1
|
Irsch J, Lin L. Pathogen Inactivation of Platelet and Plasma Blood Components for Transfusion Using the INTERCEPT Blood System™. Transfus Med Hemother 2011; 38:19-31. [PMID: 21779203 PMCID: PMC3132977 DOI: 10.1159/000323937] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/13/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND: The transmission of pathogens via blood transfusion is still a major threat. Expert conferences established the need for a pro-active approach and concluded that the introduction of a pathogen inactivation/reduction technology requires a thorough safety profile, a comprehensive pre-clinical and clinical development and an ongoing hemovigilance program. MATERIAL AND METHODS: The INTERCEPT Blood System utilizes amotosalen and UVA light and enables for the treatment of platelets and plasma in the same device. Preclinical studies of pathogen inactivation and toxicology and a thorough program of clinical studies have been conducted and an active he-movigilance-program established. RESULTS: INTERCEPT shows robust efficacy of inactivation for viruses, bacteria (including spirochetes), protozoa and leukocytes as well as large safety margins. Furthermore, it integrates well into routine blood center operations. The clinical study program demonstrates the successful use for very diverse patient groups. The hemovigilance program shows safety and tolerability in routine use. Approximately 700,000 INTERCEPT-treated products have been transfused worldwide. The system is in clinical use since class III CE-mark registration in 2002. The safety and efficacy has been shown in routine use and during an epidemic. CONCLUSION: The INTERCEPT Blood System for platelets and plasma offers enhanced safety for the patient and protection against transfusion-transmitted infections.
Collapse
|
review-article |
14 |
132 |
2
|
Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Müller TH, Seltsam A. Inactivation of three emerging viruses - severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus - in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang 2020; 115:146-151. [PMID: 31930543 PMCID: PMC7169309 DOI: 10.1111/vox.12888] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023]
Abstract
Background Emerging viruses like severe acute respiratory syndrome coronavirus (SARS‐CoV), Crimean–Congo haemorrhagic fever virus (CCHFV) and Nipah virus (NiV) have been identified to pose a potential threat to transfusion safety. In this study, the ability of the THERAFLEX UV‐Platelets and THERAFLEX MB‐Plasma pathogen inactivation systems to inactivate these viruses in platelet concentrates and plasma, respectively, was investigated. Materials and methods Blood products were spiked with SARS‐CoV, CCHFV or NiV, and then treated with increasing doses of UVC light (THERAFLEX UV‐Platelets) or with methylene blue (MB) plus increasing doses of visible light (MB/light; THERAFLEX MB‐Plasma). Samples were taken before and after treatment with each illumination dose and tested for residual infectivity. Results Treatment with half to three‐fourths of the full UVC dose (0·2 J/cm2) reduced the infectivity of SARS‐CoV (≥3·4 log), CCHFV (≥2·2 log) and NiV (≥4·3 log) to the limit of detection (LOD) in platelet concentrates, and treatment with MB and a fourth of the full light dose (120 J/cm2) decreased that of SARS‐CoV (≥3·1 log), CCHFV (≥3·2 log) and NiV (≥2·7 log) to the LOD in plasma. Conclusion Our study demonstrates that both THERAFLEX UV‐Platelets (UVC) and THERAFLEX MB‐Plasma (MB/light) effectively reduce the infectivity of SARS‐CoV, CCHFV and NiV in platelet concentrates and plasma, respectively.
Collapse
|
Journal Article |
5 |
105 |
3
|
Tsydenova O, Batoev V, Batoeva A. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9542-61. [PMID: 26287222 PMCID: PMC4555297 DOI: 10.3390/ijerph120809542] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/19/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.
Collapse
|
Review |
10 |
86 |
4
|
Seltsam A, Müller TH. Update on the use of pathogen-reduced human plasma and platelet concentrates. Br J Haematol 2013; 162:442-54. [PMID: 23710899 DOI: 10.1111/bjh.12403] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of pathogen reduction technologies (PRTs) for labile blood components is slowly but steadily increasing. While pathogen-reduced plasma is already used routinely, efficacy and safety concerns impede the widespread use of pathogen-reduced platelets. The supportive and often prophylactic nature of blood component therapy in a variety of clinical situations complicates the clinical evaluation of these novel blood products. However, an increasing body of evidence on the clinical efficacy, safety, cost-benefit ratio and development of novel technologies suggests that pathogen reduction has entered a stage of maturity that could further increase the safety margin in haemotherapy. This review summarizes the clinical evidence on PRTs for plasma and platelet products that are currently licensed or under development.
Collapse
|
Review |
12 |
70 |
5
|
Knutson F, Osselaer J, Pierelli L, Lozano M, Cid J, Tardivel R, Garraud O, Hervig T, Domanovic D, Cukjati M, Gudmundson S, Hjalmarsdottir IB, Castrillo A, Gonzalez R, Brihante D, Santos M, Schlenke P, Elliott A, Lin JS, Tappe D, Stassinopoulos A, Green J, Corash L. A prospective, active haemovigilance study with combined cohort analysis of 19,175 transfusions of platelet components prepared with amotosalen-UVA photochemical treatment. Vox Sang 2015; 109:343-52. [PMID: 25981525 PMCID: PMC4690512 DOI: 10.1111/vox.12287] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES A photochemical treatment process (PCT) utilizing amotosalen and UVA light (INTERCEPT(™) Blood System) has been developed for inactivation of viruses, bacteria, parasites and leucocytes that can contaminate blood components intended for transfusion. The objective of this study was to further characterize the safety profile of INTERCEPT-treated platelet components (PCT-PLT) administered across a broad patient population. MATERIALS AND METHODS This open-label, observational haemovigilance programme of PCT-PLT transfusions was conducted in 21 centres in 11 countries. All transfusions were monitored for adverse events within 24 h post-transfusion and for serious adverse events (SAEs) up to 7 days post-transfusion. All adverse events were assessed for severity (Grade 0-4), and causal relationship to PCT-PLT transfusion. RESULTS Over the course of 7 years in the study centres, 4067 patients received 19,175 PCT-PLT transfusions. Adverse events were infrequent, and most were of Grade 1 severity. On a per-transfusion basis, 123 (0.6%) were classified an acute transfusion reaction (ATR) defined as an adverse event related to the transfusion. Among these ATRs, the most common were chills (77, 0.4%) and urticaria (41, 0.2%). Fourteen SAEs were reported, of which 2 were attributed to platelet transfusion (<0.1%). No case of transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, transfusion-transmitted infection or death was attributed to the transfusion of PCT-PLT. CONCLUSION This longitudinal haemovigilance safety programme to monitor PCT-PLT transfusions demonstrated a low rate of ATRs, and a safety profile consistent with that previously reported for conventional platelet components.
Collapse
|
research-article |
10 |
62 |
6
|
Seghatchian J, Struff WG, Reichenberg S. Main Properties of the THERAFLEX MB-Plasma System for Pathogen Reduction. Transfus Med Hemother 2011; 38:55-64. [PMID: 21779206 PMCID: PMC3132980 DOI: 10.1159/000323786] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Methylene blue (MB) treated plasma has been in clinical use for 18 years. The current THERAFLEX MB-Plasma has a number of improved features compared with the original Springe methodology. This overview embodies: the biochemical characteristics of MB, the mechanism of the technology, toxicology, pathogen reduction capacity, current position in clinical setting and status within Europe. The THERAFLEX MB (TMB) procedure is a robust, well standardised system lending itself to transfusion setting and meets the current guidelines. The pathogen kill power of the TMB system, like the other available technologies, is not limitless, probably in order of 6 log for most enveloped viruses and considerably less for non-enveloped ones. It does not induce either new antigen or grossly reducing the function and life span of active principle in fresh frozen plasma (FFP). The removal of the residual MB at the end of the process has the beneficial effect of reducing potential toxic impacts. Clinical haemovigilance data, so far, indicate that cell-free MB plasma is effective in all therapeutic setting requiring FFP, besides inconsistent thrombotic thrombocytopenia purpura data, without serious side-effects or toxicity. The current system is in continuous improvement e.g. regarding virus reduction range, illumination device, software used, and process integration in the blood bank setting.
Collapse
|
review-article |
14 |
62 |
7
|
Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS, Lee SW. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang 2014; 107:254-60. [PMID: 24806328 DOI: 10.1111/vox.12158] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. METHODS Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. RESULTS The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. CONCLUSION Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
61 |
8
|
Cao X, Wang C, Luo X, Yue L, White JC, Elmer W, Dhankher OP, Wang Z, Xing B. Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS NANO 2021; 15:11817-11827. [PMID: 34148346 DOI: 10.1021/acsnano.1c02917] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In agriculture, loss of crop yield to pathogen damage seriously threatens efforts to achieve global food security. In the present work, "organic" elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. sp. lycopersici on tomatoes. Foliar application and seed treatment with SNPs (30-100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 1 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of the expression of pathogenesis-related and antioxidase-related genes (upregulated by 11-352%) and enhancement of the activity and content of disease-related biomolecules (enhanced by 5-49%). In addition, transmission electron microscopy imaging shows that SNPs were distributed in the tomato stem and directly inactivated in vivo pathogens. The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. The findings highlight the significant potential of SNPs as an eco-friendly and sustainable crop protection strategy.
Collapse
|
|
4 |
58 |
9
|
Betancourt WQ, Kitajima M, Wing AD, Regnery J, Drewes JE, Pepper IL, Gerba CP. Assessment of virus removal by managed aquifer recharge at three full-scale operations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1685-92. [PMID: 25320855 DOI: 10.1080/10934529.2014.951233] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Managed aquifer recharge (MAR) systems such as riverbank filtration and soil-aquifer treatment all involve the use of natural subsurface systems to improve the quality of recharged water (i.e. surface water, stormwater, reclaimed water) before reuse. During MAR, water is either infiltrated via basins, subsurface injected or abstracted from wells adjacent to rivers. The goal of this study was to assess the removal of selected enteric viruses and a potential surrogate for virus removal at three full-scale MAR systems located in different regions of the United States (Arizona, Colorado, and California). Samples of source water (i.e., river water receiving treated wastewater and reclaimed water) before recharge and recovered groundwater at all three sites were tested for adenoviruses, enteroviruses, Aichi viruses and pepper mild mottle virus (PMMoV) by quantitative polymerase chain reaction (qPCR). Samples of groundwater positive for any virus were also tested for the presence of infectious virus by cell culture. PMMoV was the most commonly detected virus in the groundwater samples. Infectious enteric viruses (reovirus) were only detected in one groundwater sample with a subsurface residence time of 5 days. The results suggested that in groundwater with a residence time of greater than 14 days all of the viruses are removed below detection indicating a 1 to greater than 5 log removal depending upon the type of virus. Given its behavior, PMMoV may be suitable to serve as a conservative tracer of enteric virus removal in managed aquifer treatment systems.
Collapse
|
|
11 |
42 |
10
|
Bell CE, Botteman MF, Gao X, Weissfeld JL, Postma MJ, Pashos CL, Triulzi D, Staginnus U. Cost-effectiveness of transfusion of platelet components prepared with pathogen inactivation treatment in the United States. Clin Ther 2003; 25:2464-86. [PMID: 14604745 PMCID: PMC7133650 DOI: 10.1016/s0149-2918(03)80288-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2003] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Intercept Blood System (IBS) for platelets has been developed to reduce pathogen transmission risks during transfusions. OBJECTIVE This study was a comprehensive economic analysis of the cost-effectiveness of using the IBS for single-donor apheresis platelets (AP) and random-donor pooled platelet concentrates (PC) versus AP and PC without the IBS in the United States in patient populations in which platelets are commonly transfused. METHODS All data used in this analysis were summarized from existing published sources (primarily indexed in MEDLINE) and data on file at Baxter Healthcare Corporation (Chicago, Illinois) and Cerus Corporation (Concord, California). A literature-based decision-analytic model was developed to assess the economic costs and clinical outcomes associated with the use of AP and PC treated with the IBS for several conditions and procedures that account for a considerable proportion of the platelet usage in the United States: acute lymphocytic leukemia, non-Hodgkin's lymphoma, coronary artery bypass graft, and hip arthroplasty Risks of infection with HIV, hepatitis C virus (HCV), hepatitis B virus, human T-cell lymphotropic virus type 1, or bacterial agents were incorporated into the model. Possible benefits of reduction of the risk of emerging HCV like pathogens and elimination of the need for gamma irradiation were explored in sensitivity analyses. RESULTS The incremental cost per quality-adjusted life-year gained by using AP + IBS versus untreated AP ranged from 1,308,833 dollars to 4,451,650 dollars (without bacterial testing) and 4,759,401 dollars to 22,968,066 dollars (with bacterial testing). Corresponding figures for PC + IBS versus untreated PC ranged from 457,586 dollars to 1,816,060 dollars. Inclusion of emerging HCV like virus and the elimination of the need for gamma irradiation improved the cost-effectiveness to a range of 177,695 dollars to 1,058,127 dollars for AP without bacterial testing, 176,572 dollars to 1,330,703 dollars for AP with bacterial testing, and 22,888 dollars to 153,564 dollars for PC. The model was most likely to be affected by mortality from bacterial contamination, IBS effect on platelet utilization, and the inclusion of potential benefits (ie, gamma irradiation and/or emergent HCV-like virus). The model was relatively insensitive to changes in the IBS price and viral transmission risks. CONCLUSIONS The cost-effectiveness of pathogen inactivation via the IBS for platelets is comparable to that of other accepted blood safety interventions (eg, nucleic acid amplification technology). The IBS for platelets may be considered a desirable strategy to increase the safety of platelet transfusions and a potential insurance against the threat of emerging pathogens.
Collapse
|
Comparative Study |
22 |
42 |
11
|
Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses. Viruses 2016; 8:v8110319. [PMID: 27886076 PMCID: PMC5127033 DOI: 10.3390/v8110319] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.
Collapse
|
Journal Article |
9 |
40 |
12
|
Seltsam A. Pathogen Inactivation of Cellular Blood Products-An Additional Safety Layer in Transfusion Medicine. Front Med (Lausanne) 2017; 4:219. [PMID: 29255710 PMCID: PMC5722787 DOI: 10.3389/fmed.2017.00219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 01/23/2023] Open
Abstract
In line with current microbial risk reduction efforts, pathogen inactivation (PI) technologies for blood components promise to reduce the residual risk of known and emerging infectious agents. The implementation of PI of labile blood components is slowly but steadily increasing. This review discusses the relevance of PI for the field of transfusion medicine and describes the available and emerging PI technologies that can be used to treat cellular blood products such as platelet and red blood cell units. In collaboration with the French medical device manufacturer Macopharma, the German Red Cross Blood Services developed a new UVC light-based PI method for platelet units, which is currently being investigated in clinical trials.
Collapse
|
Review |
8 |
37 |
13
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
|
Review |
3 |
32 |
14
|
Amato M, Schennach H, Astl M, Chen CY, Lin JS, Benjamin RJ, Nussbaumer W. Impact of platelet pathogen inactivation on blood component utilization and patient safety in a large Austrian Regional Medical Centre. Vox Sang 2016; 112:47-55. [PMID: 28001297 DOI: 10.1111/vox.12456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND In clinical studies, pathogen inactivation (PI) of platelet concentrates (PC) with amotosalen and UVA light did not impact patient risk for haemorrhage but may affect transfusion frequency and component utilization. We evaluated the influence of platelet PI on PC, red cell concentrate (RCC) and plasma use and safety in routine practice in a large regional hospital. STUDY DESIGN AND METHODS Comparative effectiveness of conventional vs. PI-treated PC was analysed during two 21-month periods, before and after PI implementation. RESULTS Similar numbers of patients were transfused in the pre-PI (control, 1797) and post-PI (test, 1694) periods with comparable numbers of PC (8611 and 7705, respectively). The mean numbers of PC per patient transfused (4·8 vs. 4·5, P = 0·43) were not different but days of PC support (5·9 vs. 5·0, P < 0·01) decreased. Most patients received RCC (86·8% control vs. 84·8% test, P = 0·90) with similar mean numbers transfused (10·8 vs. 10·2 RCC, P = 0·22), and fewer patients (55·4% control vs. 44·7% test, P < 0·01) received less plasma units (mean 9·9 vs. 7·8, respectively, P < 0·01) in the test period. The frequencies of transfusion-related adverse events (AE) were comparable (1·3% vs. 1·4%, P = 0·95). Analysis of haematology-oncology (522 control, 452 test), cardiac surgery (739 control, 711 test), paediatric (157 control, 130 test) and neonate (23 control, 20 test) patients revealed no increase in PC, plasma and RCC utilization, or AE. CONCLUSION Component utilization and patient safety were not impacted by adoption of PI for PC. RCC use per patient was comparable, suggestive of no increase in significant bleeding.
Collapse
|
Journal Article |
9 |
30 |
15
|
Schubert P, Johnson L, Marks DC, Devine DV. Ultraviolet-Based Pathogen Inactivation Systems: Untangling the Molecular Targets Activated in Platelets. Front Med (Lausanne) 2018; 5:129. [PMID: 29868586 PMCID: PMC5949320 DOI: 10.3389/fmed.2018.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Transfusions of platelets are an important cornerstone of medicine; however, recipients may be subject to risk of adverse events associated with the potential transmission of pathogens, especially bacteria. Pathogen inactivation (PI) technologies based on ultraviolet illumination have been developed in the last decades to mitigate this risk. This review discusses studies of platelet concentrates treated with the current generation of PI technologies to assess their impact on quality, PI capacity, safety, and clinical efficacy. Improved safety seems to come with the cost of reduced platelet functionality, and hence transfusion efficacy. In order to understand these negative impacts in more detail, several molecular analyses have identified signaling pathways linked to platelet function that are altered by PI. Because some of these biochemical alterations are similar to those seen arising in the context of routine platelet storage lesion development occurring during blood bank storage, we lack a complete picture of the contribution of PI treatment to impaired platelet functionality. A model generated using data from currently available publications places the signaling protein kinase p38 as a central player regulating a variety of mechanisms triggered in platelets by PI systems.
Collapse
|
Review |
7 |
30 |
16
|
Faddy HM, Fryk JJ, Watterson D, Young PR, Modhiran N, Muller DA, Keil SD, Goodrich RP, Marks DC. Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sang 2016; 111:235-241. [PMID: 27281512 DOI: 10.1111/vox.12414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dengue viruses (DENV 1-4) are emerging across the world, and these viruses pose a risk to transfusion safety. Pathogen inactivation may be an alternative approach for managing the risk of DENV transfusion transmission. This study aimed to investigate the ability of riboflavin and UV light to inactivate DENV 1-4 in platelet concentrates. MATERIALS AND METHODS DENV 1-4 were spiked into buffy coat-derived platelet concentrates in additive solution (SSP+) before being treated with riboflavin and UV light. Infectious virus was quantified pre- and posttreatment, and the reduction in viral infectivity was calculated. RESULTS All four DENV serotypes were modestly reduced after treatment. The greatest amount of reduction in infectivity was observed for DENV-4 (1·81 log reduction) followed by DENV-3 (1·71 log reduction), DENV-2 (1·45 log reduction) and then DENV-1 (1·28 log reduction). CONCLUSION Our study demonstrates that DENV 1-4 titres are modestly reduced following treatment with riboflavin and UV light. With the increasing number of transfusion-transmitted cases of DENV around the globe, and the increasing incidence and geographical distribution of DENV, additional approaches for maintaining blood safety may be required in the future.
Collapse
|
Journal Article |
9 |
25 |
17
|
Waters L, Cameron M, Padula MP, Marks DC, Johnson L. Refrigeration, cryopreservation and pathogen inactivation: an updated perspective on platelet storage conditions. Vox Sang 2018; 113:317-328. [PMID: 29441601 DOI: 10.1111/vox.12640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Conventional storage of platelet concentrates limits their shelf life to between 5 and 7 days due to the risk of bacterial proliferation and the development of the platelet storage lesion. Cold storage and cryopreservation of platelets may facilitate extension of the shelf life to weeks and years, and may also provide the benefit of being more haemostatically effective than conventionally stored platelets. Further, treatment of platelet concentrates with pathogen inactivation systems reduces bacterial contamination and provides a safeguard against the risk of emerging and re-emerging pathogens. While each of these alternative storage techniques is gaining traction individually, little work has been done to examine the effect of combining treatments in an effort to further improve product safety and minimize wastage. This review aims to discuss the benefits of alternative storage techniques and how they may be combined to alleviate the problems associated with conventional platelet storage.
Collapse
|
Review |
7 |
25 |
18
|
Hashem AM, Hassan AM, Tolah AM, Alsaadi MA, Abunada Q, Damanhouri GA, El-Kafrawy SA, Picard-Maureau M, Azhar EI, Hindawi SI. Amotosalen and ultraviolet A light efficiently inactivate MERS-coronavirus in human platelet concentrates. Transfus Med 2019; 29:434-441. [PMID: 31696565 PMCID: PMC7169717 DOI: 10.1111/tme.12638] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Objective This study aimed to assess the efficacy of the INTERCEPT™ Blood System [amotosalen/ultraviolet A (UVA) light] to reduce the risk of Middle East respiratory syndrome‐Coronavirus (MERS‐CoV) transmission by human platelet concentrates. Background Since 2012, more than 2425 MERS‐CoV human cases have been reported in 27 countries. The infection causes acute respiratory disease, which was responsible for 838 deaths in these countries, mainly in Saudi Arabia. Viral genomic RNA was detected in whole blood, serum and plasma of infected patients, raising concerns of the safety of blood supplies, especially in endemic areas. Methods Four apheresis platelet units in 100% plasma were inoculated with a clinical MERS‐CoV isolate. Spiked units were then treated with amotosalen/UVA to inactivate MERS‐CoV. Infectious and genomic viral titres were quantified by plaque assay and quantitative real‐time reverse transcription polymerase chain reaction (RT‐qPCR). Inactivated samples were successively passaged thrice on Vero E6 cells to exclude the presence of residual replication‐competent viral particles in inactivated platelets. Results Complete inactivation of MERS‐CoV in spiked platelet units was achieved by treatment with Amotosalen/UVA light with a mean log reduction of 4·48 ± 0·3. Passaging of the inactivated samples in Vero E6 showed no viral replication even after nine days of incubation and three passages. Viral genomic RNA titration in inactivated samples showed titres comparable to those in pre‐treatment samples. Conclusion Amotosalen and UVA light treatment of MERS‐CoV‐spiked platelet concentrates efficiently and completely inactivated MERS‐CoV infectivity (>4 logs), suggesting that such treatment could minimise the risk of transfusion‐related MERS‐CoV transmission.
Collapse
|
Journal Article |
6 |
25 |
19
|
Huo ZY, Winter LR, Wang XX, Du Y, Wu YH, Hübner U, Hu HY, Elimelech M. Synergistic Nanowire-Enhanced Electroporation and Electrochlorination for Highly Efficient Water Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10925-10934. [PMID: 35820052 DOI: 10.1021/acs.est.2c01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional water disinfection methods such as chlorination typically involve the generation of harmful disinfection byproducts and intensive chemical consumption. Emerging electroporation disinfection techniques using nanowire-enhanced local electric fields inactivate microbes by damaging their outer structures without byproduct formation or chemical dosing. However, this physical-based method suffers from a limited inactivation efficiency under high water flux due to an insufficient contact time. Herein, we integrate electrochlorination with nanowire-enhanced electroporation to achieve a synergistic flow-through process for efficient water disinfection targeting bacteria and viruses. Electroporation at the cathode induces sub-lethal damages on the microbial outer structures. Subsequently, electrogenerated active chlorine at the anode aggravates these electroporation-induced injuries to the level of lethal damage. This sequential flow-through disinfection system achieves complete disinfection (>6.0-log) under a very high water flux of 2.4 × 104 L/(m2 h) with an applied voltage of 2.0 V. This disinfection efficiency is 8 times faster than that of electroporation alone. Further, the specific energy consumption for the disinfection by this novel process is extremely low (8 × 10-4 kW h/m3). Our results demonstrate a promising method for rapid and energy-efficient water disinfection by coupling electroporation with electrochlorination to meet vital needs for pathogen elimination.
Collapse
|
|
3 |
23 |
20
|
Azhar EI, Hindawi SI, El-Kafrawy SA, Hassan AM, Tolah AM, Alandijany TA, Bajrai LH, Damanhouri GA. Amotosalen and ultraviolet A light treatment efficiently inactivates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human plasma. Vox Sang 2020; 116:673-681. [PMID: 33277935 PMCID: PMC8359189 DOI: 10.1111/vox.13043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
Background and objectives During the ongoing pandemic of COVID‐19, SARS‐CoV‐2 RNA was detected in plasma and platelet products from asymptomatic blood donors, raising concerns about potential risk of transfusion transmission, also in the context of the current therapeutic approach utilizing plasma from convalescent donors. The objective of this study was to assess the efficacy of amotosalen/UVA light treatment to inactivate SARS‐CoV‐2 in human plasma to reduce the risk of potential transmission through blood transfusion. Methods Pools of three whole‐blood‐derived human plasma units (630–650 ml) were inoculated with a clinical SARS‐CoV‐2 isolate. Spiked units were treated with amotosalen/UVA light (INTERCEPT Blood System™) to inactivate SARS‐CoV‐2. Infectious titres and genomic viral load were assessed by plaque assay and real‐time quantitative PCR. Inactivated samples were subject to three successive passages on permissive tissue culture to exclude the presence of replication‐competent viral particles. Results Inactivation of infectious viral particles in spiked plasma units below the limit of detection was achieved by amotosalen/UVA light treatment with a mean log reduction of >3·32 ± 0·2. Passaging of inactivated samples on permissive tissue showed no viral replication even after 9 days of incubation and three passages, confirming complete inactivation. The treatment also inhibited NAT detection by nucleic acid modification with a mean log reduction of 2·92 ± 0·87 PFU genomic equivalents. Conclusion Amotosalen/UVA light treatment of SARS‐CoV‐2 spiked human plasma units efficiently and completely inactivated >3·32 ± 0·2 log of SARS‐CoV‐2 infectivity, showing that such treatment could minimize the risk of transfusion‐related SARS‐CoV‐2 transmission.
Collapse
|
Journal Article |
5 |
20 |
21
|
Abstract
PURPOSE OF REVIEW As human babesiosis caused by apicomplexan parasites of the Babesia genus is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations, it is important to report novel findings relating to parasite biology that may be responsible for such pathology. Blood screening tools recently licensed by the FDA are also described to allow understanding of their impact on keeping the blood supply well tolerated. RECENT FINDINGS Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the USA, through Eastern Europe and into China are also on the rise. Novel features of the parasite lifecycle that underlie the basis of parasite persistence have recently been characterized. These merit consideration in deployment of both detection, treatment and mitigation tools such as pathogen inactivation technology. The impact of new blood donor screening tests in reducing transfusion transmitted babesiosis is discussed. SUMMARY New Babesia species have been identified globally, suggesting that the epidemiology of this disease is rapidly changing, making it clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measures. Unlike other erythrocytic parasites, Babesia exploits unconventional lifecycle strategies that permit host cycles of different lengths to ensure survival in hostile environments. With the licensure of new blood screening tests, incidence of transfusion transmission babesiosis has decreased.
Collapse
|
Review |
5 |
17 |
22
|
Politis C, Kavallierou L, Hantziara S, Parara M, Zervou E, Katsarou O, Hatzitaki M, Fountouli P, Gioka A, Tzioura K, Koumarianos S, Asariotou M, Richardson C. Haemovigilance data on the use of methylene blue virally inactivated fresh frozen plasma with the Theraflex MB-Plasma System in comparison to quarantine plasma: 11 years' experience. Transfus Med 2014; 24:316-20. [PMID: 25262924 DOI: 10.1111/tme.12144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES/BACKGROUND Haemovigilance is an effective tool for identifying adverse effects of blood components. We analyse cumulative haemovigilance data in order to compare the two secured therapeutic plasmas that have been in use for more than 11 years in Greece - methylene blue-treated fresh frozen plasma (MB-FFP) and quarantine fresh frozen plasma (Q-FFP) - regarding safety and adverse events. METHODS/MATERIALS Data from the centralised active haemovigilance system of Greece for the period 2001-2011 were used to examine the association between FFP types and adverse events. Post-transfusion information on infectious and non-infectious adverse events was analysed. Events were examined by reaction type, severity and imputability to transfusion. RESULTS The incidence of adverse events was higher with Q-FFP (1:3620) than MB-FFP (1 : 24 593) by a factor of 6·79 [95% confidence interval (CI) 2·52-27·8]. Allergic adverse events were also commoner with Q-FFP (1 : 7489) than with MB-FFP (1:24 593), by a factor of 3·28 (95% CI 1·17-13·7). All adverse reactions experienced by the MB plasma recipients were considered to be mild. CONCLUSION Haemovigilance over 11 years has demonstrated the long-term safety of MB-FFP in comparison to untreated quarantine FFP. In addition to lowering the adverse event rate, implementing the system on a national scale in at-risk countries would presumably reduce the transmission of severe viral infections including emerging infectious diseases by transfusion.
Collapse
|
Journal Article |
11 |
17 |
23
|
Feys HB, Van Aelst B, Devreese K, Devloo R, Coene J, Vandekerckhove P, Compernolle V. Oxygen removal during pathogen inactivation with riboflavin and UV light preserves protein function in plasma for transfusion. Vox Sang 2013; 106:307-15. [PMID: 24460692 DOI: 10.1111/vox.12106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Photochemical pathogen inactivation technologies (PCT) for individual transfusion products act by inhibition of replication through irreversibly damaging nucleic acids. Concern on the collateral impact of PCT on the blood component's integrity has caused reluctance to introduce this technology in routine practice. This work aims to uncover the mechanism of damage to plasma constituents by riboflavin pathogen reduction technology (RF-PRT). METHODS Activity and antigen of plasma components were determined following RF-PRT in the presence or absence of dissolved molecular oxygen. RESULTS Employing ADAMTS13 as a sentinel molecule in plasma, our data show that its activity and antigen are reduced by 23 ± 8% and 29 ± 9% (n = 24), respectively, which corroborates with a mean decrease of 25% observed for other coagulation factors. Western blotting of ADAMTS13 shows decreased molecular integrity, with no obvious indication of additional proteolysis nor is riboflavin able to directly inhibit the enzyme. However, physical removal of dissolved oxygen prior to RF-PRT protects ADAMTS13 as well as FVIII and fibrinogen from damage, indicating a direct role for reactive oxygen species. Redox dye measurements indicate that superoxide anions are specifically generated during RF-PRT. Protein carbonyl content as a marker of disseminated irreversible biomolecular damage was significantly increased (3·1 ± 0·8 vs. 1·6 ± 0·5 nmol/mg protein) following RF-PRT, but not in the absence of dissolved molecular oxygen (1·8 ± 0·4 nmol/mg). CONCLUSIONS RF-PRT of single plasma units generates reactive oxygen species that adversely affect biomolecular integrity of relevant plasma constituents, a side-effect, which can be bypassed by applying hypoxic conditions during the pathogen inactivation process.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
17 |
24
|
Tsen SWD, Chapa T, Beatty W, Tsen KT, Yu D, Achilefu S. Inactivation of enveloped virus by laser-driven protein aggregation. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:128002. [PMID: 23224114 PMCID: PMC3518210 DOI: 10.1117/1.jbo.17.12.128002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrafast lasers in the visible and near-infrared range have emerged as a potential new method for pathogen reduction of blood products and pharmaceuticals. However, the mechanism of enveloped virus inactivation by this method is unknown. We report the inactivation as well as the molecular and structural effects caused by visible (425 nm) femtosecond laser irradiation on murine cytomegalovirus (MCMV), an enveloped, double-stranded DNA virus. Our results show that laser irradiation (1) caused a 5-log reduction in MCMV titer, (2) did not cause significant changes to the global structure of MCMV virions including membrane and capsid, as assessed by electron microscopy, (3) produced no evidence of double-strand breaks or crosslinking in MCMV genomic DNA, and (4) caused selective aggregation of viral capsid and tegument proteins. We propose a model in which ultrafast laser irradiation induces partial unfolding of viral proteins by disrupting hydrogen bonds and/or hydrophobic interactions, leading to aggregation of closely associated viral proteins and inactivation of the virus. These results provide new insight into the inactivation of enveloped viruses by visible femtosecond lasers at the molecular level, and help pave the way for the development of a new ultrafast laser technology for pathogen reduction.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
14 |
25
|
Cazenave JP. [Photochemical inactivation of pathogens in platelets and plasma: five years of clinical use in routine and hemovigilance. Towards a change of paradigm in transfusion safety]. Transfus Clin Biol 2011; 18:53-61. [PMID: 21474358 PMCID: PMC7110539 DOI: 10.1016/j.tracli.2011.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 11/15/2022]
Abstract
The transfusion of labile blood products is vital and essential for patients in absence of alternative treatment. Patients and doctors have always feared transfusion-transmitted infections by blood, blood components and blood-derived drugs. Photochemical inactivation of platelet concentrates and plasma, using a technique associating amotosalen and UVA, has been used for five years in a French region for the whole population and a large spectrum of patients, with efficacy and safety. It would seem wise to introduce labile blood products, submitted to pathogen inactivation by a technique already approved by a regulatory agency and not to wait for a perfect system including red blood cells concentrates. Universal implementation of pathogen inactivation in labile blood products is a major and key step to improve safety against infection in transfusion.
Collapse
|
English Abstract |
14 |
14 |