La Vitola P, Balducci C, Baroni M, Artioli L, Santamaria G, Castiglioni M, Cerovic M, Colombo L, Caldinelli L, Pollegioni L, Forloni G. Peripheral inflammation exacerbates α-synuclein toxicity and neuropathology in Parkinson's models.
Neuropathol Appl Neurobiol 2021;
47:43-60. [PMID:
32696999 DOI:
10.1111/nan.12644]
[Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
AIMS
Parkinson's disease and related disorders are devastating neurodegenerative pathologies. Since α-synuclein was identified as a main component of Lewy bodies and neurites, efforts have been made to clarify the pathogenic mechanisms of α-synuclein's detrimental effects. α-synuclein oligomers are the most harmful species and may recruit and activate glial cells. Inflammation is emerging as a bridge between genetic susceptibility and environmental factors co-fostering Parkinson's disease. However, direct evidence linking inflammation to the harmful activities of α-synuclein oligomers or to the Parkinson's disease behavioural phenotype is lacking.
METHODS
To clarify whether neuroinflammation influences Parkinson's disease pathogenesis, we developed: (i) a 'double-hit' approach in C57BL/6 naive mice where peripherally administered lipopolysaccharides were followed by intracerebroventricular injection of an inactive oligomer dose; (ii) a transgenic 'double-hit' model where lipopolysaccharides were given to A53T α-synuclein transgenic Parkinson's disease mice.
RESULTS
Lipopolysaccharides induced a long-lasting neuroinflammatory response which facilitated the detrimental cognitive activities of oligomers. LPS-activated microglia and astrocytes responded differently to the oligomers with microglia activating further and acquiring a pro-inflammatory M1 phenotype, while astrocytes atrophied. In the transgenic 'double-hit' A53T mouse model, lipopolysaccharides aggravated cognitive deficits and increased microgliosis. Again, astrocytes responded differently to the double challenge. These findings indicate that peripherally induced neuroinflammation potentiates the α-synuclein oligomer's actions and aggravates cognitive deficits in A53T mice.
CONCLUSIONS
The fine management of both peripheral and central inflammation may offer a promising therapeutic approach to prevent or slow down some behavioural aspects in α-synucleinopathies.
Collapse