1
|
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. THE NEW PHYTOLOGIST 2015; 205:1406-1423. [PMID: 25639293 DOI: 10.1111/nph.13288] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/30/2014] [Indexed: 05/04/2023]
Abstract
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Collapse
|
Review |
10 |
786 |
2
|
Gebauer G, Preiss K, Gebauer AC. Partial mycoheterotrophy is more widespread among orchids than previously assumed. THE NEW PHYTOLOGIST 2016; 211:11-5. [PMID: 26832994 DOI: 10.1111/nph.13865] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
Letter |
9 |
83 |
3
|
Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, Tsai WC, Wang CN, Chen HH. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. THE NEW PHYTOLOGIST 2014; 202:1024-1042. [PMID: 24571782 PMCID: PMC4288972 DOI: 10.1111/nph.12723] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/02/2014] [Indexed: 05/20/2023]
Abstract
The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes.
Collapse
|
research-article |
11 |
77 |
4
|
McKENDRICK SL, Leake JR, Taylor DL, Read DJ. Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. THE NEW PHYTOLOGIST 2000; 145:523-537. [PMID: 33862904 DOI: 10.1046/j.1469-8137.2000.00603.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The processes of symbiotic germination and seedling development were analysed in the myco-heterotrophic orchid Corallorhiza trifida, seeds of which were buried in 'packets' either adjacent to or at varying distances from adult plants in defined communities of ectomycorrhizal tree species. Germination occurred within eight months of burial under Betula-Alnus and within seven months under Salix repens. It was always associated with penetration of the suspensor by a clamp-forming mycorrhizal fungus. Four distinct developmental stages were defined and the rates of transition through these stages were plotted. There was no evidence of a relationship between extent of germination or rate of development and the presence of naturally distributed plants of C. trifida at the spatial scale of 1 m. The best germination and the most rapid rate of development of C. trifida seedlings occurred in a Salix repens community located at a considerable distance from any extant C. trifida population. Determination of internal transcribed spacer (ITS) RFLPs and of gene sequences of the fungi involved in symbiotic germination and growth of C. trifida, revealed them to belong exclusively to the Thelephora-Tomentella complex of the Thelephoraceae. These fungi are known also to be ectomycorrhizal associates of trees. It is hypothesized that the rate of growth of the C. trifida seedlings is determined by the ability of the fungal symbionts to transfer carbon from their ectomycorrhizal co-associates.
Collapse
|
Review |
25 |
76 |
5
|
Bayman P, Lebrón LL, Tremblay RL, Lodge DJ. Variation in endophytic fungi from roots and leaves of Lepanthes ( Orchidaceae). THE NEW PHYTOLOGIST 1997; 135:143-149. [PMID: 33863156 DOI: 10.1046/j.1469-8137.1997.00618.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about non-mycorrhizal endophytic fungi in tropical orchids; still less is known about how endophytes vary within and between individual orchid plants. Fungal endophytes were isolated from roots and leaves of epiphytic and lithophytic orchids in the genus Lepanthes; seven species, from rainforests in Puerto Rico, were sampled. The endophytes observed most frequently were Xylaria species and Rhizoctonia-like fungi, found in 29% of roots and 19% of leaves, and 45 % of roots and 31 % of leaves, respectively. Five deuteromycete genera were also isolated, occurring in 19 % of roots and 43 % of leaves (combined). At least nine species of Xylaria were found, with several species sometimes occurring in a single plant. Differences between roots and leaves in frequency of Xylaria and Rhizoctonia isolates were not significant, although differences among orchid species in number and types of endophytes were. Heterogeneity of endophytes in single plants and plant organs was greater than differences between species. Many Lepanthes species are very restricted in distribution, and knowledge of their interactions with endophytes might be useful in species management.
Collapse
|
|
28 |
73 |
6
|
Lin CS, Chen JJW, Chiu CC, Hsiao HCW, Yang CJ, Jin XH, Leebens-Mack J, de Pamphilis CW, Huang YT, Yang LH, Chang WJ, Kui L, Wong GKS, Hu JM, Wang W, Shih MC. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:994-1006. [PMID: 28258650 DOI: 10.1111/tpj.13525] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.
Collapse
|
|
8 |
68 |
7
|
Chao Y, Chen W, Chen C, Ho H, Yeh C, Kuo Y, Su C, Yen S, Hsueh H, Yeh J, Hsu H, Tsai Y, Kuo T, Chang S, Chen K, Shih M. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2027-2041. [PMID: 29704444 PMCID: PMC6230949 DOI: 10.1111/pbi.12936] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 05/04/2023]
Abstract
The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.
Collapse
|
research-article |
7 |
60 |
8
|
Cameron DD, Johnson I, Leake JR, Read DJ. Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. ANNALS OF BOTANY 2007; 99:831-4. [PMID: 17339276 PMCID: PMC2802910 DOI: 10.1093/aob/mcm018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/11/2006] [Accepted: 01/04/2007] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Mycorrhizal fungi play a vital role in providing a carbon subsidy to support the germination and establishment of orchids from tiny seeds, but their roles in adult orchids have not been adequately characterized. Recent evidence that carbon is supplied by Goodyera repens to its fungal partner in return for nitrogen has established the mutualistic nature of the symbiosis in this orchid. In this paper the role of the fungus in the capture and transfer of inorganic phosphorus (P) to the orchid is unequivocally demonstrated for the first time. METHODS Mycorrhiza-mediated uptake of phosphorus in G. repens was investigated using spatially separated, two-dimensional agar-based microcosms. RESULTS External mycelium growing from this green orchid is shown to be effective in assimilating and transporting the radiotracer (33)P orthophosphate into the plant. After 7 d of exposure, over 10 % of the P supplied was transported over a diffusion barrier by the fungus and to the plants, more than half of this to the shoots. CONCLUSIONS Goodyera repens can obtain significant amounts of P from its mycorrhizal partner. These results provide further support for the view that mycorrhizal associations in some adult green orchids are mutualistic.
Collapse
|
research-article |
18 |
53 |
9
|
Peakall R, Beattie AJ. THE GENETIC CONSEQUENCES OF WORKER ANT POLLINATION IN A SELF-COMPATIBLE, CLONAL ORCHID. Evolution 2017; 45:1837-1848. [PMID: 28563963 DOI: 10.1111/j.1558-5646.1991.tb02691.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1990] [Accepted: 04/15/1991] [Indexed: 11/27/2022]
Abstract
The self-compatible orchid Microtis parviflora is pollinated by the flightless worker caste of the ant Iridomyrmex gracilis. The orchid is clonal and forms small patches, usually less than 1 m2 , of disconnected individual ramets. Ant pollinators visited and revisited a limited proportion of available inflorescences, and 40% of all flower visits occurred within plants promoting self-pollination. Pollen labels indicated that self-pollination accounted for 51% of the pollen transfers, although pollen carryover extended beyond 16 flowers on 2 or 3 inflorescences. The distribution of ant movements between plants was leptokurtic with a mean of 12.4 ± 14.9 cm and a maximum of 89 cm, but a high proportion of movements were within clones accentuating the level of self-pollination. However, some pollen transfers between inflorescences of unlike genotypes contributed to a low incidence (max = 8%) of outcrossing. In 12 patches examined by electrophoresis, the density varied from 11 to 61 inflorescences per m2 and a maximum of only 4 genotypes were detected. Electrophoretic analysis revealed populations were highly inbred: only 23% (N = 17) of the loci were polymorphic and the mean gene diversity h, was 2.7%. Heterozygotes were observed in only one population given a mean fixation index F, of 0.982. These results reflect the combined effects of restricted ant foraging and clonality. Nevertheless, while ant foraging was restricted, some outcrossing occurred and in the absence of clonality it is likely that ant foraging would have yielded a mixed mating system similar to those reported for a wide array of insect pollinators. Given the ability of ants to generate pollen flow, the reasons for the rarity of ant pollination appear to lie elsewhere.
Collapse
|
Journal Article |
8 |
42 |
10
|
Shah S, Shrestha R, Maharjan S, Selosse MA, Pant B. Isolation and Characterization of Plant Growth-Promoting Endophytic Fungi from the Roots of Dendrobium moniliforme. PLANTS 2018; 8:plants8010005. [PMID: 30597827 PMCID: PMC6359427 DOI: 10.3390/plants8010005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 01/16/2023]
Abstract
The present study aims to identify the diverse endophytic fungi residing in the roots of Dendrobium moniliforme and their role in plant growth and development. Nine endophytic fungi were isolated from the root sections and characterized by molecular technique. Quantification of the indole acetic acid (IAA) compound by these endophytes was done. Further, Chemical profiling of R11 and R13 fungi was done by Gas Chromatography-Mass Spectroscopy (GC-MS). Asymbiotic seed derived protocorms of Rhynchostylis retusa was used for the plant growth assay to investigate the growth promoting activities of the fungal elicitor prepared from the isolated fungi from D. moniliforme. Among the isolated fungi, the relative dominant fungus was Fusarium sp. The R13 and R6 fungi were identified only at the genus level which concludes the fungi are of new species or strain. The indole acetic acid production was relatively higher in R10. Bioactive compound diversity was observed in the organic extract of R11 and R6. The presence of phenolic compound and essential oil suggest their contribution for the antimicrobial and antioxidant properties to their host plant, D. moniliforme. The plant growth assay result concluded, the fungal elicitor prepared from R10, Colletotrichum alatae was the best among all other for the plant growth activities.
Collapse
|
Journal Article |
7 |
41 |
11
|
Detection and Characterization of Antibacterial Siderophores Secreted by Endophytic Fungi from Cymbidium aloifolium. Biomolecules 2020; 10:biom10101412. [PMID: 33036284 PMCID: PMC7600725 DOI: 10.3390/biom10101412] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022] Open
Abstract
Endophytic fungi from orchid plants are reported to secrete secondary metabolites which include bioactive antimicrobial siderophores. In this study endophytic fungi capable of secreting siderophores were isolated from Cymbidium aloifolium, a medicinal orchid plant. The isolated extracellular siderophores from orchidaceous fungi act as chelating agents forming soluble complexes with Fe3+. The 60% endophytic fungi of Cymbidium aloifolium produced hydroxamate siderophore on CAS agar. The highest siderophore percentage was 57% in Penicillium chrysogenum (CAL1), 49% in Aspergillus sydowii (CAR12), 46% in Aspergillus terreus (CAR14) by CAS liquid assay. The optimum culture parameters for siderophore production were 30 °C, pH 6.5, maltose and ammonium nitrate and the highest resulting siderophore content was 73% in P. chrysogenum. The total protein content of solvent-purified siderophore increased four-fold compared with crude filtrate. The percent Fe3+ scavenged was detected by atomic absorption spectra analysis and the highest scavenging value was 83% by P. chrysogenum. Thin layer chromatography of purified P. chrysogenum siderophore showed a wine-colored spot with Rf value of 0.54. HPLC peaks with Rts of 10.5 and 12.5 min were obtained for iron-free and iron-bound P. chrysogenum siderophore, respectively. The iron-free P. chrysogenum siderophore revealed an exact mass-to-charge ratio (m/z) of 400.46 and iron-bound P. chrysogenum siderophore revealed a m/z of 453.35. The solvent-extracted siderophores inhibited the virulent plant pathogens Ralstonia solanacearum, that causes bacterial wilt in groundnut and Xanthomonas oryzae pv. oryzae which causes bacterial blight disease in rice. Thus, bioactive siderophore-producing endophytic P. chrysogenum can be exploited in the form of formulations for development of resistance against other phytopathogens in crop plants.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
40 |
12
|
Peakall R, Whitehead MR. Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually deceptive orchids. ANNALS OF BOTANY 2014; 113:341-55. [PMID: 24052555 PMCID: PMC3890385 DOI: 10.1093/aob/mct199] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The events leading to speciation are best investigated in systems where speciation is ongoing or incomplete, such as incipient species. By examining reproductive barriers among incipient sister taxa and their congeners we can gain valuable insights into the relative timing and importance of the various barriers involved in the speciation process. The aim of this study was to identify the reproductive barriers among sexually deceptive orchid taxa in the genus Chiloglottis. METHODS The study targeted four closely related taxa with varying degrees of geographic overlap. Chemical, morphological and genetic evidence was combined to explore the basis of reproductive isolation. Of primary interest was the degree of genetic differentiation among taxa at both nuclear and chloroplast DNA markers. To objectively test whether or not species boundaries are defined by the chemistry that controls pollinator specificity, genetic analysis was restricted to samples of known odour chemistry. KEY RESULTS Floral odour chemical analysis was performed for 600+ flowers. The three sympatric taxa were defined by their specific chiloglottones, the semiochemicals responsible for pollinator attraction, and were found to be fully cross-compatible. Multivariate morphometric analysis could not reliably distinguish among the four taxa. Although varying from very low to moderate, significant levels of genetic differentiation were detected among all pairwise combinations of taxa at both nuclear and chloroplast loci. However, the levels of genetic differentiation were lower than expected for mature species. Critically, a lack of chloroplast DNA haplotype sharing among the morphologically indistinguishable and most closely related taxon pair confirmed that chemistry alone can define taxon boundaries. CONCLUSIONS The results confirmed that pollinator isolation, mediated by specific pollinator attraction, underpins strong reproductive isolation in these taxa. A combination of large effective population sizes, initial neutral mutations in the genes controlling floral scent, and a pool of available pollinators likely drives diversity in this system.
Collapse
|
research-article |
11 |
40 |
13
|
Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MDC, Martinez-Contreras RD. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers. Front Microbiol 2018; 9:612. [PMID: 29670591 PMCID: PMC5893766 DOI: 10.3389/fmicb.2018.00612] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 02/01/2023] Open
Abstract
Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus. Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina. Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma, and Diplodia. Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future.
Collapse
|
research-article |
7 |
30 |
14
|
Han B, Jing Y, Dai J, Zheng T, Gu F, Zhao Q, Zhu F, Song X, Deng H, Wei P, Song C, Liu D, Jiang X, Wang F, Chen Y, Sun C, Yao H, Zhang L, Chen N, Chen S, Li X, Wei Y, Ouyang Z, Yan H, Lu J, Wang H, Guo L, Kong L, Zhao J, Li S, Luo L, Kristiansen K, Feng Z, Sun S, Chen C, Yue Z, Chen N. A Chromosome-Level Genome Assembly of Dendrobium Huoshanense Using Long Reads and Hi-C Data. Genome Biol Evol 2020; 12:2486-2490. [PMID: 33045048 PMCID: PMC7846097 DOI: 10.1093/gbe/evaa215] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/03/2023] Open
Abstract
Dendrobium huoshanense is used to treat various diseases in traditional Chinese medicine. Recent studies have identified active components. However, the lack of genomic data limits research on the biosynthesis and application of these therapeutic ingredients. To address this issue, we generated the first chromosome-level genome assembly and annotation of D. huoshanense. We integrated PacBio sequencing data, Illumina paired-end sequencing data, and Hi-C sequencing data to assemble a 1.285 Gb genome, with contig and scaffold N50 lengths of 598 kb and 71.79 Mb, respectively. We annotated 21,070 protein-coding genes and 0.96 Gb transposable elements, constituting 74.92% of the whole assembly. In addition, we identified 252 genes responsible for polysaccharide biosynthesis by Kyoto Encyclopedia of Genes and Genomes functional annotation. Our data provide a basis for further functional studies, particularly those focused on genes related to glycan biosynthesis and metabolism, and have implications for both conservation and medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
29 |
15
|
Teo ZWN, Zhou W, Shen L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1474. [PMID: 31803211 PMCID: PMC6872546 DOI: 10.3389/fpls.2019.01474] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
The orchid family (Orchidaceae) represents the second largest angiosperm family, having over 900 genera and 27,000 species in almost all over the world. Orchids have evolved a myriad of intriguing ways in order to survive extreme weather conditions, acquire nutrients, and attract pollinators for reproduction. The family of MADS-box transcriptional factors have been shown to be involved in the control of many developmental processes and responses to environmental stresses in eukaryotes. Several findings in different orchid species have elucidated that MADS-box genes play critical roles in the orchid growth and development. An in-depth understanding of their ecological adaptation will help to generate more interest among breeders and produce novel varieties for the floriculture industry. In this review, we summarize recent findings of MADS-box transcription factors in regulating various growth and developmental processes in orchids, in particular, the floral transition and floral patterning. We further discuss the prospects for the future directions in light of new genome resources and gene editing technologies that could be applied in orchid research and breeding.
Collapse
|
Review |
6 |
29 |
16
|
Gross K, Schiestl FP. Are tetraploids more successful? Floral signals, reproductive success and floral isolation in mixed-ploidy populations of a terrestrial orchid. ANNALS OF BOTANY 2015; 115:263-73. [PMID: 25652914 PMCID: PMC4551083 DOI: 10.1093/aob/mcu244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Polyploidization, the doubling of chromosome sets, is common in angiosperms and has a range of evolutionary consequences. Newly formed polyploid lineages are reproductively isolated from their diploid progenitors due to triploid sterility, but also prone to extinction because compatible mating partners are rare. Models have suggested that assortative mating and increased reproductive fitness play a key role in the successful establishment and persistence of polyploids. However, little is known about these factors in natural mixed-ploidy populations. This study investigated floral traits that can affect pollinator attraction and efficiency, as well as reproductive success in diploid and tetraploid Gymnadenia conopsea (Orchidaceae) plants in two natural, mixed-ploidy populations. METHODS Ploidy levels were determined using flow cytometry, and flowering phenology and herbivory were also assessed. Reproductive success was determined by counting fruits and viable seeds of marked plants. Pollinator-mediated floral isolation was measured using experimental arrays, with pollen flow tracked by means of staining pollinia with histological dye. KEY RESULTS Tetraploids had larger floral displays and different floral scent bouquets than diploids, but cytotypes differed only slightly in floral colour. Significant floral isolation was found between the two cytotypes. Flowering phenology of the two cytotypes greatly overlapped, and herbivory did not differ between cytotypes or was lower in tetraploids. In addition, tetraploids had higher reproductive success compared with diploids. CONCLUSIONS The results suggest that floral isolation and increased reproductive success of polyploids may help to explain their successful persistence in mixed-ploidy populations. These factors might even initiate transformation of populations from pure diploid to pure tetraploid.
Collapse
|
research-article |
10 |
29 |
17
|
Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL. Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. AMERICAN JOURNAL OF BOTANY 2016; 103:1880-1889. [PMID: 27797713 DOI: 10.3732/ajb.1600127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/16/2016] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Oeceoclades maculata is a naturalized, invasive, terrestrial orchid in Puerto Rico and elsewhere in the neotropics. We asked whether its success might be partly explained by its mycorrhizal associations, hypothesizing a relationship with many fungal partners or with one widely distributed partner. METHODS Oeceoclades maculata roots were collected throughout Puerto Rico, and the degree of mycorrhizal colonization was measured. For identification of fungi, the ITS region was sequenced from pure cultures and directly from roots. Representative fungi were used for symbiotic seed germination experiments. KEY RESULTS Colonization of O. maculata roots was very variable. The most common fungus identified by BLAST searches was Psathyrella cf. candolleana, but typical orchid mycorrhizal fungi (Ceratobasidium and Tulasnella) were also found, as were a range of saprotrophs. Seeds germinated in vitro only in the presence of Psathyrella. CONCLUSIONS These results are surprising in two respects. First, O. maculata appears to be highly specific for fungi during seed germination, but unusually promiscuous as adult plants. Second, mycorrhizal associations with Psathyrella and with other saprotrophic fungi have been previously reported, but only from mycoheterotrophic (i.e., nonphotosynthetic) orchids, not from green orchids like Oeceoclades. This combination may partly explain the success of Oeceoclades.
Collapse
|
|
9 |
28 |
18
|
Phelps J, Carrasco LR, Webb EL. A framework for assessing supply-side wildlife conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2014; 28:244-257. [PMID: 24471784 DOI: 10.1111/cobi.12160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/06/2013] [Indexed: 06/03/2023]
Abstract
Market-based, supply-side interventions such as domestication, cultivation, and wildlife farming have been proposed as legal substitutes for wild-collected plants and animals in the marketplace. Based on the literature, we devised a list of the conditions under which supply-side interventions may yield positive conservation outcomes. We applied it to the trade of the orchid Rhynchostylis gigantea, a protected ornamental plant. We conducted a survey of R. gigantea at Jatujak Market in Bangkok, Thailand. Farmed (legal) and wild (illegal, protected) specimens of R. gigantea were sold side-by-side at market. These results suggest farmed specimens are not being substituted for wild plants in the marketplace. For any given set of physical plant characteristics (size, condition, flowers), the origin of the plants (wild vs. farmed) did not affect price. For all price classes, farmed plants were of superior quality to wild-collected plants on the basis of most physical variables. These results suggest wild and farmed specimens represent parallel markets and may not be substitutable goods. Our results with R. gigantea highlight a range of explanations for why supply-side interventions may lack effectiveness, for example, consumer preferences for wild-collected products and low financial incentives for farming. Our results suggest that market-based conservation strategies may not be effective by themselves and may be best utilized as supplements to regulation and education. This approach represents a broad, multidisciplinary evaluation of supply-side interventions that can be applied to other plant and animal species.
Collapse
|
|
11 |
28 |
19
|
Lin HY, Chen JC, Fang SC. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:843. [PMID: 29988409 PMCID: PMC6024019 DOI: 10.3389/fpls.2018.00843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein-protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.
Collapse
|
|
7 |
27 |
20
|
Assessment of Antioxidant and Cytotoxic Activities of Extracts of Dendrobium crepidatum. Biomolecules 2019; 9:biom9090478. [PMID: 31547263 PMCID: PMC6770461 DOI: 10.3390/biom9090478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dendrobium crepidatum is an epiphytic orchid found in south Asia including Nepal and China. This orchid species is widely used in traditional Chinese medicine (TCM) for the treatment of cancer, diabetes, cataracts, and fever. The objectives of the present research were to assess the antioxidant and cytotoxic properties of its stem’s extracts with the identification of bioactive secondary metabolites. The antioxidant and cytotoxic activities were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively, and compounds were identified using GC–MS (gas chromatography and mass spectrometry). Ethanol and acetone extracts scavenged 94.69 ± 0.10% and 93.41 ± 0.86% of DPPH free radicals, respectively. They showed 50% inhibition of DPPH free radicals (IC50) at concentrations of 73.90 µg/mL and 99.44 µg/mL, which were found to be statistically similar to that of ascorbic acid (control). Chloroform extract inhibited the growth of 81.49 ± 0.43% of HeLa (human cervical carcinoma) cells and hexane extract inhibited the growth of 76.45 ± 4.26% of U251 (human glioblastoma) cells at 800 µg/mL concentration. These extracts showed 50% inhibition of cell growth (IC50) toward both the HeLa and U251 cell lines at their high concentrations, which were found statistically significantly different from that of cisplatin drug (control). The above extracts showed antioxidant and cytotoxic properties, potentially due to the presence of tetracosane, triacontane, stigmasterol, and some phenol derivatives (2-methoxy-4-vinylphenol, 2-methoxy-5-(1-propenyl)-phenol, p-mesyloxyphenol, and 2,6-dimethoxy-4-(2-propenyl)-phenol). This study explores the potential of this orchid in alternative medicine toward the development of drugs from its medicinally active compounds.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
25 |
21
|
Chand K, Shah S, Sharma J, Paudel MR, Pant B. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. PLANT SIGNALING & BEHAVIOR 2020; 15:1744294. [PMID: 32208892 PMCID: PMC7238887 DOI: 10.1080/15592324.2020.1744294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endophytism is one of the widely explored phenomena related to orchids and fungi. Endophytic fungi assist plants by supplementing nutrient acquisition, and synthesis of plant growth regulators. Vanda cristata is an epiphytic orchid that has a great diversity of endophytic fungi. Endophytic fungi were isolated from roots, stems, and leaves of V.cristata and identified by both morphological and molecular study. Furthermore, the isolated endophytic fungi were subjected to auxin synthesis, phosphate solubilization, ammonia synthesis, and elicitor growth test for understanding their growth-promoting effect in a qualitative and quantitative manner. Altogether, 12 different endophytic fungi were isolated from roots, stems, and leaves of V. cristata of which most species belonged to Ascomycota. Unidentified II fungi were found to be most effective for auxin synthesis and phosphate solubilization while Agaricus bisporous and Mycolepto discus were most effective for ammonia synthesis. We have tested the plant growth-promoting activity of the twelve isolated endophytic fungi on Cymbidium aloifolium protocorms (12 weeks old). All the endophytic fungi showed growth-promoting activity. Plant growth of Cymbidium aloifolium was found higher on the MS medium supplemented with all fungal elicitors. Fungal elicitor CVS4, however, showed the highest plant growth-promoting activity toward C. aloifolium.
Collapse
|
research-article |
5 |
25 |
22
|
Davis SC, Simpson J, Gil-Vega KDC, Niechayev NA, van Tongerlo E, Castano NH, Dever LV, Búrquez A. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6521-6537. [PMID: 31087091 PMCID: PMC6883259 DOI: 10.1093/jxb/erz223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 05/11/2023]
Abstract
The potential for crassulacean acid metabolism (CAM) to support resilient crops that meet demands for food, fiber, fuel, and pharmaceutical products far exceeds current production levels. This review provides background on five families of plants that express CAM, including examples of many species within these families that have potential agricultural uses. We summarize traditional uses, current developments, management practices, environmental tolerance ranges, and economic values of CAM species with potential commercial applications. The primary benefit of CAM in agriculture is high water use efficiency that allows for reliable crop yields even in drought conditions. Agave species, for example, grow in arid conditions and have been exploited for agricultural products in North and South America for centuries. Yet, there has been very little investment in agricultural improvement for most useful Agave varieties. Other CAM species that are already traded globally include Ananas comosus (pineapple), Aloe spp., Vanilla spp., and Opuntia spp., but there are far more with agronomic uses that are less well known and not yet developed commercially. Recent advances in technology and genomic resources provide tools to understand and realize the tremendous potential for using CAM crops to produce climate-resilient agricultural commodities in the future.
Collapse
|
Review |
6 |
25 |
23
|
Ogura-Tsujita Y, Gebauer G, Xu H, Fukasawa Y, Umata H, Tetsuka K, Kubota M, Schweiger JMI, Yamashita S, Maekawa N, Maki M, Isshiki S, Yukawa T. The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Mol Ecol 2018; 27:1324-1337. [PMID: 29419910 DOI: 10.1111/mec.14524] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 11/28/2022]
Abstract
The climbing orchid Erythrorchis altissima is the largest mycoheterotroph in the world. Although previous in vitro work suggests that E. altissima has a unique symbiosis with wood-decaying fungi, little is known about how this giant orchid meets its carbon and nutrient demands exclusively via mycorrhizal fungi. In this study, the mycorrhizal fungi of E. altissima were molecularly identified using root samples from 26 individuals. Furthermore, in vitro symbiotic germination with five fungi and stable isotope compositions in five E. altissima at one site were examined. In total, 37 fungal operational taxonomic units (OTUs) belonging to nine orders in Basidiomycota were identified from the orchid roots. Most of the fungal OTUs were wood-decaying fungi, but underground roots had ectomycorrhizal Russula. Two fungal isolates from mycorrhizal roots induced seed germination and subsequent seedling development in vitro. Measurement of carbon and nitrogen stable isotope abundances revealed that E. altissima is a full mycoheterotroph whose carbon originates mainly from wood-decaying fungi. All of the results show that E. altissima is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are wood-decaying taxa. This generalist association enables E. altissima to access a large carbon pool in woody debris and has been key to the evolution of such a large mycoheterotroph.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
24
|
Functional expression of an orchid fragrance gene in Lactococcus lactis. Int J Mol Sci 2012; 13:1582-1597. [PMID: 22408409 PMCID: PMC3291978 DOI: 10.3390/ijms13021582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022] Open
Abstract
Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
22 |
25
|
Wang Y, Liu L, Song S, Li Y, Shen L, Yu H. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5759-5772. [PMID: 29186512 PMCID: PMC5854133 DOI: 10.1093/jxb/erx400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/17/2017] [Indexed: 05/05/2023]
Abstract
FLOWERING LOCUS T (FT) in Arabidopsis encodes the florigen that moves from leaves to the shoot apical meristem to induce flowering, and this is partly mediated by FT-INTERACTING PROTEIN 1 (FTIP1). Although FT orthologs have been identified in some flowering plants, their endogenous roles in Orchidaceae, which is one of the largest families of flowering plants, are still largely unknown. In this study, we show that DOFT and DOFTIP1, the orchid orthologs of FT and FTIP1, respectively, play important roles in promoting flowering in the orchid Dendrobium Chao Praya Smile. Expression of DOFT and DOFTIP1 increases in whole plantlets during the transition from vegetative to reproductive development. Both transcripts are present in significant levels in reproductive organs, including inflorescence apices, stems, floral buds, and open flowers. Through successful generation of transgenic orchids, we have revealed that overexpression or down-regulation of DOFT accelerates or delays flowering, respectively, while alteration of DOFT expression also greatly affects pseudobulb formation and flower development. In common with their counterparts in Arabidopsis and rice, DOFTIP1 interacts with DOFT and affects flowering time in orchids. Our results suggest that while DOFT and DOFTIP1 play evolutionarily conserved roles in promoting flowering, DOFT may have evolved with hitherto unknown functions pertaining to the regulation of storage organs and flower development in the Orchidaceae family.
Collapse
|
research-article |
8 |
22 |