1
|
Alexander J, Knopp G, Dötsch A, Wieland A, Schwartz T. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 559:103-112. [PMID: 27058129 DOI: 10.1016/j.scitotenv.2016.03.154] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
An ozone treatment system was investigated to analyze its impact on clinically relevant antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs). A concentration of 0.9±0.1g ozone per 1g DOC was used to treat conventional clarified wastewater. PCR, qPCR analyses, Illumina 16S Amplicon Sequencing, and PCR-DGGE revealed diverse patterns of resistances and susceptibilities of opportunistic bacteria and accumulations of some ARGs after ozone treatment. Molecular marker genes for enterococci indicated a high susceptibility to ozone. Although they were reduced by almost 99%, they were still present in the bacterial population after ozone treatment. In contrast to this, Pseudomonas aeruginosa displayed only minor changes in abundance after ozone treatment. This indicated different mechanisms of microorganisms to cope with the bactericidal effects of ozone. The investigated ARGs demonstrated an even more diverse pattern. After ozone treatment, the erythromycin resistance gene (ermB) was reduced by 2 orders of magnitude, but simultaneously, the abundance of two other clinically relevant ARGs increased within the surviving wastewater population (vanA, blaVIM). PCR-DGGE analysis and 16S-Amplicon-Sequencing confirmed a selection-like process in combination with a substantial diversity loss within the vital wastewater population after ozone treatment. Especially the PCR-DGGE results demonstrated the survival of GC-rich bacteria after ozone treatment.
Collapse
|
|
9 |
143 |
2
|
Hembach N, Schmid F, Alexander J, Hiller C, Rogall ET, Schwartz T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front Microbiol 2017; 8:1282. [PMID: 28744270 PMCID: PMC5504345 DOI: 10.3389/fmicb.2017.01282] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.
Collapse
|
Journal Article |
8 |
117 |
3
|
Lee K, Roberts JS, Choi CH, Atanasova KR, Yilmaz Ö. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 2018; 9:845-859. [PMID: 29616874 PMCID: PMC5955440 DOI: 10.1080/21505594.2018.1454171] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, an opportunistic pathogen usurps gingival epithelial cells (GECs) as primary intracellular niche for its colonization in the oral mucosa. However, the precise characterization of the intracellular trafficking and fate of P. gingivalis in GECs remains incomplete. Therefore, we employed high-resolution three-dimensional-transmission-electron-microscopy to determine the subcellular location of P. gingivalis in human primary GECs upon invasion. Serial sections of infected-GECs and their tomographic reconstruction depicted ER-rich-double-membrane autophagosomal-vacuoles harboring P. gingivalis. Western-blotting and fluorescence confocal microscopy showed that P. gingivalis significantly induces LC3-lipidation in a time-dependent-manner and co-localizes with LC3, ER-lumen-protein Bip, or ER-tracker, which are major components of the phagophore membrane. Furthermore, GECs that were infected with FMN-green-fluorescent transformant-strain (PgFbFP) and selectively permeabilized by digitonin showed rapidly increasing large numbers of double-membrane-vacuolar-P. gingivalis over 24 hours of infection with a low-ratio of cytosolically free-bacteria. Moreover, inhibition of autophagy using 3-methyladenine or ATG5 siRNA significantly reduced the viability of intracellular P. gingivalis in GECs as determined by an antibiotic-protection-assay. Lysosomal marker, LAMP-1, showed a low-degree colocalization with P. gingivalis (∼20%). PgFbFP was used to investigate the fate of vacuolar- versus cytosolic-P. gingivalis by their association with ubiquitin-binding-adaptor-proteins, NDP52 and p62. Only cytosolic-P. gingivalis had a significant association with both markers, which suggests cytosolically-free bacteria are likely destined to the lysosomal-degradation pathway whereas the vacuolar-P. gingivalis survives. Therefore, the results reveal a novel mechanism for P. gingivalis survival in GECs by harnessing host autophagy machinery to establish a successful replicative niche and persistence in the oral mucosa.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
61 |
4
|
Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis 2016; 74:ftw082. [PMID: 27542389 DOI: 10.1093/femspd/ftw082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms have rapidly and controversially emerged as silent modulators of host defenses that can lead to a more prominent immune response and shape the course of inflammation in the host. Thus, the epigenetics can both drive the production of specific inflammatory mediators and control the magnitude of the host response. The epigenetic actions that are predominantly shown to modulate the host defense against microbial pathogens are DNA methylation, histone modification and the activity of non-coding RNAs. There is also growing evidence that opportunistic chronic pathogens, such as Porphyromonas gingivalis, as a microbial host subversion strategy, can epigenetically interfere with the host DNA machinery for successful colonization. Similarly, the novel involvement of small molecule 'danger signals', which are released by stressed or infected cells, at the center of host-pathogen interplay and epigenetics is developing. In this review, we systematically examine the latest knowledge within the field of epigenetics in the context of host-derived danger molecule and purinergic signaling, with a particular focus on host microbial defenses and infection-driven chronic inflammation.
Collapse
|
Journal Article |
9 |
31 |
5
|
Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments. Front Microbiol 2017; 8:266. [PMID: 28286496 PMCID: PMC5323390 DOI: 10.3389/fmicb.2017.00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.
Collapse
|
Journal Article |
8 |
25 |
6
|
High-Throughput 16S rRNA Gene Sequencing of Butter Microbiota Reveals a Variety of Opportunistic Pathogens. Foods 2020; 9:foods9050608. [PMID: 32397488 PMCID: PMC7278763 DOI: 10.3390/foods9050608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial contamination of dairy products with a high fat content (e.g., butter) has been studied insufficiently. No studies using modern molecular methods to investigate microbial communities in butter have been conducted so far. In this work, we used high-throughput sequencing and Sanger sequencing of individual bacterial colonies to analyze microbial content of commercially available butter brands. A total of 21 samples of commercially available butter brands were analyzed. We identified a total of 94 amplicon sequence variants corresponding to different microbial taxa. The most abundant lactic acid bacteria in butter were Lactobacillus kefiri, Lactobacillus parakefiri, Lactococcus taiwanensis and Lactococcus raffinolactis. A large amount of Streptococcus spp. bacteria (87.9% of all identified bacteria) was found in one of the butter samples. Opportunistic pathogens such as Bacillus cereus group, Pseudomonas aeruginosa, Cronobacter spp., Escherichia coli, Listeria innocua, Citrobacter spp., Enterococcus spp., Klebsiella pneumonia were detected. The analyzed butter samples were most strongly contaminated with bacteria from the Bacillus cereus group, and to a lesser extent - with Cronobacter spp. and Enterococcus spp. The plating and Sanger sequencing of individual colonies revealed the presence of Enterobacter cloacae and Staphylococcus epidermidis. The Sanger sequencing also showed the presence of Cronobacter sakazakii in butter which can be dangerous for children under the age of 1 year. We demonstrated that butter is a good growth medium for opportunistic pathogenic bacteria. Our data indicate that despite the fact that butter is a dairy product with a long shelf life, it should be subjected to quality control for the presence of opportunistic bacteria.
Collapse
|
Journal Article |
5 |
12 |
7
|
Abstract
Epithelia are structurally integral elements in the fabric of oral mucosa with significant functional roles. Similarly, the gingival epithelium performs uniquely critical tasks in responding to a variety of external stimuli and dangers through the regulation of specific built-in molecular mechanisms in a context-dependent fashion at cellular levels. Gingival epithelial cells form an anatomic architecture that confers defense, robustness, and adaptation toward external aggressions, most critically to colonizing microorganisms, among other functions. Accordingly, recent studies unraveled previously uncharacterized response mechanisms in gingival epithelial cells that are constructed to rapidly exert biocidal effects against invader pathobiotic bacteria, such as Porphyromonas gingivalis, through small danger molecule signaling. The host-adapted bacteria, however, have developed adroit strategies to 1) exploit the epithelia as privileged growth niches and 2) chronically target cellular bactericidal and homeostatic metabolic pathways for successful bacterial persistence. As the overgrowth of colonizing microorganisms in the gingival mucosa can shift from homeostasis to dysbiosis or a diseased state, it is crucial to understand how the innate modulatory molecules are intricately involved in antibacterial pathways and how they shape susceptibility versus resistance in the epithelium toward pathogens. Thus, in this review, we highlight recent discoveries in gingival epithelial cell research in the context of bacterial colonizers. The current knowledge outlined here demonstrates the ability of epithelial cells to possess highly organized defense machineries, which can jointly regulate host-derived danger molecule signaling and integrate specific global responses against opportunistic bacteria to combat microbial incursion and maintain host homeostatic balance. These novel examples collectively suggest that the oral epithelia are equipped with a dynamically robust and interconnected defense system encompassing sensors and various effector molecules that arrange and achieve a fine-tuned and advanced response to diverse bacteria.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
8
|
DJOUADI LYDIANEÏLA, GUEZLANE-TEBIBEL NADJET, MANSOURI KENZA, BOUMERDASSI HANANE, ARAB KARIM, FARDEAU MARIELAURE, NATECHE FARIDA. Multidrug-resistant Opportunistic and Pathogenic Bacteria Contaminate Algerian Banknotes Currency. Pol J Microbiol 2020; 69:491-501. [PMID: 33574877 PMCID: PMC7812368 DOI: 10.33073/pjm-2020-053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Currency is one of the most exchanged items in human communities as it is used daily in exchange for goods and services. It is handled by persons with different hygiene standards and can transit in different environments. Hence, money can constitute a reservoir for different types of human pathogens. This study aimed to evaluate the potential of Algerian banknotes to shelter opportunistic pathogenic and multiresistant bacteria. To that end, 200 circulating notes of four different denominations were collected from various places and analyzed for their bacterial loads and contents. Besides, predominant strains were identified and characterized by biochemical and molecular methods, and their resistance profiles against 34 antibiotics were determined. Our results indicated that 100% of the studied banknotes were contaminated with bacteria. The total bacterial concentrations were relatively high, and different bacterial groups were grown, showing important diversity. In total, 48 predominant strains were identified as belonging to 17 genera. Staphylococcus and Micrococcus were the most prevalent genera, followed by Bacillus, Pseudomonas, and Acinetobacter. Antibiotic susceptibility testing showed that all the isolates harbored resistance to at least two molecules, and worrying resistance levels were observed. These findings prove that Algerian currency harbors opportunistic multiresistant bacteria and could potentially act as a vehicle for the spread of bacterial diseases and as a reservoir for antibiotic resistance genes among the community. Therefore, no cash payment systems should be developed and generalized to minimize cash handling and subsequent potential health risks.
Collapse
|
research-article |
5 |
2 |
9
|
Olszewski J, Weigert Galvão C, Lipuma JJ, Paludo KS. Environmental and clinical isolates of Herbaspirillum induce pulmonary infection in mice and its secretome is cytotoxic to human lung cells. J Med Microbiol 2021; 70. [PMID: 33830909 DOI: 10.1099/jmm.0.001343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. In recent years, the Herbaspirillum genus has emerged as a pathogen in healthcare-related infections and has became stablished as an opportunistic pathogen.Hypothesis/Gap Statement. Little is known about the pathogenesis induced by Herbaspirillum genus.Aim. To evaluate the cytotoxic effects of genus Herbaspirillum, its ability to adhere to lung human cells and the ability of environmental and clinical strains of Herbaspirillum to induce pneumonia in mice.Methodology. Environmental and clinical isolates of Herbaspirillum were examined for their cytotoxic effects on the Calu-3 cell lineage. Cytotoxic activity of secretome was tested using MTT/neutral red assays and cell morphology analysis. Herbaspirillum adhesion on Calu-3 cells was assessed using bright-field microscopy and cell-associated bacteria were counted. A mouse model of acute lung infection was done using a clinical and an environmental strain. Adult male mice were used, and the pneumonia was inducted by intra-tracheal inoculation of 108 or 109 bacteria. Mice weight variations were evaluated at the end of the experiment. Bronchoalveolar lavage was collected and evaluated for total and differential cytology. A histological examination of lungs was performed giving a histological score.Results. The secretomes of all the strains induced morphological alterations in cells, but only H. seropedicae SmR1 were cytotoxic in MTT and neutral red assays. Clinical strains of H. frisingense AU14459 and H. hutttiense subsp. huttiense AU11883 exhibited low adherence to lung cells, while SmR1 was non-adhesive. Following intratracheal inoculation, mice treated with 109 c.f.u. of the SmR1 and AU11883 strains lost 18 and 6% of their weight over 7 days, respectively, and presented moderate clinical signs. Infected mice showed inflammatory cell infiltration in the perivascular and peribroncheal/peribronchiolar spaces. Bronchoalveolar fluid of mice inoculated with SmR1 109 c.f.u. presented an increase in total leucocyte cells and in neutrophils population.Conclusion. These in vivo and in vitro results provide insights into how some Herbaspirillum strains cause infection in humans, providing a basis for the characterization of pathogenesis studies on this emerging infectious agent.
Collapse
|
Journal Article |
4 |
1 |
10
|
Vedenkin AS, Vtyurina DN, Grigorieva EA, Litvin AA, Mikhaleva MG, Nikolaeva TN, Pronin AV, Stovbun SV. Protective Properties of Lanthanum Nitrate against Pathogens with Various Morphological and Functional Properties. Bull Exp Biol Med 2019; 167:50-52. [PMID: 31177449 DOI: 10.1007/s10517-019-04458-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/24/2022]
Abstract
Dose-dependent protective effects of lanthanum nitrate solution and gel were shown on the model of experimental infection caused by a virulent strain of Shigella flexneri 2a or opportunistic bacteria Klebsiella pneumoniae in outbred and DBA mice.
Collapse
|
|
6 |
1 |
11
|
Gallo-Francisco PH, Brocchi M, Giorgio S. Leishmania and its relationships with bacteria. Future Microbiol 2022; 17:199-218. [PMID: 35040703 DOI: 10.2217/fmb-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is a zoonotic and neglected disease, which represents an important public health problem worldwide. Different species of Leishmania are associated with different manifestations, and a practical problem that can worsen the condition of hosts infected with Leishmania is the secondary infection caused by bacteria. This review aims to examine the importance and prevalence of bacteria co-infection during leishmaniasis and the nature of this ecological relationship. In the cases discussed in this review, the facilitation phenomenon, defined as any interaction where the action of one organism has a beneficial effect on an organism of another species, was considered in the Leishmania-bacteria interaction, as well as the effects on one another and their consequences for the host.
Collapse
|
|
3 |
|
12
|
Gizatullina LG, Masyagutova LM, Bakirov AB. [Etiological significance and antibioticosensetivity of certain microorganisms in aggravation of chronical bronchopulmonary pathology in workers of diverse economic sectors.]. Klin Lab Diagn 2019; 64:49-52. [PMID: 30912885 DOI: 10.18821/0869-2084-2019-64-1-49-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
It has been shown that in patients with upper respiratory diseases of occupational etiology gram negative flora prevail (38% of cases). They are followed by yeast-like fungi (up to 36% of cases), gram positive flora - 26%. The most effective antibacterial agents for treating golden staphilococcus in patients of the group studied are cefotaxime, sparfloxacine, levofloloxacine. Cefotoxime, ceftriaxon, ciprofloxacine are used against intestinal bacteria. Cefepim, ceftazidim are used against non-fermenting gram negative bacteria. C.Albicans can be treated with amfotericine and fluconazol.
Collapse
|
|
6 |
|
13
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
|
Review |
1 |
|
14
|
Turton K, Parks HJ, Zarodkiewicz P, Hamad MA, Dwane R, Parau G, Ingram RJ, Coll RC, Bryant CE, Valvano MA. The Achromobacter type 3 secretion system drives pyroptosis and immunopathology via independent activation of NLRC4 and NLRP3 inflammasomes. Cell Rep 2023; 42:113012. [PMID: 37598340 PMCID: PMC7614980 DOI: 10.1016/j.celrep.2023.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
How the opportunistic Gram-negative pathogens of the genus Achromobacter interact with the innate immune system is poorly understood. Using three Achromobacter clinical isolates from two species, we show that the type 3 secretion system (T3SS) is required to induce cell death in human macrophages by inflammasome-dependent pyroptosis. Macrophages deficient in the inflammasome sensors NLRC4 or NLRP3 undergo pyroptosis upon bacterial internalization, but those deficient in both NLRC4 and NLRP3 do not, suggesting either sensor mediates pyroptosis in a T3SS-dependent manner. Detailed analysis of the intracellular trafficking of one isolate indicates that the intracellular bacteria reside in a late phagolysosome. Using an intranasal mouse infection model, we observe that Achromobacter damages lung structure and causes severe illness, contingent on a functional T3SS. Together, we demonstrate that Achromobacter species can survive phagocytosis by promoting macrophage cell death and inflammation by redundant mechanisms of pyroptosis induction in a T3SS-dependent manner.
Collapse
|
research-article |
2 |
|