1
|
Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, Hagiwara N. Papillary muscle ischemia on high-resolution cine imaging of nitrogen-13 ammonia positron emission tomography: Association with myocardial flow reserve and prognosis in coronary artery disease. J Nucl Cardiol 2022; 29:293-303. [PMID: 32566962 DOI: 10.1007/s12350-020-02231-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The evaluation of papillary muscle (PM) perfusion through existing perfusion imaging, including single-photon emission computed tomography and magnetic resonance imaging, is not possible. Therefore, this study sought to investigate the detection of PM ischemia in coronary artery disease (CAD) using nitrogen-13 (N-13) ammonia positron emission tomography (NH3 PET) and its association with global myocardial flow reserve (MFR) and major adverse cardiac events (MACE). METHODS Data of adenosine-stress NH3 PET for 263 consecutive patients with known or suspected CAD were retrospectively analyzed. PM ischemia was defined as the absence of PM accumulation under stress conditions and PM presence at rest on high-resolution cine imaging derived from PET-computed tomography scanner with time-of-flight technology. The primary outcome was MACE. RESULTS Of 263 patients, 30 experienced mean follow-up period of 910 days (MACE), while 31 (11.8%) presented PM ischemia. Compared to patients without PM ischemia, those with PM ischemia reported a significantly lower global MFR and a significantly higher rate of MACE (P < .0001). CONCLUSION NH3 PET enables the detection of PM ischemia in approximately 10% of patients with known or suspected CAD. PM ischemia is associated with reduced global MFR and is an important sign in predicting prognosis.
Collapse
|
|
3 |
21 |
2
|
Hu LH, Sharir T, Miller RJH, Einstein AJ, Fish MB, Ruddy TD, Dorbala S, Di Carli M, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Betancur J, Germano G, Liang JX, Commandeur F, Azadani PN, Gransar H, Otaki Y, Tamarappoo BK, Dey D, Berman DS, Slomka PJ. Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry. J Nucl Cardiol 2020; 27:1180-1189. [PMID: 31087268 PMCID: PMC6851400 DOI: 10.1007/s12350-019-01730-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Upper reference limits for transient ischemic dilation (TID) have not been rigorously established for cadmium-zinc-telluride (CZT) camera systems. We aimed to derive TID limits for common myocardial perfusion imaging protocols utilizing a large, multicenter registry (REFINE SPECT). METHODS One thousand six hundred and seventy-two patients with low likelihood of coronary artery disease with normal perfusion findings were identified. Images were processed with Quantitative Perfusion SPECT software (Cedars-Sinai Medical Center, Los Angeles, CA). Non-attenuation-corrected, camera-, radiotracer-, and stress protocol-specific TID limits in supine position were derived from 97.5th percentile and mean + 2 standard deviations (SD). Reference limits were compared for different solid-state cameras (D-SPECT vs. Discovery), radiotracers (technetium-99m-sestamibi vs. tetrofosmin), different types of stress (exercise vs. four different vasodilator-based protocols), and different vasodilator-based protocols. RESULTS TID measurements did not follow Gaussian distribution in six out of eight subgroups. TID limits ranged from 1.18 to 1.52 (97.5th percentile) and 1.18 to 1.39 (mean + 2SD). No difference was noted between D-SPECT and Discovery cameras (P = 0.71) while differences between exercise and vasodilator-based protocols (adenosine, regadenoson, or regadenoson-walk) were noted (all P < 0.05). CONCLUSIONS We used a multicenter registry to establish camera-, radiotracer-, and protocol-specific upper reference limits of TID for supine position on CZT camera systems. Reference limits did not differ between D-SPECT and Discovery camera.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
3
|
Chou TH, Janse S, Sinusas AJ, Stacy MR. SPECT/CT imaging of lower extremity perfusion reserve: A non-invasive correlate to exercise tolerance and cardiovascular fitness in patients undergoing clinically indicated myocardial perfusion imaging. J Nucl Cardiol 2020; 27:1923-1933. [PMID: 31939039 PMCID: PMC7749094 DOI: 10.1007/s12350-019-02019-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although exercise is often prescribed for the management of cardiovascular diseases, a non-invasive imaging approach that quantifies skeletal muscle physiology and correlates with patients' functional capacity and cardiovascular fitness has been absent. Therefore, we evaluated the potential of lower extremity single photon emission computed tomography (SPECT)/CT perfusion imaging as a non-invasive correlate to exercise tolerance and cardiovascular fitness. METHODS Patients (n = 31) undergoing SPECT/CT myocardial perfusion imaging underwent additional stress/rest SPECT/CT imaging of the lower extremities. CT-based image segmentation was used for regional quantification of perfusion reserve within the tibialis anterior, soleus, and gastrocnemius muscles. Metabolic equivalents (METs) at peak exercise and heart rate recovery (HRR) after exercise were recorded. RESULTS Peak METs were significantly associated with perfusion reserve of tibialis anterior (p = 0.02), soleus (p = 0.01) and gastrocnemius (p = 0.01). HRR was significantly associated with perfusion reserve of the soleus (p = 0.02) and gastrocnemius (p = 0.04) muscles. Perfusion reserve of the tibialis anterior (40.6 ± 20.2%), soleus (35.4 ± 16.7%), and gastrocnemius (29.7 ± 19.1%) all significantly differed from each other. CONCLUSIONS SPECT/CT imaging provides regional quantification of skeletal muscle perfusion reserve which is significantly associated with exercise tolerance and cardiovascular fitness. Future application of SPECT/CT may elucidate the underlying skeletal muscle adapations to exercise therapy in patients with cardiovascular diseases.
Collapse
|
research-article |
5 |
6 |
4
|
Degtiarova G, Claus P, Duchenne J, Schramm G, Nuyts J, Verberne HJ, Voigt JU, Gheysens O. Impact of left bundle branch block on myocardial perfusion and metabolism: A positron emission tomography study. J Nucl Cardiol 2021; 28:1730-1739. [PMID: 31578659 DOI: 10.1007/s12350-019-01900-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Better understanding of pathophysiological changes, induced by left bundle branch block (LBBB), may improve patient selection for cardiac resynchronization therapy (CRT). Therefore, we assessed the effect of LBBB on regional glucose metabolism, 13N-NH3-derived absolute and semiquantitative myocardial blood flow (MBF), and their relation in non-ischemic CRT candidates. METHODS Twenty-five consecutive non-ischemic patients with LBBB underwent 18F-FDG and resting dynamic 13N-NH3 PET/CT prior to CRT implantation. Regional 18F-FDG uptake, absolute MBF, and late 13N-NH3 uptake were analyzed and corresponding septal-to-lateral wall ratios (SLR) were calculated. Segmental analysis was performed to evaluate "reverse mismatch," "mismatch," and "match" patterns, based on late 13N-NH3/18F-FDG uptake ratios. RESULTS A significantly lower 18F-FDG uptake was observed in the septum compared to the lateral wall (SLR 0.53 ± 0.17). A similar pattern was observed for MBF (SLR 0.68 ± 0.18), whereas late 13N-NH3 uptake showed a homogeneous distribution (SLR 0.96 ± 0.13). 13N-NH3/18F-FDG "mismatch" and "reverse mismatch" segments were predominantly present in the lateral (52%) and septal wall (61%), respectively. CONCLUSIONS Non-ischemic CRT candidates with LBBB demonstrate lower glucose uptake and absolute MBF in the septum compared to the lateral wall. However, late static 13N-NH3 uptake showed a homogenous distribution, reflecting a composite measure of altered regional MBF and metabolism, induced by LBBB.
Collapse
|
|
4 |
5 |
5
|
Nordström J, Harms HJ, Kero T, Ebrahimi M, Sörensen J, Lubberink M. Effect of PET-CT misalignment on the quantitative accuracy of cardiac 15O-water PET. J Nucl Cardiol 2022; 29:1119-1128. [PMID: 33146863 PMCID: PMC9163113 DOI: 10.1007/s12350-020-02408-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quantification of myocardial blood flow (MBF) with PET requires accurate attenuation correction, which is performed using a separate CT. Misalignment between PET and CT scans has been reported to be a common problem. The purpose of the present study was to assess the effect of PET CT misalignment on the quantitative accuracy of cardiac 15O-water PET. METHODS Ten clinical patients referred for evaluation of ischemia and assessment of MBF with 15O-water were included in the study. Eleven different misalignments between PET and CT were induced in 6 different directions with 10 and 20 mm amplitudes: caudal (+Z), cranial (- Z), lateral (±X), anterior (+Y), and anterior combined with cranial (+ Y and - Z). Blood flow was quantified from rates of washout (MBF) and uptake (transmural MBF, MBFt) for the whole left ventricle and the three coronary territories. The results from all misalignments were compared to the original scan without misalignment. RESULTS MBF was only minorly affected by misalignments, but larger effects were seen in MBFt. On the global level, average absolute deviation across all misalignments for MBF was 1.7% ± 1.4% and for MBFt 5.4% ± 3.2 Largest deviation for MBF was - 4.8% ± 5.8% (LCX, X + 20) and for MBFt - 19.3% ± 9.6% (LCX, X + 20). In general, larger effects were seen in LAD and LCX compared to in RCA. CONCLUSION The quantitative accuracy of MBF from 15O-water PET, based on the washout of the tracer, is only to a minor extent affected by misalignment between PET and CT.
Collapse
|
research-article |
3 |
5 |
6
|
Velasco C, Mota-Cobián A, Mota RA, Pellico J, Herranz F, Galán-Arriola C, Ibáñez B, Ruiz-Cabello J, Mateo J, España S. Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals. J Nucl Cardiol 2020; 27:1249-1260. [PMID: 30927149 DOI: 10.1007/s12350-019-01694-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs. METHODS 8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps. RESULTS MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001). CONCLUSION 68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.
Collapse
|
Validation Study |
5 |
4 |
7
|
Leva L, Matheoud R, Sacchetti G, Carriero A, Brambilla M. Agreement between left ventricular ejection fraction assessed in patients with gated IQ-SPECT and conventional imaging. J Nucl Cardiol 2020; 27:1714-1724. [PMID: 30298371 DOI: 10.1007/s12350-018-1457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of the study was to assess the agreement between the left ventricular ejection fraction (LVEF) values obtained with IQ-SPECT and those obtained with a conventional gamma camera equipped with low-energy high-resolution (LEHR), considered as the method of reference. METHODS Gated-stress MPI using 99mTc-tetrofosmin was performed in 55 consecutive patients. The patients underwent two sequential acquisitions (Method A and B) performed on Symbia-IQ SPECT with different acquisition times and one (Method C) on a Ecam SPECT equipped with LEHR collimators. The values of the different datasets were compared using the Bland-Altman analysis method: the bias and the limits of agreement (LA) were estimated in a head-to-head comparison of the three protocols. RESULTS In the (Method A-Method C) comparison for LVEF, the bias was 3.8% and the LAs ranged from - 9.3% to 16.8%. The agreement was still lower between Method B and C, whilst only slightly improved when Methods A and B were compared. CONCLUSIONS The wide amplitude in LA intervals of about 30% indicates that IQ and LEHR GSPECT are not interchangeable. The values obtained with IQ-SPECT should only be used with caution when evaluating the functional state of the heart.
Collapse
|
Randomized Controlled Trial |
5 |
3 |
8
|
Hashimoto H, Oka T, Nakanishi R, Mizumura S, Dobashi S, Hashimoto Y, Okamura Y, Ota K, Ikeda T. Evaluation of balloon pulmonary angioplasty using lung perfusion SPECT in patients with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol 2022; 29:3392-3400. [PMID: 35474442 PMCID: PMC9834092 DOI: 10.1007/s12350-022-02971-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of balloon pulmonary angioplasty (BPA) using lung perfusion single-photon emission computed tomography (SPECT) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). METHODS AND RESULTS 20 consecutive patients (64 ± 15 years) who were diagnosed with CTEPH and underwent BPA were included in this study. All patients underwent lung perfusion SPECT before and after BPA. The relationship between functional %volume of the lung calculated from the lung perfusion SPECT (FVL-LPSPECT), and other clinical parameters before and after BPA was assessed using the Wilcoxon signed-rank test. The correlation between each parameter and mean pulmonary artery pressure (mPAP) using the Spearman's correlation was performed. To determine predictors of mPAP for evaluating treatment effectiveness, significant parameters were included in multiple regression analysis. After BPA, world health organization functional classification, six-minute walk distance (6MWD), mPAP, and FVL-LPSPECT significantly improved. FVL-LPSPECT (r = - 0.728, P < 0.001) and 6MWD (r = - 0.571, P = 0.009) were significant correlation of mPAP. In the multiple regression analysis, FVL-LPSPECT was the most significant predictor of improvement in mPAP after BPA (P < 0.001). CONCLUSIONS This study demonstrated that the lung perfusion SPECT could be a potential measurement of the effectiveness of BPA in patients with CTEPH.
Collapse
|
research-article |
3 |
1 |
9
|
Kawaguchi N, Okayama H, Kido T, Fukuyama N, Shigematsu T, Kawamura G, Hiasa G, Kazatani Y, Inoue T, Miki H, Miyagawa M, Mochizuki T. Clinical significance of corrected relative flow reserve derived from 13N-ammonia positron emission tomography combined with coronary computed tomography angiography. J Nucl Cardiol 2021; 28:1851-1860. [PMID: 31713117 DOI: 10.1007/s12350-019-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study evaluated corrected relative flow reserve (RFR) derived from 13N-ammonia positron emission tomography (PET) combined with coronary computed tomography angiography (CTA). METHODS We analyzed 61 patients who underwent coronary CTA, 13N-ammonia PET, and invasive coronary angiography. Triple-vessel disease were excluded. Conventional RFRs were calculated as the ratio of hyperemic myocardial blood flow (hMBF) of hypoperfusion areas to those of non-ischemic lesions. Corrected RFRs were calculated using PET and coronary CTA to adjust coronary territories to their feeding vessels. Diagnostic performance was compared to detect obstructive coronary lesions. RESULTS Of the 180 vessels analyzed, 50 were diagnosed as obstructive lesions (≥ 70% stenosis and/or fractional flow reserve value ≤ 0.8). The coronary flow reserve (CFR), hMBF, conventional RFR, and corrected RFR of obstructive lesions were significantly lower than those of non-obstructive lesions. In receiver operating characteristic curve analysis, these quantitative PET measurements had area under the curve of 0.67, 0.71, 0.89, and 0.92, respectively. Diagnostic performance differences between corrected and conventional RFR were not statistically significant. CONCLUSION In patients with single or double vessel disease, indices of RFR, with or without coronary angiographic guidance of the reference coronary territory, are better discriminators of flow-limiting stenoses than hMBF and CFR.
Collapse
|
|
4 |
|
10
|
Christensen NL, Nordström J, Madsen S, Madsen MA, Gormsen LC, Kero T, Lubberink M, Tolbod LP. Detection and correction of patient motion in dynamic 15O-water PET MPI. J Nucl Cardiol 2023; 30:2736-2749. [PMID: 37639181 PMCID: PMC10682105 DOI: 10.1007/s12350-023-03358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Patient motion constitutes a limitation to 15O-water cardiac PET imaging. We examined the ability of image readers to detect and correct patient motion using simulated motion data and clinical patient scans. METHODS Simulated data consisting of 16 motions applied to 10 motion-free scans were motion corrected using two approaches, pre-analysis and post-analysis for motion identification. Both approaches employed a manual frame-by-frame correction method. In addition, a clinical cohort was analyzed for assessment of prevalence and effect of motion and motion correction. RESULTS Motion correction was performed on 94% (pre-analysis) and 64% (post-analysis) of the scans. Large motion artifacts were corrected in 91% (pre-analysis) and 74% (post-analysis) of scans. Artifacts in MBF were reduced in 56% (pre-analysis) and 58% (post-analysis) of the scans. The prevalence of motion in the clinical patient cohort (n = 762) was 10%. Motion correction altered exam interpretation in only 10 (1.3%) clinical patient exams. CONCLUSION Frame-by-frame motion correction after visual inspection is useful in reducing motion artifacts in cardiac 15O-water PET. Reviewing the initial results (parametric images and polar maps) as part of the motion correction process, reduced erroneous corrections in motion-free scans. In a large clinical cohort, the impact of motion correction was limited to few patients.
Collapse
|
research-article |
2 |
|