1
|
Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189. [PMID: 31919479 PMCID: PMC7223625 DOI: 10.1038/s41579-019-0306-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.
Collapse
|
Review |
5 |
133 |
2
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
|
Review |
4 |
122 |
3
|
Weinstein SB, Kuris AM. Independent origins of parasitism in Animalia. Biol Lett 2017; 12:rsbl.2016.0324. [PMID: 27436119 DOI: 10.1098/rsbl.2016.0324] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
Nearly half of all animals may have a parasitic lifestyle, yet the number of transitions to parasitism and their potential for species diversification remain unresolved. Based on a comprehensive survey of the animal kingdom, we find that parasitism has independently evolved at least 223 times in just 15 phyla, with the majority of identified independent parasitic groups occurring in the Arthropoda, at or below the level of Family. Metazoan parasitology is dominated by the study of helminthes; however, only 20% of independently derived parasite taxa belong to those groups, with numerous transitions also seen in Mollusca, Rotifera, Annelida and Cnidaria. Parasitism is almost entirely absent from deuterostomes, and although worm-like morphology and host associations are widespread across Animalia, the dual symbiotic and trophic interactions required for parasitism may constrain its evolution from antecedent consumer strategies such as generalist predators and filter feeders. In general, parasitic groups do not differ from their free-living relatives in their potential for speciation. However, the 10 largest parasitic clades contain 90% of described parasitic species, or perhaps 40% of all animal species. Hence, a substantial fraction of animal diversity on the Earth arose following these few transitions to a parasitic trophic strategy.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
68 |
4
|
Lebarbenchon C, Brown SP, Poulin R, Gauthier-Clerc M, Thomas F. Evolution of pathogens in a man-made world. Mol Ecol 2008; 17:475-84. [PMID: 18173509 PMCID: PMC7168490 DOI: 10.1111/j.1365-294x.2007.03375.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/04/2007] [Indexed: 12/03/2022]
Abstract
Human activities have resulted in substantial, large-scale environmental modifications, especially in the past century. Ecologists and evolutionary biologists are increasingly coming to realize that parasites and pathogens, like free-living organisms, evolve as the consequence of these anthropogenic changes. Although this area now commands the attention of a variety of researchers, a broad predictive framework is lacking, mainly because the links between human activities, the environment and parasite evolution are complex. From empirical and theoretical examples chosen in the literature, we give an overview of the ways in which humans can directly or indirectly influence the evolution of different traits in parasites (e.g. specificity, virulence, polymorphism). We discuss the role of direct and indirect factors as diverse as habitat fragmentation, pollution, biodiversity loss, climate change, introduction of species, use of vaccines and antibiotics, ageing of the population, etc. We also present challenging questions for further research. Understanding the links between anthropogenic changes and parasite evolution needs to become a cornerstone of public health planning, economic development and conservation biology.
Collapse
|
Review |
17 |
61 |
5
|
Hite JL, Cressler CE. Resource-driven changes to host population stability alter the evolution of virulence and transmission. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531142 DOI: 10.1098/rstb.2017.0087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
29 |
6
|
Wang S, Luo H. Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat Commun 2021; 12:3324. [PMID: 34083540 PMCID: PMC8175736 DOI: 10.1038/s41467-021-23645-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the timescale of the evolution of Alphaproteobacteria, one of the most prevalent microbial lineages in marine and terrestrial ecosystems, is key to testing hypotheses on their co-evolution with eukaryotic hosts and Earth's systems, which, however, is largely limited by the scarcity of bacterial fossils. Here, we incorporate eukaryotic fossils to date the divergence times of Alphaproteobacteria, based on the mitochondrial endosymbiosis that mitochondria evolved from an alphaproteobacterial lineage. We estimate that Alphaproteobacteria arose ~1900 million years (Ma) ago, followed by rapid divergence of their major clades. We show that the origin of Rickettsiales, an order of obligate intracellular bacteria whose hosts are mostly animals, predates the emergence of animals for ~700 Ma but coincides with that of eukaryotes. This, together with reconstruction of ancestral hosts, strongly suggests that early Rickettsiales lineages had established previously underappreciated interactions with unicellular eukaryotes. Moreover, the mitochondria-based approach displays higher robustness to uncertainties in calibrations compared with the traditional strategy using cyanobacterial fossils. Further, our analyses imply the potential of dating the (bacterial) tree of life based on endosymbiosis events, and suggest that previous applications using divergence times of the modern hosts of symbiotic bacteria to date bacterial evolution might need to be revisited.
Collapse
|
Historical Article |
4 |
25 |
7
|
Ljungfeldt LER, Espedal PG, Nilsen F, Skern-Mauritzen M, Glover KA. A common-garden experiment to quantify evolutionary processes in copepods: the case of emamectin benzoate resistance in the parasitic sea louse Lepeophtheirus salmonis. BMC Evol Biol 2014; 14:108. [PMID: 24885085 PMCID: PMC4057923 DOI: 10.1186/1471-2148-14-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The development of pesticide resistance represents a global challenge to food production. Specifically for the Atlantic salmon aquaculture industry, parasitic sea lice and their developing resistance to delousing chemicals is challenging production. In this study, seventeen full sibling families, established from three strains of Lepeophtheirus salmonis displaying differing backgrounds in emamectin benzoate (EB) tolerance were produced and quantitatively compared under a common-garden experimental design. Lice surviving to the preadult stage were then exposed to EB and finally identified through the application of DNA parentage testing. RESULTS With the exception of two families (19 and 29%), survival from the infectious copepod to preadult stage was very similar among families (40-50%). In contrast, very large differences in survival following EB exposure were observed among the families (7.9-74%). Family survival post EB exposure was consistent with the EB tolerance characteristics of the strains from which they were established and no negative effect on infection success were detected in association with increased EB tolerance. Two of the lice families that displayed reduced sensitivity to EB were established from a commercial farm that had previously used this chemical. This demonstrates that resistant alleles were present on this farm even though the farm had not reported treatment failure. CONCLUSIONS To our knowledge, this represents the first study where families of any multi-cellular parasite have been established and compared in performance under communal rearing conditions in a common-garden experiment. The system performed in a predictable manner and permitted, for the first time, elucidation of quantitative traits among sea lice families. While this experiment concentrated on, and provided a unique insight into EB sensitivity among lice families, the experimental design represents a novel methodology to experimentally address both resistance development and other evolutionary questions in parasitic copepods.
Collapse
|
research-article |
11 |
23 |
8
|
Ashby B, King KC. Friendly foes: The evolution of host protection by a parasite. Evol Lett 2017; 1:211-221. [PMID: 30283650 PMCID: PMC6121858 DOI: 10.1002/evl3.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Hosts are often infected by multiple parasite species, yet the ecological and evolutionary implications of the interactions between hosts and coinfecting parasites are largely unknown. Most theoretical models of evolution among coinfecting parasites focus on the evolution of virulence, but parasites may also evolve to protect their hosts by reducing susceptibility (i.e., conferring resistance) to other parasites or reducing the virulence of coinfecting parasites (i.e., conferring tolerance). Here, we analyze the eco-evolutionary dynamics of parasite-conferred resistance and tolerance using coinfection models. We show that both parasite-conferred resistance and tolerance can evolve for a wide range of underlying trade-offs. The shape and strength of the trade-off qualitatively affects the outcome causing shifts between the minimisation or maximization of protection, intermediate stable strategies, evolutionary branching, and bistability. Furthermore, we find that a protected dimorphism can readily evolve for parasite-conferred resistance, but find no evidence of evolutionary branching for parasite-conferred tolerance, in general agreement with previous work on host evolution. These results provide novel insights into the evolution of parasite-conferred resistance and tolerance, and suggest clues to the underlying trade-offs in recent experimental work on microbe-mediated protection. More generally, our results highlight the context dependence of host-parasite relationships in complex communities.
Collapse
|
letter |
8 |
23 |
9
|
Taylor SM, Antonia A, Feng G, Mwapasa V, Chaluluka E, Molyneux M, ter Kuile FO, Rogerson SJ, Meshnick SR. Adaptive evolution and fixation of drug-resistant Plasmodium falciparum genotypes in pregnancy-associated malaria: 9-year results from the QuEERPAM study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:282-90. [PMID: 22119749 PMCID: PMC3293939 DOI: 10.1016/j.meegid.2011.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022]
Abstract
Sulfadoxine-pyrimethamine (SP) has been widely deployed in Africa for malaria control and molecular evidence of parasite drug-resistance is prevalent. However, the temporal effects on the selection of Plasmodium falciparum are not well understood. We conducted a retrospective serial cross-sectional study between 1997 and 2006 to investigate changes in drug-resistant malaria among pregnant women delivering at a single hospital in Blantyre, Malawi. P. falciparum parasites were genotyped for parasite clone multiplicity and drug-resistance mutations, and the strength of selection upon mutant genotypes was quantified. Five mutations in the dihydrofolate reductase and dihydropteroate synthase genes began at moderate frequencies and achieved fixation by 2005; the frequency of the highly-SP-resistant "quintuple mutant" haplotype increased from 19% to 100%. The selective advantage of alleles and haplotypes were quantified with selection coefficients: Selection was positive on all mutant alleles and haplotypes associated with SP resistance, and the relative fitness of the quintuple mutant haplotype was 0.139 (95% C.I. 0.067-0.211), indicating a substantial positive selective advantage. Mutations that confer higher levels of resistance to SP did not emerge. SP-resistant haplotypes were rapidly selected for and fixed in P. falciparum populations infecting pregnant women while SP was widely deployed in Malawi. These results underscore the pressing need for new preventive measures for pregnancy-associated malaria and provide a real-world model of the selection landscape malaria parasites.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
22 |
10
|
White PS, Choi A, Pandey R, Menezes A, Penley M, Gibson AK, de Roode J, Morran L. Host heterogeneity mitigates virulence evolution. Biol Lett 2020; 16:20190744. [PMID: 31992149 PMCID: PMC7013476 DOI: 10.1098/rsbl.2019.0744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 01/21/2023] Open
Abstract
Parasites often infect genetically diverse host populations, and the evolutionary trajectories of parasite populations may be shaped by levels of host heterogeneity. Mixed genotype host populations, compared to homogeneous host populations, can reduce parasite prevalence and potentially reduce rates of parasite adaptation due to trade-offs associated with adapting to specific host genotypes. Here, we used experimental evolution to select for increased virulence in populations of the bacterial parasite Serratia marcescens exposed to either heterogeneous or homogeneous populations of Caenorhabditis elegans. We found that parasites exposed to heterogeneous host populations evolved significantly less virulence than parasites exposed to homogeneous host populations over several hundred bacterial generations. Thus, host heterogeneity impeded parasite adaptation to host populations. While we detected trade-offs in virulence evolution, parasite adaptation to two specific host genotypes also resulted in modestly increased virulence against the reciprocal host genotypes. These results suggest that parasite adaptation to heterogeneous host populations may be impeded by both trade-offs and a reduction in the efficacy of selection as different host genotypes exert different selective pressures on a parasite population.
Collapse
|
research-article |
5 |
14 |
11
|
Best A, Long G, White A, Boots M. The implications of immunopathology for parasite evolution. Proc Biol Sci 2012; 279:3234-40. [PMID: 22553095 PMCID: PMC3385737 DOI: 10.1098/rspb.2012.0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/13/2012] [Indexed: 11/12/2022] Open
Abstract
By definition, parasites harm their hosts, but in many infections much of the pathology is driven by the host immune response rather than through direct damage inflicted by parasites. While these immunopathological effects are often well studied and understood mechanistically in individual disease interactions, there remains relatively little understanding of their broader impact on the evolution of parasites and their hosts. Here, we theoretically investigate the implications of immunopathology, broadly defined as additional mortality associated with the host's immune response, on parasite evolution. In particular, we examine how immunopathology acting on different epidemiological traits (namely transmission, virulence and recovery) affects the evolution of disease severity. When immunopathology is costly to parasites, such that it reduces their fitness, for example by decreasing transmission, there is always selection for increased disease severity. However, we highlight a number of host-parasite interactions where the parasite may benefit from immunopathology, and highlight scenarios that may lead to the evolution of slower growing parasites and potentially reduced disease severity. Importantly, we find that conclusions on disease severity are highly dependent on how severity is measured. Finally, we discuss the effect of treatments used to combat disease symptoms caused by immunopathology.
Collapse
|
research-article |
13 |
14 |
12
|
Louro M, Kuzmina TA, Bredtmann CM, Diekmann I, de Carvalho LMM, von Samson-Himmelstjerna G, Krücken J. Genetic variability, cryptic species and phylogenetic relationship of six cyathostomin species based on mitochondrial and nuclear sequences. Sci Rep 2021; 11:8245. [PMID: 33859247 PMCID: PMC8050097 DOI: 10.1038/s41598-021-87500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cyathostomins are important intestinal nematode parasites of equines and include 50 accepted species. Their taxonomy has been frequently revised and the presence of cryptic species suggested. Furthermore, usually molecular- and morphology-based phylogenetic analyses give divergent results. In this study, the nucleotide sequences of the nuclear second internal transcribed spacer (ITS-2) and the mitochondrial partial cytochrome c oxidase subunit I (COI) were determined for adults of six cyathostomin species (Coronocyclus coronatus, Coronocyclus labiatus, Cylicocyclus nassatus, Cylicostephanus calicatus, Cylicostephanus longibursatus, Cylicostephanus minutus) collected from different equine species within two geographic regions. Maximum likelihood trees were calculated for ITS-2, COI, and concatenated data. No obvious differentiation was observed between geographic regions or equine host species. As previously reported, Coronocyclus coronatus and Cylicostephanus calicatus revealed a close relationship. Cryptic species were detected in Cylicostephanus minutus and Cylicostephanus calicatus. Cylicocyclus nassatus and Coronocyclus labiatus showed diverse mitochondrial and nuclear haplotypes occurring in different combinations, while Cylicostephanus longibursatus was comparatively homogenous. In conclusion, a combined analysis of nuclear and mitochondrial haplotypes improved resolution of the phylogeny and should be applied to the remaining cyathostomin species and across additional equine host species and geographic regions.
Collapse
|
research-article |
4 |
10 |
13
|
Doyle SR, Søe MJ, Nejsum P, Betson M, Cooper PJ, Peng L, Zhu XQ, Sanchez A, Matamoros G, Sandoval GAF, Cutillas C, Tchuenté LAT, Mekonnen Z, Ame SM, Namwanje H, Levecke B, Berriman M, Fredensborg BL, Kapel CMO. Population genomics of ancient and modern Trichuris trichiura. Nat Commun 2022; 13:3888. [PMID: 35794092 PMCID: PMC9259628 DOI: 10.1038/s41467-022-31487-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
The neglected tropical disease trichuriasis is caused by the whipworm Trichuris trichiura, a soil-transmitted helminth that has infected humans for millennia. Today, T. trichiura infects as many as 500 million people, predominantly in communities with poor sanitary infrastructure enabling sustained faecal-oral transmission. Using whole-genome sequencing of geographically distributed worms collected from human and other primate hosts, together with ancient samples preserved in archaeologically-defined latrines and deposits dated up to one thousand years old, we present the first population genomics study of T. trichiura. We describe the continent-scale genetic structure between whipworms infecting humans and baboons relative to those infecting other primates. Admixture and population demographic analyses support a stepwise distribution of genetic variation that is highest in Uganda, consistent with an African origin and subsequent translocation with human migration. Finally, genome-wide analyses between human samples and between human and non-human primate samples reveal local regions of genetic differentiation between geographically distinct populations. These data provide insight into zoonotic reservoirs of human-infective T. trichiura and will support future efforts toward the implementation of genomic epidemiology of this globally important helminth.
Collapse
|
research-article |
3 |
9 |
14
|
Johnson P, Calhoun DM, Moss WE, McDevitt-Galles T, Riepe TB, Hallas JM, Parchman TL, Feldman CR, Achatz TJ, Tkach VV, Cropanzano J, Bowerman J, Koprivnikar J. The cost of travel: How dispersal ability limits local adaptation in host-parasite interactions. J Evol Biol 2020; 34:512-524. [PMID: 33314323 DOI: 10.1111/jeb.13754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host-parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomentera and Ribeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host-by-parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance-and corresponding increases in host population genetic distance-reduced infection success for P. syntomentera, which is dispersed by snake definitive hosts. For the avian-dispersed R. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations of P. syntomentera exhibited ~10% mtDNA sequence divergence, those of R. ondatrae were nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
9 |
15
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5205. [PMID: 37626093 PMCID: PMC10457284 DOI: 10.1038/s41467-023-40974-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
Collapse
|
research-article |
2 |
8 |
16
|
Transcriptional profiles in Strongyloides stercoralis males reveal deviations from the Caenorhabditis sex determination model. Sci Rep 2021; 11:8254. [PMID: 33859232 PMCID: PMC8050236 DOI: 10.1038/s41598-021-87478-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
The human and canine parasitic nematode Strongyloides stercoralis utilizes an XX/XO sex determination system, with parasitic females reproducing by mitotic parthenogenesis and free-living males and females reproducing sexually. However, the genes controlling S. stercoralis sex determination and male development are unknown. We observed precocious development of rhabditiform males in permissive hosts treated with corticosteroids, suggesting that steroid hormones can regulate male development. To examine differences in transcript abundance between free-living adult males and other developmental stages, we utilized RNA-Seq. We found two clusters of S. stercoralis-specific genes encoding predicted transmembrane proteins that are only expressed in free-living males. We additionally identified homologs of several genes important for sex determination in Caenorhabditis species, including mab-3, tra-1, fem-2, and sex-1, which may have similar functions. However, we identified three paralogs of gld-1; Ss-qki-1 transcripts were highly abundant in adult males, while Ss-qki-2 and Ss-qki-3 transcripts were highly abundant in adult females. We also identified paralogs of pumilio domain-containing proteins with sex-specific transcripts. Intriguingly, her-1 appears to have been lost in several parasite lineages, and we were unable to identify homologs of tra-2 outside of Caenorhabditis species. Together, our data suggest that different mechanisms control male development in S. stercoralis and Caenorhabditis species.
Collapse
|
research-article |
4 |
8 |
17
|
Holt CC, Hehenberger E, Tikhonenkov DV, Jacko-Reynolds VKL, Okamoto N, Cooney EC, Irwin NAT, Keeling PJ. Multiple parallel origins of parasitic Marine Alveolates. Nat Commun 2023; 14:7049. [PMID: 37923716 PMCID: PMC10624901 DOI: 10.1038/s41467-023-42807-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
Collapse
|
research-article |
2 |
7 |
18
|
Cole R, Holroyd N, Tracey A, Berriman M, Viney M. The parasitic nematode Strongyloides ratti exists predominantly as populations of long-lived asexual lineages. Nat Commun 2023; 14:6427. [PMID: 37833369 PMCID: PMC10575991 DOI: 10.1038/s41467-023-42250-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Nematodes are important parasites of people and animals, and in natural ecosystems they are a major ecological force. Strongyloides ratti is a common parasitic nematode of wild rats and we have investigated its population genetics using single-worm, whole-genome sequencing. We find that S. ratti populations in the UK consist of mixtures of mainly asexual lineages that are widely dispersed across a host population. These parasite lineages are likely very old and may have originated in Asia from where rats originated. Genes that underly the parasitic phase of the parasite's life cycle are hyperdiverse compared with the rest of the genome, and this may allow the parasites to maximise their fitness in a diverse host population. These patterns of parasitic nematode population genetics have not been found before and may also apply to Strongyloides spp. that infect people, which will affect how we should approach their control.
Collapse
|
research-article |
2 |
5 |
19
|
Zhao L, Zhang ZS, Han WX, Yang B, Chai HL, Wang MY, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Giardia duodenalis in dairy cattle in Central Inner Mongolia, Northern China. Sci Rep 2023; 13:13960. [PMID: 37634027 PMCID: PMC10460406 DOI: 10.1038/s41598-023-40987-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Giardia duodenalis is a gastrointestinal protozoan ubiquitous in nature. It is a confirmed zoonotic pathogen, and cattle are considered a source of giardiasis outbreaks in humans. This study aimed to evaluate the prevalence and multilocus genotype (MLG) of G. duodenalis in dairy cattle in Central Inner Mongolia. This study was based on the small subunit ribosomal RNA (SSU rRNA), glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis. DNA extraction, polymerase chain reaction (PCR), and sequence analysis were performed on 505 dairy cattle fecal samples collected in 2021 from six sampling sites and four age groups in Central Inner Mongolia to determine the prevalence and MLG distribution of G. duodenalis. The PCR results of SSU rRNA revealed that the overall prevalence of G. duodenalis was 29.5% (149/505) and that the overall prevalence of the diarrhea and nondiarrhea samples was 31.5% (46/146) and 28.5% (103/359), respectively; the difference was not significant (p > 0.05). SSU rRNA sequence analysis revealed that G. duodenalis assemblage E (91.1%, 133/146) was primarily detected and that assemblage A (8.9%, 13/146) was detected in 13 samples. The G. duodenalis-positive samples were PCR amplified and sequenced for gdh, tpi, and bg, from which 38, 47, and 70 amplified sequences were obtained, respectively. A combination of G. duodenalis assemblages A and E were detected in seven samples. Multilocus genotyping yielded 25 different assemblage E MLGs, which formed six subgroups. To the best of our knowledge, this is the first report regarding G. duodenalis infection in dairy cattle in Inner Mongolia, China. This study revealed that Inner Mongolian cattle pose a risk of giardiasis transmission to humans and that the distribution of local cattle G. duodenalis assemblage E MLGs is diverse. The findings of this study can bridge the knowledge gap in the molecular epidemiological investigation of giardiasis in Central Inner Mongolia.
Collapse
|
research-article |
2 |
5 |
20
|
Gjini E, Haydon DT, Barry JD, Cobbold CA. Linking the antigen archive structure to pathogen fitness in African trypanosomes. Proc Biol Sci 2013; 280:20122129. [PMID: 23282992 PMCID: PMC3574339 DOI: 10.1098/rspb.2012.2129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/05/2012] [Indexed: 12/31/2022] Open
Abstract
Systems that generate antigenic variation enable pathogens to evade host immune responses and are intricately interwoven with major pathogen traits, such as host choice, growth, virulence and transmission. Although much is understood about antigen switching at the molecular level, little is known about the cross-scale links between these molecular processes and the larger-scale within and between host population dynamics that they must ultimately drive. Inspired by the antigenic variation system of African trypanosomes, we apply modelling approaches to our expanding understanding of the organization and expression of antigen repertoires, and explore links across these scales. We predict how pathogen population processes are determined by underlying molecular genetics and infer resulting selective pressures on important emergent repertoire traits.
Collapse
|
research-article |
12 |
4 |
21
|
AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes. Commun Biol 2021; 4:953. [PMID: 34376792 PMCID: PMC8355241 DOI: 10.1038/s42003-021-02472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.
Collapse
|
research-article |
4 |
3 |
22
|
Schneider-Crease I, Beehner JC, Bergman TJ, Gomery MA, Koklic L, Lu A, Snyder-Mackler N. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct Ecol 2020; 34:1898-1906. [PMID: 33071424 DOI: 10.1111/1365-2435.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the relative strength of ecology and phylogeny in shaping parasite communities can inform parasite control and wildlife conservation initiatives while contributing to the study of host species evolution.We tested the relative strengths of phylogeny and ecology in driving parasite community structure in a host whose ecology diverges significantly from that of its closest phylogenetic relatives.We characterized the gastrointestinal (GI) parasite community of wild geladas (Theropithecus gelada), primates that are closely related to baboons but specialized to graminovory in the Ethiopian Highlands.Geladas exhibited very constrained GI parasite communities: only two genera (Oesophagostomum and Trichostrongylus) were identified across 303 samples. This is far below the diversity reported for baboons (Papio spp.) and at the low end of the range of domestic grazers (e.g., Bos taurus, Ovis aries) inhabiting the same region and ecological niche.Using deep amplicon sequencing, we identified 15 amplicon sequence variants (ASVs) within the two genera, seven of which matched to Oesophagostomum sp., seven to Trichostrongylus sp., and one to T. vitrinus.Population was an important predictor of ASV richness. Geladas in the most ecologically disturbed area of the national park exhibited ~4x higher ASV richness than geladas at a less disturbed location within the park.In this system, ecology was a stronger predictor of parasite community structure than phylogeny, with geladas sharing more elements of their parasite communities with other grazers in the same area than with closely related sister taxa.
Collapse
|
Journal Article |
5 |
1 |
23
|
Mule SN, Costa-Martins AG, Rosa-Fernandes L, de Oliveira GS, Rodrigues CMF, Quina D, Rosein GE, Teixeira MMG, Palmisano G. PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile. Commun Biol 2021; 4:324. [PMID: 33707618 PMCID: PMC7952728 DOI: 10.1038/s42003-021-01762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is a complex of seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution requires understanding the parasite origin and population structure. In this study, we introduce the PhyloQuant approach to infer the evolutionary relationships between organisms based on differential mass spectrometry-based quantitative features. In particular, large scale quantitative bottom-up proteomics features (MS1, iBAQ and LFQ) were analyzed using maximum parsimony, showing a correlation between T. cruzi DTUs and closely related trypanosomes' protein expression and sequence-based clustering. Character mapping enabled the identification of synapomorphies, herein the proteins and their respective expression profiles that differentiate T. cruzi DTUs and trypanosome species. The distance matrices based on phylogenetics and PhyloQuant clustering showed statistically significant correlation highlighting the complementarity between the two strategies. Moreover, PhyloQuant allows the identification of differentially regulated and strain/DTU/species-specific proteins, and has potential application in the identification of specific biomarkers and candidate therapeutic targets.
Collapse
|
research-article |
4 |
1 |
24
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Author Correction: Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5447. [PMID: 37673924 PMCID: PMC10482846 DOI: 10.1038/s41467-023-41287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
|
Published Erratum |
2 |
|
25
|
Ruang-Areerate T, Ruang-Areerate P, Manomat J, Naaglor T, Piyaraj P, Mungthin M, Leelayoova S, Siripattanapipong S. Genetic variation and geographic distribution of Leishmania orientalis and Leishmania martiniquensis among Leishmania/HIV co-infection in Thailand. Sci Rep 2023; 13:23094. [PMID: 38155252 PMCID: PMC10754904 DOI: 10.1038/s41598-023-50604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Since 1999, the number of asymptomatic leishmaniasis cases has increased continuously in Thailand, particularly among patients with HIV who are prone to develop symptoms of cutaneous and visceral leishmaniasis further. The asymptomatic infection could play a key role in Leishmania transmission and distribution. Understanding population structure and phylogeographic patterns could be crucially needed to develop effective diagnoses and appropriate guidelines for therapy. In this study, genetic variation and geographic distribution of the Leishmania/HIV co-infected population were investigated in endemic northern and southern Thailand. Interestingly, Leishmania orientalis was common and predominant in these two regions with common regional haplotype distribution but not for the others. Recent population expansion was estimated, probably due to the movement and migration of asymptomatic individuals; therefore, the transmission and prevalence of Leishmania infection could be underestimated. These findings of imbalanced population structure and phylogeographic distribution patterns provide valuable, insightful population structure and geographic distribution of Leishmania/HIV co-infection to empower prevention and control of transmission and expansion of asymptomatic leishmaniasis.
Collapse
|
research-article |
2 |
|