1
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1572 |
2
|
Várnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Biophys Biochem Cytol 1998; 143:501-10. [PMID: 9786958 PMCID: PMC2132833 DOI: 10.1083/jcb.143.2.501] [Citation(s) in RCA: 865] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)delta PH domain-green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCdelta PH domain known to form critical contacts with PtdIns(4, 5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol- labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.
Collapse
|
research-article |
27 |
865 |
3
|
Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000; 151:1353-68. [PMID: 11134066 PMCID: PMC2150667 DOI: 10.1083/jcb.151.7.1353] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Phagocytosis requires localized and transient remodeling of actin filaments. Phosphoinositide signaling is believed to play an important role in cytoskeletal organization, but it is unclear whether lipids, which can diffuse along the membrane, can mediate the focal actin assembly required for phagocytosis. We used imaging of fluorescent chimeras of pleckstrin homology and C1 domains in live macrophages to monitor the distribution of phosphatidylinositol-4,5-bisphosphate (4,5-PIP(2)) and diacylglycerol, respectively, during phagocytosis. Our results reveal a sequence of exquisitely localized, coordinated steps in phospholipid metabolism: a focal, rapid accumulation of 4,5-PIP(2) accompanied by recruitment of type Ialpha phosphatidylinositol phosphate kinase to the phagosomal cup, followed by disappearance of the phosphoinositide as the phagosome seals. Loss of 4,5-PIP(2) correlated with mobilization of phospholipase Cgamma (PLCgamma) and with the localized formation of diacylglycerol. The presence of 4, 5-PIP(2) and active PLCgamma at the phagosome was shown to be essential for effective particle ingestion. The temporal sequence of phosphoinositide metabolism suggests that accumulation of 4,5-PIP(2) is involved in the initial recruitment of actin to the phagocytic cup, while its degradation contributes to the subsequent cytoskeletal remodeling.
Collapse
|
research-article |
25 |
418 |
4
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
|
Review |
20 |
349 |
5
|
Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 2009:161-88. [PMID: 19639282 PMCID: PMC2913612 DOI: 10.1007/978-3-540-89615-9_6] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Adenosine is an autacoid that plays a critical role in regulating cardiac function, including heart rate, contractility, and coronary flow. In this chapter, current knowledge of the functions and mechanisms of action of coronary flow regulation and electrophysiology will be discussed. Currently, there are four known adenosine receptor (AR) subtypes, namely A(1), A(2A), A(2B), and A(3). All four subtypes are known to regulate coronary flow. In general, A(2A)AR is the predominant receptor subtype responsible for coronary blood flow regulation, which dilates coronary arteries in both an endothelial-dependent and -independent manner. The roles of other ARs and their mechanisms of action will also be discussed. The increasing popularity of gene-modified models with targeted deletion or overexpression of a single AR subtype has helped to elucidate the roles of each receptor subtype. Combining pharmacologic tools with targeted gene deletion of individual AR subtypes has proven invaluable for discriminating the vascular effects unique to the activation of each AR subtype. Adenosine exerts its cardiac electrophysiologic effects mainly through the activation of A(1)AR. This receptor mediates direct as well as indirect effects of adenosine (i.e., anti-beta-adrenergic effects). In supraventricular tissues (atrial myocytes, sinuatrial node and atriovetricular node), adenosine exerts both direct and indirect effects, while it exerts only indirect effects in the ventricle. Adenosine exerts a negative chronotropic effect by suppressing the automaticity of cardiac pacemakers, and a negative dromotropic effect through inhibition of AV-nodal conduction. These effects of adenosine constitute the rationale for its use as a diagnostic and therapeutic agent. In recent years, efforts have been made to develop A(1)R-selective agonists as drug candidates that do not induce vasodilation, which is considered an undesirable effect in the clinical setting.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
195 |
6
|
Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, Mezzanzanica D, Canevari S, Podo F. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 2010; 70:2126-35. [PMID: 20179205 PMCID: PMC2831129 DOI: 10.1158/0008-5472.can-09-3833] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine-phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKalpha (but not ChoKbeta) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC biosynthesis and degradation, respectively.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
184 |
7
|
Zhang C, Roepke TA, Kelly MJ, Rønnekleiv OK. Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 2008; 28:4423-34. [PMID: 18434521 PMCID: PMC6670958 DOI: 10.1523/jneurosci.5352-07.2008] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022] Open
Abstract
Kisspeptin and its cognate receptor, GPR54, are critical for reproductive development and for the regulation of gonadotropin-releasing hormone (GnRH) secretion. Although kisspeptin has been found to depolarize GnRH neurons, the underlying ionic mechanism has not been elucidated. Presently, we found that kisspeptin depolarized GnRH neurons in a concentration-dependent manner with a maximum depolarization of 22.6 +/- 0.6 mV and EC(50) of 2.8 +/- 0.2 nM. Under voltage-clamp conditions, kisspeptin induced an inward current of 18.2 +/- 1.6 pA (V(hold) = -60 mV) that reversed near -115 mV in GnRH neurons. The more negative reversal potential than E(K)(+) (-90 mV) was caused by the concurrent inhibition of barium-sensitive, inwardly rectifying (Kir) potassium channels and activation of sodium-dependent, nonselective cationic channels (NSCCs). Indeed, reducing extracellular Na(+) (to 5 mM) essentially eliminated the kisspeptin-induced inward current. The current-voltage relationships of the kisspeptin-activated NSCC currents exhibited double rectification with negative slope conductance below -40 mV in the majority of the cells. Pharmacological examination showed that the kisspeptin-induced inward currents were blocked by TRPC (canonical transient receptor potential) channel blockers 2-APB (2-aminoethyl diphenylborinate), flufenamic acid, SKF96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), and Cd(2+), but not by lanthanum (100 microM). Furthermore, single-cell reverse transcription-PCR analysis revealed that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 subunits were expressed in GnRH neurons. Therefore, it appears that kisspeptin depolarizes GnRH neurons through activating TRPC-like channels and, to a lesser extent, inhibition of Kir channels. These actions of kisspeptin contribute to the pronounced excitation of GnRH neurons that is critical for mammalian reproduction.
Collapse
|
Comparative Study |
17 |
183 |
8
|
Partanen J, Schwartz L, Rossant J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev 1998; 12:2332-44. [PMID: 9694798 PMCID: PMC317047 DOI: 10.1101/gad.12.15.2332] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intercellular communication is needed for both the generation of the mesodermal germ layer and its division into distinct subpopulations. To dissect the functions of fibroblast growth factor receptor-1 (FGFR1) during mouse gastrulation as well as to gain insights into its possible roles during later embryonic development, we have introduced specific mutations into the Fgfr1 locus by gene targeting. Our results show functional dominance of one of the receptor isoforms and suggest a function for the autophosphorylation of site Y766 in the negative regulation of FGFR1 activity. Y766F and hypomorphic mutations in Fgfr1 generate opposite phenotypes in terms of homeotic vertebral transformations, suggesting a role for FGFR1 in patterning the embryonic anteriorposterior axis by way of regulation of Hox gene activity.
Collapse
MESH Headings
- Alleles
- Animals
- Binding Sites/genetics
- Body Patterning/genetics
- Body Patterning/physiology
- Female
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Genes, Homeobox
- In Situ Hybridization
- Limb Deformities, Congenital/genetics
- Mice
- Mice, Transgenic
- Models, Biological
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- Phosphorylation
- Pregnancy
- Receptor Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
Collapse
|
research-article |
27 |
173 |
9
|
Boyer JL, Mohanram A, Camaioni E, Jacobson KA, Harden TK. Competitive and selective antagonism of P2Y1 receptors by N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate. Br J Pharmacol 1998; 124:1-3. [PMID: 9630335 PMCID: PMC1565379 DOI: 10.1038/sj.bjp.0701837] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antagonist activity of N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (N6MABP) has been examined at the phospholipase C-coupled P2Y1 receptor of turkey erythrocyte membranes. N6MABP antagonized 2MeSATP-stimulated inositol phosphate hydrolysis with a potency approximately 20 fold greater than the previously studied parent molecule, adenosine 3',5'-bisphosphate. The P2Y1 receptor antagonism observed with N6MABP was competitive as revealed by Schild analysis (pK(B) = 6.99 +/- 0.13). Whereas N6MABP was an antagonist at the human P2Y1 receptor, no antagonist effect of N6MABP was observed at the human P2Y2, human P2Y4 or rat P2Y6 receptors.
Collapse
|
other |
27 |
166 |
10
|
Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, Brown F. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 1999; 128:1-3. [PMID: 10498827 PMCID: PMC1571615 DOI: 10.1038/sj.bjp.0702780] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Revised: 06/11/1999] [Accepted: 06/18/1999] [Indexed: 11/09/2022] Open
Abstract
The cellular mechanisms underlying the physiological effects of the orexins are poorly understood. Therefore, the pharmacology of the recombinant human orexin receptors was studied using FLIPR. Intracellular calcium ([Ca2+]i) was monitored in Chinese hamster ovary (CHO) cells stably expressing orexin-1 (OX1) or orexin-2 (OX2) receptors using Fluo-3AM. Orexin-A and orexin-B increased [Ca2+]i in a concentration dependent manner in CHO-OX1 (pEC50=8.03+/-0.08 and 7. 30+/-0.08 respectively, n=5) and CHO-OX2 (pEC50=8.18+/-0.10 and 8. 43+/-0.09 respectively, n=5) cells. This response was typified as a rapid peak in [Ca2+]i (maximal at 6 - 8 s), followed by a gradually declining secondary phase. Thapsigargin (3 microM) or U73122 (3 microM) abolished the response. In calcium-free conditions the peak response was unaffected but the secondary phase was shortened, returning to basal values within 90 s. Calcium (1.5 mM) replacement restored the secondary phase. In conclusion, orexins cause a phospholipase C-mediated release of calcium from intracellular stores, with subsequent calcium influx.
Collapse
|
other |
26 |
145 |
11
|
Frazier EP, Peters SLM, Braverman AS, Ruggieri MR, Michel MC. Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 377:449-62. [PMID: 18060543 PMCID: PMC2480512 DOI: 10.1007/s00210-007-0208-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/21/2007] [Indexed: 12/17/2022]
Abstract
The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by beta-adrenoceptors, in most species involving a strong beta3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of beta-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to beta-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in beta-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and beta-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder.
Collapse
|
Review |
17 |
117 |
12
|
Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 2009; 457:757-69. [PMID: 18665391 PMCID: PMC2802130 DOI: 10.1007/s00424-008-0550-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 11/27/2022]
Abstract
The canonical transient receptor potential (TRPC) proteins have been recognized as key players in calcium entry pathways activated through phospholipase-C-coupled receptors. While it is clearly demonstrated that members of the TRPC3/6/7 subfamily are activated by diacylglycerol, the mechanism by which phospholipase C activates members of the TRPC1/4/5 subfamily remains a mystery. In this paper, we provide evidence for both negative and positive modulatory roles for membrane polyphosphoinositides in the regulation of TRPC5 channels. Depletion of polyphosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP2) through inhibition of phosphatidylinositol 4-kinase activates calcium entry and membrane currents in TRPC5-expressing but not in TRPC3- or TRPC7-expressing cells. Inclusion of polyphosphatidylinositol 4-phosphate or PIP2, but not phosphatidylinositol 3,4,5-trisphosphate, in the patch pipette inhibited TRPC5 currents. Paradoxically, depletion of PIP2 with a directed 5-phosphatase strategy inhibited TRPC5. Furthermore, when the activity of single TRPC5 channels was examined in excised patches, the channels were robustly activated by PIP2. These findings indicate complex functions for regulation of TRPC5 by PIP2, and we propose that membrane polyphosphoinositides may have at least two distinct functions in regulating TRPC5 channel activity.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
102 |
13
|
Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 2002; 135:1579-87. [PMID: 11906973 PMCID: PMC1573266 DOI: 10.1038/sj.bjp.0704603] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
1. The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca(2+) mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols, and delphinidin, an anthocyanin were used. 2. RWPC stimulated a Ca(2+)-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. 3. RWPC, Provinols and delphinidin increased cytosolic free calcium ([Ca(2+)](i)), by releasing Ca(2+) from intracellular stores and by increasing Ca(2+) entry. 4. The RWPC-induced increase in [Ca(2+)](i) was decreased by exposure to ryanodine (30 microM), whereas Provinols and delphinidin-induced increases in [Ca(2+)](i) were decreased by bradykinin (0.1 microM) and thapsigargin (1 microM) pre-treatment. 5. RWPC, Provinols and delphinidin-induced increases in [Ca(2+)](i) were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 microM) and tyrosine kinase (herbimycin A, 1 microM). 6. RWPC, Provinols and delphinidin induced herbimycin A (1 microM)-sensitive tyrosine phosphorylation of several intracellular proteins. 7. Provinols released Ca(2+) via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca(2+) only via a PTX-sensitive mechanism. 8. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca(2+)](i) and the activation of tyrosine kinases. Furthermore, RWPC, Provinols and delphinidin display differences in the process leading to [Ca(2+)](i) increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds.
Collapse
|
research-article |
23 |
97 |
14
|
Kunzelmann K, Beesley AH, King NJ, Karupiah G, Young JA, Cook DI. Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proc Natl Acad Sci U S A 2000; 97:10282-7. [PMID: 10920189 PMCID: PMC27875 DOI: 10.1073/pnas.160041997] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogens causing diarrhea do so by modulating ion transport in the gut. Respiratory pathogens are similarly associated with disturbances of fluid balance in the respiratory tract, although it is not known whether they too act by altering epithelial ion transport. Here we show that influenza virus A/PR/8/34 inhibits the amiloride-sensitive Na(+) current across mouse tracheal epithelium with a half-time of about 60 min. We further show that the inhibitory effect of the influenza virus is caused by the binding of viral hemagglutinin to a cell-surface receptor, which then activates phospholipase C and protein kinase C. Given the importance of epithelial Na(+) channels in controlling the amount of fluid in the respiratory tract, we suggest that down-regulation of Na(+) channels induced by influenza virus may play a role in the fluid transport abnormalities that are associated with influenza infections.
Collapse
|
research-article |
25 |
97 |
15
|
Popovics P, Stewart AJ. GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci 2011; 68:85-95. [PMID: 20812023 PMCID: PMC11114682 DOI: 10.1007/s00018-010-0517-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn(2+) has been shown to be a potent stimulator of GPR39 activity via the Gα(q), Gα(12/13) and Gα(s) pathways. The potency and specificity of Zn(2+) in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn(2+) signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.
Collapse
|
Review |
14 |
92 |
16
|
Burnstock G, Fischer B, Hoyle CHV, Maillard M, Ziganshin AU, Brizzolara AL, von Isakovics A, Boyer JL, Harden TK, Jacobson KA. Structure Activity Relationships for Derivatives of Adenosine-5'-Triphosphate as Agonists at P(2) Purinoceptors: Heterogeneity Within P(2X) and P(2Y) Subtypes. Drug Dev Res 1994; 31:206-219. [PMID: 22962511 PMCID: PMC3434461 DOI: 10.1002/ddr.430310308] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The structure-activity relationships for a variety of adenine nucleotide analogues at P(2x)- and P(2Y)-purinoceptors were investigated. Compounds formed by structural modifications of the ATP molecule including substitutions of the purine ring (C2, C8, N1, and N(6)-substituents, and a uridine base instead of adenine), the ribose moiety (2' and 3'-positions), and the triphosphate group (lower phosphates, bridging oxygen substitution, and cyclization) were prepared. Pharmacological activity at P(2Y)-purinoceptors was assayed in the guinea pig taenia coli, endothelial cells of the rabbit aorta, smooth muscle of the rabbit mesenteric artery, and turkey erythrocyte membranes. Activity at P(2X)-purinoceptors was assayed in the rabbit saphenous artery and the guinea-pig vas deferens and urinary bladder. Some of the analogues displayed selectivity, or even specificity, for either the P(2X)- or the P(2Y)-purinoceptors. Certain analogues displayed selectivity or specificity within the P(2X)- or P(2Y)-purinoceptor superfamilies, giving hints about possible subclasses. For example, 8-(6-aminohexylamino)ATP and 2',3'-isopropylidene-AMP were selective for endothelial Pzypurinoceptors over P(2Y)-purinoceptors in the guinea pig taenia coli, rabbit aorta, and turkey erythrocytes. These compounds were both inactive at P(2X)-purinoceptors. The potent agonist N(6)-methyl ATP and the somewhat less potent agonist 2'-deoxy-ATP were selective for P(2Y)-purinoceptors in the guinea pig taenia coli, but were inactive at P(2X)-purinoceptors and the vascular P(2Y)-purinoceptors. 3'-Benzylamino-3'-deoxyATP was very potent at the P(2X)-purinoceptors in the guinea pig vas deferens and bladder, but not in the rabbit saphenous artery and was inactive at P(2Y) receptors. These data suggest that specific compounds can be developed that can be utilized to activate putative subtypes of the P(2X)- and P(2Y)-purinoceptor classes.
Collapse
|
research-article |
31 |
89 |
17
|
Bowler JW, Jayne Bailey R, Alan North R, Surprenant A. P2X4, P2Y1 and P2Y2 receptors on rat alveolar macrophages. Br J Pharmacol 2003; 140:567-75. [PMID: 12970084 PMCID: PMC1574050 DOI: 10.1038/sj.bjp.0705459] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP receptors present on rat alveolar macrophages (NR8383 cells) were identified by recordings of membrane current, measurements of intracellular calcium, RT-PCR and immunocytochemistry. In whole-cell recordings with a sodium-based internal solution, ATP evoked an inward current at -60 mV. This reversed at 0 mV. The EC50 for ATP was 18 microM in normal external solution (calcium 2 mm, magnesium 1 mm). The currents evoked by 2',3-O-(4-benzoyl)benzoyl-ATP were about five-fold smaller than those observed with ATP. ADP, UTP and alphabeta-methylene-ATP (alphabetameATP) (up to 100 microM) had no effect. ATP-evoked currents were potentiated up to ten-fold by ivermectin and were unaffected by suramin (30-100 microM), pyridoxal-phosphate-6-azophenyl-(2,4-sulphonic acid) (30-100 microM), and brilliant blue G (1 microM). In whole-cell recordings with a potassium-based internal solution and low EGTA (0.01 mm), ATP evoked an inward current at -60 mV that was followed by larger outward current. ADP and UTP (1-100 microM) evoked only outward currents; these reversed polarity at the potassium equilibrium potential and were blocked by apamin (10 nm). Outward currents were also blocked by the phospholipase C inhibitor U73122 (1 microM), and they were not seen with higher intracellular EGTA (10 mm). Suramin (30 microM) blocked the outward currents evoked by ATP and UTP, but not that evoked by ADP. PPADS (10 microM) blocked the ADP-evoked outward current without altering the ATP or UTP currents. RT-PCR showed transcripts for P2X subunits 1, 4 and 7 (not 2, 3, 5, 6) and P2Y receptors 1, 2, 4 and 12 (not 6). Immunocytochemistry showed strong P2X4 receptor expression partly associated with the membrane, weak P2X7 staining that was not associated with the cell membrane, and no P2X1 receptor immunoreactivity. We conclude that rat alveolar macrophages express (probably homomeric) P2X4 receptors, but find no evidence for other functional P2X subtypes. The P2Y receptors are most likely P2Y1 and P2Y2 and these couple through phospholipase C to an increase in intracellular calcium and the opening of SK type potassium channels.
Collapse
|
research-article |
22 |
86 |
18
|
Guinamard R, Signoret N, Ishiai M, Marsh M, Kurosaki T, Ravetch JV, Masamichi I. B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J Exp Med 1999; 189:1461-6. [PMID: 10224286 PMCID: PMC2193069 DOI: 10.1084/jem.189.9.1461] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The entry of B lymphocytes into secondary lymphoid organs is a critical step in the development of an immune response, providing a site for repertoire shaping, antigen-induced activation and selection. These events are controlled by signals generated through the B cell antigen receptor (BCR) and are associated with changes in the migration properties of B cells in response to chemokine gradients. The chemokine stromal cell-derived factor (SDF)-1alpha is thought to be one of the driving forces during those processes, as it is produced inside secondary lymphoid organs and induces B lymphocyte migration that arrests upon BCR engagement. The signaling pathway that mediates this arrest was genetically dissected using B cells deficient in specific BCR-coupled signaling components. BCR-induced inhibition of SDF-1alpha chemotaxis was dependent on Syk, BLNK, Btk, and phospholipase C (Plc)gamma2 but independent of Ca2+ mobilization, suggesting that the target of BCR stimulation was a protein kinase C (PKC)-dependent substrate. This target was identified as the SDF-1alpha receptor, CXCR4, which undergoes PKC- dependent internalization upon BCR stimulation. Mutation of the internalization motif SSXXIL in the COOH terminus of CXCR4 resulted in B cells that constitutively expressed this receptor upon BCR engagement. These studies suggest that one pathway by which BCR stimulation results in inhibition of SDF-1alpha migration is through PKC-dependent downregulation of CXCR4.
Collapse
|
research-article |
26 |
84 |
19
|
Fioravanti B, De Felice M, Stucky CL, Medler KA, Luo MC, Gardell LR, Ibrahim M, Malan TP, Yamamura HI, Ossipov MH, King T, Lai J, Porreca F, Vanderah TW. Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci 2008; 28:11593-602. [PMID: 18987195 PMCID: PMC2744288 DOI: 10.1523/jneurosci.3322-08.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/26/2008] [Accepted: 09/28/2008] [Indexed: 12/20/2022] Open
Abstract
The potential modulation of TRPV1 nociceptive activity by the CB(1) receptor was investigated here using CB(1) wild-type (WT) and knock-out (KO) mice as well as selective CB(1) inverse agonists. No significant differences were detected in baseline thermal thresholds of ICR, CB(1)WT or CB(1)KO mice. Intraplantar capsaicin produced dose- and time-related paw flinch responses in ICR and CB(1)WT mice and induced plasma extravasation yet minimal responses were seen in CB(1)KO animals with no apparent differences in TRPV1 channel expression. Capsaicin-evoked CGRP release from spinal cord tissue and capsaicin-evoked action potentials on isolated skin-nerve preparation were significantly decreased in CB(1)KO mice. Pretreatment with intraplantar galanin and bradykinin, compounds known to sensitize TRPV1 receptors, restored capsaicin-induced flinching in CB(1)KO mice. The possibility that constitutive activity at the CB(1) receptor is required to maintain the TRPV1 receptor in a "sensitized" state was tested using CB(1) inverse agonists. The CB(1) inverse agonists elicited concentration-related inhibition of capsaicin-induced calcium influx in F-11 cells and produced dose-related inhibition of capsaicin-induced flinching in ICR mice. These data suggest that constitutive activity at the CB(1) receptor maintains the TRPV1 channel in a sensitized state responsive to noxious chemical stimuli. Treatment with CB(1) inverse agonists may promote desensitization of the channel resulting in antinociceptive actions against chemical stimulus modalities. These studies propose possible therapeutic exploitation of a novel mechanism providing pain relief by CB(1) inverse agonists.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Bradykinin/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Calcium/metabolism
- Capsaicin/adverse effects
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Galanin/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Morphine/therapeutic use
- Narcotics/therapeutic use
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neuroblastoma
- Pain/chemically induced
- Pain/drug therapy
- Pain/physiopathology
- Pain Measurement
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Reaction Time/drug effects
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
- Stimulation, Chemical
- Sulfonamides/pharmacology
- TRPV Cation Channels/metabolism
Collapse
|
research-article |
17 |
75 |
20
|
Nomikos M, Yu Y, Elgmati K, Theodoridou M, Campbell K, Vassilakopoulou V, Zikos C, Livaniou E, Amso N, Nounesis G, Swann K, Lai FA. Phospholipase Cζ rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril 2013; 99:76-85. [PMID: 22999959 PMCID: PMC3540263 DOI: 10.1016/j.fertnstert.2012.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the effect of infertility-linked sperm phospholipase Cζ (PLCζ) mutations on their ability to trigger oocyte Ca(2+) oscillations and development, and also to evaluate the potential therapeutic utility of wild-type, recombinant PLCζ protein for rescuing failed oocyte activation and embryo development. DESIGN Test of a novel therapeutic approach to male factor infertility. SETTING University medical school research laboratory. PATIENT(S) Donated unfertilized human oocytes from follicle reduction. INTERVENTION(S) Microinjection of oocytes with recombinant human PLCζ protein or PLCζ cRNA and a Ca(2+)-sensitive fluorescent dye. MAIN OUTCOME MEASURE(S) Measurement of the efficacy of mutant and wild-type PLCζ-mediated enzyme activity, oocyte Ca(2+) oscillations, activation, and early embryo development. RESULT(S) In contrast to the wild-type protein, mutant forms of human sperm PLCζ display aberrant enzyme activity and a total failure to activate unfertilized oocytes. Subsequent microinjection of recombinant human PLCζ protein reliably triggers the characteristic pattern of cytoplasmic Ca(2+) oscillations at fertilization, which are required for normal oocyte activation and successful embryo development to the blastocyst stage. CONCLUSION(S) Dysfunctional sperm PLCζ cannot trigger oocyte activation and results in male factor infertility, so a potential therapeutic approach is oocyte microinjection of active, wild-type PLCζ protein. We have demonstrated that recombinant human PLCζ can phenotypically rescue failed activation in oocytes that express dysfunctional PLCζ, and that this intervention culminates in efficient blastocyst formation.
Collapse
|
research-article |
12 |
73 |
21
|
Boyer JL, Adams M, Ravi RG, Jacobson KA, Harden TK. 2-Chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate is a selective high affinity P2Y(1) receptor antagonist. Br J Pharmacol 2002; 135:2004-10. [PMID: 11959804 PMCID: PMC1573330 DOI: 10.1038/sj.bjp.0704673] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/19/2001] [Accepted: 02/13/2002] [Indexed: 11/09/2022] Open
Abstract
1. We reported previously that bisphosphate derivatives of adenosine are antagonists of the P2Y(1) receptor and that modification of the ribose in these analogues is tolerated in the P2Y(1) receptor binding pharmacophore. 2. Here we delineate the pharmacological activity of one such non-nucleotide molecule, 2-chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate (MRS2279), in which the ribose is replaced by a cyclopentane ring constrained in the (N)-conformation by a cyclopropane moiety. 3. MRS2279 antagonized 2MeSADP-stimulated inositol phosphate formation in turkey erythrocyte membranes with competitive kinetics (pK(B)=7.75). High affinity competitive antagonism by MRS2279 was also observed at the human P2Y(1) receptor (pK(B)=8.10) stably expressed in 1321N1 human astrocytoma cells. Antagonism was specific for the P2Y(1) receptor since MRS2279 had no effect on activation of the human P2Y(2), P2Y(4), P2Y(6), or P2Y(11) receptors by their cognate agonists. 4. MRS2279 also did not block the capacity of ADP to act through the Gi/adenylyl cyclase linked P2Y receptor of platelets to inhibit cyclic AMP accumulation. 5. In contrast, the P2Y(1) receptor is known to be obligatory in the process of ADP-induced platelet aggregation, and MRS2279 competitively inhibited ADP-promoted platelet aggregation with an apparent affinity (pK(B)=8.05) similar to that observed at the human P2Y(1) receptor heterologously expressed in 1321N1 cells. 6. Taken together these results illustrate selective high affinity antagonism of the P2Y(1) receptor by a non-nucleotide molecule that should prove useful for pharmacological delineation of this receptor in various tissues.
Collapse
|
research-article |
23 |
70 |
22
|
Cho H, Lee D, Lee SH, Ho WK. Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc Natl Acad Sci U S A 2005; 102:4643-8. [PMID: 15767570 PMCID: PMC555493 DOI: 10.1073/pnas.0408844102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylionsitol 4,5-bisphosphate (PIP(2)), a substrate of phospholipase C, has recently been recognized to regulate membrane-associated proteins and act as a signal molecule in phospholipase C-linked Gq-coupled receptor (GqPCR) pathways. However, it is not known whether PIP(2) depletion induced by GqPCRs can act as receptor-specific signals in native cells. We investigated this issue in cardiomyocytes where PIP(2)-dependent ion channels, G protein-gated inwardly rectifying K(+) (GIRK) and inwardly rectifying background K(+) (IRK) channels, and various GqPCRs are present. The GIRK current was recorded by using the patch-clamp technique during the application of 10 microM acetylcholine. The extent of receptor-mediated inhibition was estimated as the current decrease over 4 min while taking the GIRK current (I(GIRK)) value during a previous stimulation as the control. Each GqPCR agonist inhibited I(GIRK) with different potencies and kinetics. The extents of inhibition induced by phenylephrine, angiotensin II, endothelin-1, prostaglandin F2alpha, and bradykinin at supramaximal concentrations were (mean +/- SE) 32.1 +/- 0.6%, 21.9 +/- 1.4%, 86.4 +/- 1.6%, 63.7 +/- 4.9%, and 5.7 +/- 1.9%, respectively. GqPCR-induced inhibitions of I(GIRK) were not affected by protein kinase C inhibitor (calphostin C) but potentiated and became irreversible when the replenishment of PIP(2) was blocked by wortmannin (phosphatidylinositol kinase inhibitor). Loading the cells with PIP(2) significantly reduced endothelin-1 and prostaglandin F2alpha-induced inhibition of I(GIRK). On the contrary, GqPCR-mediated inhibitions of inwardly rectifying background K(+) currents were observed only when GqPCR agonists were applied with wortmannin, and the effects were not parallel with those on I(GIRK). These results indicate that GqPCR-induced inhibition of ion channels by means of PIP(2) depletion occurs in a receptor-specific manner.
Collapse
|
research-article |
20 |
70 |
23
|
Peng YW, Rhee SG, Yu WP, Ho YK, Schoen T, Chader GJ, Yau KW. Identification of components of a phosphoinositide signaling pathway in retinal rod outer segments. Proc Natl Acad Sci U S A 1997; 94:1995-2000. [PMID: 9050893 PMCID: PMC20031 DOI: 10.1073/pnas.94.5.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Accepted: 12/10/1996] [Indexed: 02/03/2023] Open
Abstract
Phototransduction in retinal rods involves a G protein-coupled signaling cascade that leads to cGMP hydrolysis and the closure of cGMP-gated cation channels that are open in darkness, producing a membrane hyperpolarization as the light response. For many years there have also been reports of the presence of a phosphoinositide pathway in the rod outer segment, though its functions and the molecular identities of its components are still unclear. Using immunocytochemistry with antibodies against various phosphoinositide-specific phospholipase C (PLC) isozymes (beta1-4, gamma1-2, and delta1-2), we have found PLCbeta4-like immunoreactivity in rod outer segments. Similar experiments with antibodies against the alpha-subunits of the G(q) family of G proteins, which are known to activate PLCbeta4, have also demonstrated G(alpha11)-like immunoreactivity in this location. Immunoblots of total proteins from whole retina or partially purified rod outer segments with anti-PLCbeta4 and anti-G(alpha11) antibodies gave, respectively, a single protein band of the expected molecular mass, suggesting specific labelings. The retinal locations of the two proteins were also supported by in situ hybridization experiments on mouse retina with probes specific for the corresponding mouse genes. These two proteins, or immunologically identical isoforms, therefore likely mediate the phosphoinositide signaling pathway in the rod outer segment. At present, G(alpha11) or a G(alpha11)-like protein represents the only G protein besides transducin (which mediates phototransduction) identified so far in the rod outer segment. Although absent in the outer segment layer, other PLC isoforms as well as G(alpha q) (another G(q) family member), are present elsewhere in the retina.
Collapse
|
research-article |
28 |
64 |
24
|
Cozzoli DK, Courson J, Wroten MG, Greentree DI, Lum EN, Campbell RR, Thompson AB, Maliniak D, Worley PF, Jonquieres G, Klugmann M, Finn DA, Szumlinski KK. Binge alcohol drinking by mice requires intact group 1 metabotropic glutamate receptor signaling within the central nucleus of the amygdala. Neuropsychopharmacology 2014; 39:435-44. [PMID: 23966068 PMCID: PMC3870786 DOI: 10.1038/npp.2013.214] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
Abstract
Despite the fact that binge alcohol drinking (intake resulting in blood alcohol concentrations (BACs) 80 mg% within a 2-h period) is the most prevalent form of alcohol-use disorders (AUD), a large knowledge gap exists regarding how this form of AUD influences neural circuits mediating alcohol reinforcement. The present study employed integrative approaches to examine the functional relevance of binge drinking-induced changes in glutamate receptors, their associated scaffolding proteins and certain signaling molecules within the central nucleus of the amygdala (CeA). A 30-day history of binge alcohol drinking (for example, 4-5 g kg(-1) per 2 h(-1)) elevated CeA levels of mGluR1, GluN2B, Homer2a/b and phospholipase C (PLC) β3, without significantly altering protein expression within the adjacent basolateral amygdala. An intra-CeA infusion of mGluR1, mGluR5 and PLC inhibitors all dose-dependently reduced binge intake, without influencing sucrose drinking. The effects of co-infusing mGluR1 and PLC inhibitors were additive, whereas those of coinhibiting mGluR5 and PLC were not, indicating that the efficacy of mGluR1 blockade to lower binge intake involves a pathway independent of PLC activation. The efficacy of mGluR1, mGluR5 and PLC inhibitors to reduce binge intake depended upon intact Homer2 expression as revealed through neuropharmacological studies of Homer2 null mutant mice. Collectively, these data indicate binge alcohol-induced increases in Group1 mGluR signaling within the CeA as a neuroadaptation maintaining excessive alcohol intake, which may contribute to the propensity to binge drink.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
64 |
25
|
Shin J, Kim D, Bianchi R, Wong RKS, Shin HS. Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci U S A 2005; 102:18165-70. [PMID: 16330775 PMCID: PMC1306792 DOI: 10.1073/pnas.0505498102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/20/2005] [Indexed: 11/18/2022] Open
Abstract
Rhythmic oscillatory activities at the theta frequency (4-12 Hz) in the hippocampus have long-attracted attention because they have been implicated in diverse brain functions, including spatial cognition. Although studies based on pharmacology and lesion experiments suggested heterogeneity of these rhythms and their behavioral correlates, controversies are abundant on these issues. Here we show that mice harboring a phospholipase C (PLC)-beta1(-/-) mutation (PLC-beta1(-/-) mice) lack one subset of theta rhythms normally observed during urethane anesthesia, alert immobility, and passive whole-body rotation. In contrast, the other subset of theta rhythms observed during walking or running was intact in these mutant mice. PLC-beta1(-/-) mice also have somewhat disrupted theta activity during paradoxical sleep but do have an atropine-resistant component of theta rhythm. In addition, carbachol-induced oscillations were obliterated in hippocampal slices of PLC-beta1(-/-) mice. Interestingly, PLC-beta1(-/-) mice showed deficits in a hidden platform version of the Morris water maze yet performed well in motor coordination tests and a visual platform version of the Morris water maze. The results genetically define the existence of at least two subtypes of theta rhythms and reveal their association with different behaviors.
Collapse
|
Comparative Study |
20 |
62 |