affords the scientist exact control over the parameters of each probe. Our streamlined method uses standard bioinformatic file formats, allowing users to seamlessly integrate new and existing utilities into the pipeline as desired, and introduces a method for evaluating the specificity of each probe molecule that connects simulated hybridization energetics to rapidly generated sequence alignments using supervised machine learning. We demonstrate the scalability of our approach by performing genome-scale probe discovery in numerous model organism genomes and showcase the performance of the resulting probes with diffraction-limited and single-molecule superresolution imaging of chromosomal and RNA targets. We anticipate that this pipeline will make the FISH probe design process much more accessible and will more broadly facilitate the design of pools of hybridization probes for a variety of applications.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
163 |
2
|
Transcriptome analysis of Capsicum annuum varieties Mandarin and Blackcluster: assembly, annotation and molecular marker discovery. Gene 2013; 533:494-9. [PMID: 24125952 DOI: 10.1016/j.gene.2013.09.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/26/2013] [Indexed: 11/22/2022]
Abstract
Next generation sequencing technologies have proven to be a rapid and cost-effective means to assemble and characterize gene content and identify molecular markers in various organisms. Pepper (Capsicum annuum L., Solanaceae) is a major staple vegetable crop, which is economically important and has worldwide distribution. High-throughput transcriptome profiling of two pepper cultivars, Mandarin and Blackcluster, using 454 GS-FLX pyrosequencing yielded 279,221 and 316,357 sequenced reads with a total 120.44 and 142.54Mb of sequence data (average read length of 431 and 450 nucleotides). These reads resulted from 17,525 and 16,341 'isogroups' and were assembled into 19,388 and 18,057 isotigs, and 22,217 and 13,153 singletons for both the cultivars, respectively. Assembled sequences were annotated functionally based on homology to genes in multiple public databases. Detailed sequence variant analysis identified a total of 9701 and 12,741 potential SNPs which eventually resulted in 1025 and 1059 genotype specific SNPs, for both the varieties, respectively, after examining SNP frequency distribution for each mapped unigenes. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
3
|
Moulton JD. Using Morpholinos to Control Gene Expression. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:4.30.1-4.30.29. [PMID: 28252184 PMCID: PMC7162182 DOI: 10.1002/cpnc.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis-nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos. © 2017 by John Wiley & Sons, Inc.
Collapse
|
other |
8 |
20 |
4
|
Méchin MC, Der Vartanian M, Martin C. The major subunit ClpG of Escherichia coli CS31A fibrillae as an expression vector for different combinations of two TGEV coronavirus epitopes. Gene 1996; 179:211-8. [PMID: 8972902 PMCID: PMC7131745 DOI: 10.1016/s0378-1119(96)00348-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previously, two B-cell epitopes from the entero-pathogenic transmissible gastroenteritis virus (TGEV), namely the C epitope (TGEV-C) amino acids (aa) 363-371 and the A epitope (TGEV-A) aa 522-531 of the spike S protein (TGEV-S), have been separately expressed on the CS31A fibrillae at the surface of Escherichia coli following insertion into a same region of ClpG. However, the resulting chimeras induced a marginal TGEV-neutralizing antibody (Ab) response in mice. Here, with the view to improving this response, we introduced TGEV-C alone or in different tandem association with TGEV-A (A::C or C::A) in twelve putatively exposed regions of ClpG. Among the 28 resulting engineered proteins only 15, carrying up to 51 extra aa, had not essentially disturbed the correct CS31A fibrillae formation process. Six partially permissive sites accepting only TGEV-C and three highly permissive sites tolerating A::C or C::A tandem peptide, were identified throughout ClpG. Intact bacteria or extracted CS31A hybrid fibrillae expressing TGEV epitopes at any of the permissive sites, were recognized by Ab directed against the foreign parent protein, providing a direct argument for exposure of the corresponding CIpG region at the cell surface and for antigenicity of the epitopes in the polymeric CS31A fibrillae context. The potential of CS31A fibrillae as carriers of the TGEV peptides indicates that there may be three positions (N terminus, aa 202-204 and 202-218) in ClpG which may turn out to be important fusion sites and therefore be relevant for the eventual design of TGEV vaccines. Unexpectedly, TGEV-A, whatever its position in ClpG, mediated the partial proteolytic degradation of the hybrid proteins, suggesting that it functions as a substrate for a cellular protease, and thereby that its suitability as a vaccine antigen candidate is doubtful.
Collapse
|
research-article |
29 |
14 |
5
|
Jackson AF, Williams A, Moffat I, Phillips SL, Recio L, Waters MD, Lambert IB, Yauk CL. Preparation of archival formalin-fixed paraffin-embedded mouse liver samples for use with the Agilent gene expression microarray platform. J Pharmacol Toxicol Methods 2013; 68:260-268. [PMID: 23458726 DOI: 10.1016/j.vascn.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Tissue samples are routinely formalin-fixed and paraffin-embedded (FFPE) for long term preservation. Gene expression analysis of archival FFPE tissues may advance knowledge of the molecular perturbations contributing to disease. However, formalin causes extensive degradation of RNA. METHODS We compared RNA quality/yield from FFPE samples using six commercial FFPE RNA extraction kits. In addition we compared four DNA microarray protocols for the Agilent 8×60K platform using 16year old FFPE mouse liver samples treated with phenobarbital or vehicle. RESULTS Despite low quality RNA, archival phenobarbital samples exhibited strong induction of the positive control genes Cyp2b9 and Cyp2b10 by quantitative real-time PCR (qPCR). We tested one- and two-color microarray designs and evaluated the effects of increasing the amount of hybridized cDNA. Canonical gene responders to phenobarbital were measurably induced under each experimental condition. Increasing the amount of labeled cDNA did not improve the overall signal intensity. One-color experiments yielded larger fold changes than two-color and the number of differentially expressed genes varied between protocols. Gene expression changes were validated by qPCR and literature searches. Individual protocols exhibited high rates of false positives; however, pathway analysis revealed that nine of the top ten canonical pathways were consistent across experiments. Genes that were differentially expressed in more than one experiment were more likely to be validated. Thus, we recommend that experiments on FFPE samples be done in duplicate to reduce false positives. DISCUSSION In this analysis of archival FFPE samples we were able to identify pathways that are consistent with phenobarbital's mechanism of action. Therefore, we conclude that FFPE samples can be used for meaningful microarray gene expression analyses.
Collapse
|
Validation Study |
12 |
5 |
6
|
Somkuti J, Molnár OR, Grád A, Smeller L. Pressure Perturbation Studies of Noncanonical Viral Nucleic Acid Structures. BIOLOGY 2021; 10:1173. [PMID: 34827166 PMCID: PMC8615049 DOI: 10.3390/biology10111173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes are noncanonical structures formed by guanine-rich sequences of the genome. They are found in crucial loci of the human genome, they take part in the regulation of important processes like cell proliferation and cell death. Much less is known about the subjects of this work, the viral G-quadruplexes. We have chosen three potentially G-quadruplex-forming sequences of hepatitis B. We measured the stability and the thermodynamic parameters of these quadruplexes. We also investigated the potential stabilization of these G-quadruplexes by binding a special ligand that was originally developed for cancer therapy. Fluorescence and infrared spectroscopic measurements were performed over wide temperature and pressure ranges. Our experiments indicate the small unfolding volume change of all three oligos. We found a difference between the unfolding of the 2-quartet and the 3-quartet G-quadruplexes. All three G-quadruplexes were stabilized by TMPyP4, which is a cationic porphyrin developed for stabilizing the human telomere.
Collapse
|
research-article |
4 |
4 |
7
|
Murade CU, Chaudhuri S, Nabti I, Fahs H, Refai FSM, Xie X, Pearson YE, Gunsalus KC, Shubeita GT. FRET-Based Probe for High-Throughput DNA Intercalator Drug Discovery and In Vivo Imaging. ACS Sens 2021; 6:2233-2240. [PMID: 34029461 DOI: 10.1021/acssensors.1c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules that bind DNA by intercalating its bases remain among the most potent cancer therapies and antimicrobials due to their interference with DNA-processing proteins. To accelerate the discovery of novel intercalating drugs, we designed a fluorescence resonance energy transfer (FRET)-based probe that reports on DNA intercalation, allowing rapid and sensitive screening of chemical libraries in a high-throughput format. We demonstrate that the method correctly identifies known DNA intercalators in approved drug libraries and discover previously unreported intercalating compounds. When introduced in cells, the oligonucleotide-based probe rapidly distributes in the nucleus, allowing direct imaging of the dynamics of drug entry and its interaction with DNA in its native environment. This enabled us to directly correlate the potency of intercalators in killing cultured cancer cells with the ability of the drug to penetrate the cell membrane. The combined capability of the single probe to identify intercalators in vitro and follow their function in vivo can play a valuable role in accelerating the discovery of novel DNA-intercalating drugs or repurposing approved ones.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
4 |
3 |
8
|
Chalapati S, Crosbie CA, Limbachiya D, Pinnamaneni N. Direct oligonucleotide sequencing with nanopores. OPEN RESEARCH EUROPE 2021; 1:47. [PMID: 37645114 PMCID: PMC10445935 DOI: 10.12688/openreseurope.13578.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 09/27/2023]
Abstract
Third-generation DNA sequencing has enabled sequencing of long, unamplified DNA fragments with minimal steps. Direct sequencing of ssDNA or RNA gives valuable insights like base-level modifications, phosphoramidite synthesis yield estimates and strand quality analysis, without the need to add the complimentary strand. Direct sequencing of single-stranded nucleic acid species is challenging as they are non-compatible to the double-stranded sequencing adapters used by manufacturers. The MinION platform from Oxford Nanopore Technologies performs sequencing by passing single-strands of DNA through a layer of biological nanopore sensors; although sequencing is performed on single-strands, the recommended template by the manufacturer is double-stranded. We have identified that the MinION platform can perform sequencing of short, single-strand oligonucleotides directly without amplification or second-strand synthesis by performing a single annealing step before library preparation. Short 5' phosphorylated oligos when annealed to an adapter sequence can be directly sequenced in the 5' to 3' direction via nanopores. Adapter sequences were designed to bind to the 5' end of the oligos and to leave a 3' adenosine overhang after binding to their target. The 3' adenosine overhang of the adapter and the terminal phosphate makes the 5' end of the oligo analogous to an end-prepared dsDNA, rendering it compatible with ligation-based library preparation for sequencing. An oligo-pool containing 42,000, 120 nt orthogonal sequences was phosphorylated and sequenced using this method and ~90% of these sequences were recovered with high accuracy using BLAST. In the nanopore raw data, we have identified that empty signals can be wrongly identified as a valid read by the MinION platform and sometimes multiple signals containing several strands can be fused into a single raw sequence file due to segmentation faults in the software. This direct oligonucleotide sequencing method enables novel applications in DNA data storage systems where short oligonucleotides are the primary information carriers.
Collapse
|
methods-article |
4 |
1 |
9
|
Harun A, Song S, You X, Liu H, Wen X, Fang Z, Cheng Z, Chen C. Comprehensive mapping of molecular cytogenetic markers in pitaya ( Hylocereus undatus) and related species. FRONTIERS IN PLANT SCIENCE 2024; 15:1493776. [PMID: 39711595 PMCID: PMC11662977 DOI: 10.3389/fpls.2024.1493776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Pitaya (Hylocereus undatus; 2n=22) is an important fruit crop from the Cactaceae family, originally domesticated in Mexico and the USA, and is now widely cultivated for its nutritional benefits. It is characterized by its distinctive triangular-shaped stems and large, showy flowers, thriving in arid and semi-arid environments, particularly in hot, dry climates. However, systematic chromosomal studies, including chromosomal mapping of cytogenetic markers in pitaya, are limited, presenting challenges for its cytogenetic improvement. To address this issue, we designed oligo-barcodes specific to thirty-three chromosome regions based on the pitaya reference genome and applied them to both pitaya and cactus (Selenicerus grandifloras; 2n=22) for oligo-barcodes mapping, karyotyping, and chromosome identification. We utilized FISH technology, employing oligo, rDNA, and tandem repeat probes for chromosomal mapping, identification, and karyotyping of pitaya and related species. We successfully localized oligo-barcodes on eleven pairs of chromosomes in both pitaya and cactus, demonstrating the effectiveness of the synthesized oligo-barcodes. We used two ribosomal DNA (rDNA) probes (45S and 5S) and two tandem repeat probes (GTR11 and STR3) in pitaya (both diploid and tetraploid) and two other Cactaceae species (S. grandifloras and Opuntia humifusa; 2n=40) for chromosomal mapping. The analysis of rDNA distribution and CMA (Chromomycin A3) banding across different chromosomes in pitaya and cacti highlights the concept of conserved rDNA. This study provides fundamental insights into cytogenetic markers and their localization across different chromosomes in pitaya and other Cactaceae species.
Collapse
|
research-article |
1 |
|
10
|
Chen M, Jiang C, Huang D, Zheng Z, Yang W, Li G, Fu C, Liao H, Long W, Yang Z, Yang Y. ND-FISH with New Oligo Probes for Chromosome Identification of Cichorium intybus Revealing Karyotypic Variation and Divergence of Asteraceae Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3135. [PMID: 39599344 PMCID: PMC11598091 DOI: 10.3390/plants13223135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Chicory (Cichorium intybus L., 2n = 18), belonging to the Asteraceae family, exhibits significant edible, medicinal, and pasture values. Moderate research has been performed on identifying Chicory species' chromosomes using fluorescence in situ hybridization (FISH) and C-banding. Detailed karyotype comparisons with chromosome nomenclature have not yet been performed for Chicory and similar species. In this study, the tandem repeats (TRs) were predicted and mapped to chromosomal regions based on released C. intybus L. ASM2352571 genome assembly v1, and then compared to the genome of Lettuce (Lactuca sativa L.). Nine new oligo probes were then developed and employed for karyotypic investigation of endive, Lettuce, and Chicory mitotic metaphase using non-denaturing FISH (ND-FISH). By combining the conserved oligo probes for 5S rDNA and 18S rDNA with the unique ND-FISH signals of new TR-oligo probes, we can develop a high-resolution standard karyotype for the cultivars of Lettuce and Chicory. The occurrence of chromosome structure variations from the natural population of Chicory and Lettuce was also revealed by ND-FISH with multiple oligo probes. The current observation of the karyotype differences and divergences of Lactuca and Cichorium and the genomic research offers crucial information about the Asteraceae family's genetic diversity, chromosomal dynamics, and evolutionary routes.
Collapse
|
research-article |
1 |
|
11
|
Chalapati S, Crosbie CA, Limbachiya D, Pinnamaneni N. Direct oligonucleotide sequencing with nanopores. OPEN RESEARCH EUROPE 2021; 1:47. [PMID: 37645114 PMCID: PMC10445935 DOI: 10.12688/openreseurope.13578.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 08/31/2023]
Abstract
Third-generation DNA sequencing has enabled sequencing of long, unamplified DNA fragments with minimal steps. Direct sequencing of ssDNA or RNA gives valuable insights like base-level modifications, phosphoramidite synthesis yield estimates and strand quality analysis, without the need to add the complimentary strand. Direct sequencing of single-stranded nucleic acid species is challenging as they are non-compatible to the double-stranded sequencing adapters used by manufacturers. The MinION platform from Oxford Nanopore Technologies performs sequencing by passing single-strands of DNA through a layer of biological nanopore sensors; although sequencing is performed on single-strands, the recommended template by the manufacturer is double-stranded. We have identified that the MinION platform can perform sequencing of short, single-strand oligonucleotides directly without amplification or second-strand synthesis by performing a single annealing step before library preparation. Short 5' phosphorylated oligos when annealed to an adapter sequence can be directly sequenced in the 5' to 3' direction via nanopores. Adapter sequences were designed to bind to the 5' end of the oligos and to leave a 3' adenosine overhang after binding to their target. The 3' adenosine overhang of the adapter and the terminal phosphate makes the 5' end of the oligo analogous to an end-prepared dsDNA, rendering it compatible with ligation-based library preparation for sequencing. An oligo-pool containing 42,000, 120 nt orthogonal sequences was phosphorylated and sequenced using this method and ~90% of these sequences were recovered with high accuracy using BLAST. In the nanopore raw data, we have identified that empty signals can be wrongly identified as a valid read by the MinION platform and sometimes multiple signals containing several strands can be fused into a single raw sequence file due to segmentation faults in the software. This direct oligonucleotide sequencing method enables novel applications in DNA data storage systems where short oligonucleotides are the primary information carriers.
Collapse
|
methods-article |
4 |
|