1
|
Steyrer B, Neubauer P, Liska R, Stampfl J. Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. MATERIALS 2017; 10:ma10121445. [PMID: 29257107 PMCID: PMC5744380 DOI: 10.3390/ma10121445] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
Lithography-based additive manufacturing was introduced in the 1980s, and is still the method of choice for printing accurate plastic parts with high surface quality. Recent progress in this field has made tough photopolymer resins and cheap LED light engines available. This study presents the influence of photoinitiator selection and post-processing on the thermomechanical properties of various tough photopolymers. The influence of three photoinitiators (Ivocerin, BAPO, and TPO-L) on the double-bond conversion and mechanical properties was investigated by mid infrared spectroscopy, dynamic mechanical analysis and tensile tests. It was found that 1.18 wt % TPO-L would provide the best overall results in terms of double-bond conversion and mechanical properties. A correlation between double-bond conversion, yield strength, and glass transition temperature was found. Elongation at break remained high after post-curing at about 80-100%, and was not influenced by higher photoinitiator concentration. Finally, functional parts with 41 MPa tensile strength, 82% elongation at break, and 112 °C glass transition temperature were printed on a 405 nm DLP (digital light processing) printer.
Collapse
|
Journal Article |
8 |
65 |
2
|
Gittard SD, Ovsianikov A, Monteiro-Riviere NA, Lusk J, Morel P, Minghetti P, Lenardi C, Chichkov BN, Narayan RJ. Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J Diabetes Sci Technol 2009; 3:304-11. [PMID: 20144361 PMCID: PMC2771517 DOI: 10.1177/193229680900300211] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microneedle-mediated drug delivery is a promising method for transdermal delivery of insulin, incretin mimetics, and other protein-based pharmacologic agents for treatment of diabetes mellitus. One factor that has limited clinical application of conventional microneedle technology is the poor fracture behavior of microneedles that are created using conventional materials and methods. In this study polymer microneedles for transdermal delivery were created using a two-photon polymerization (2PP) microfabrication and subsequent polydimethylsiloxane (PDMS) micromolding process. METHODS Solid microneedle arrays, fabricated by means of 2PP, were used to create negative molds from PDMS. Using these molds microneedle arrays were subsequently prepared by molding eShell 200, a photo-reactive acrylate-based polymer that exhibits water and perspiration resistance. RESULTS The eShell 200 microneedle array demonstrated suitable compressive strength for use in transdermal drug delivery applications. Human epidermal keratinocyte viability on the eShell 200 polymer surfaces was similar to that on polystyrene control surfaces. In vitro studies demonstrated that eShell 200 microneedle arrays fabricated using the 2PP microfabrication and PDMS micromolding process technique successfully penetrated human stratum corneum and epidermis. CONCLUSIONS Our results suggest that a 2PP microfabrication and subsequent PDMS micromolding process may be used to create microneedle structures with appropriate structural, mechanical, and biological properties for transdermal drug delivery of insulin and other protein-based pharmacologic agents for treatment of diabetes mellitus.
Collapse
|
research-article |
16 |
65 |
3
|
Monzón M, Ortega Z, Hernández A, Paz R, Ortega F. Anisotropy of Photopolymer Parts Made by Digital Light Processing. MATERIALS 2017; 10:ma10010064. [PMID: 28772426 PMCID: PMC5344561 DOI: 10.3390/ma10010064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/27/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
Digital light processing (DLP) is an accurate additive manufacturing (AM) technology suitable for producing micro-parts by photopolymerization. As most AM technologies, anisotropy of parts made by DLP is a key issue to deal with, taking into account that several operational factors modify this characteristic. Design for this technology and photopolymers becomes a challenge because the manufacturing process and post-processing strongly influence the mechanical properties of the part. This paper shows experimental work to demonstrate the particular behavior of parts made using DLP. Being different to any other AM technology, rules for design need to be adapted. Influence of build direction and post-curing process on final mechanical properties and anisotropy are reported and justified based on experimental data and theoretical simulation of bi-material parts formed by fully-cured resin and partially-cured resin. Three photopolymers were tested under different working conditions, concluding that post-curing can, in some cases, correct the anisotropy, mainly depending on the nature of photopolymer.
Collapse
|
Journal Article |
8 |
57 |
4
|
Gojzewski H, Guo Z, Grzelachowska W, Ridwan MG, Hempenius MA, Grijpma DW, Vancso GJ. Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface? ACS APPLIED MATERIALS & INTERFACES 2020; 12:8908-8914. [PMID: 31961120 PMCID: PMC7033657 DOI: 10.1021/acsami.9b22272] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Additive manufacturing or, as also called, three-dimensional (3D) printing is considered as a game-changer in replacing traditional processing methods in numerous applications; yet, it has one intrinsic potential weakness related to bonding of layers formed during the printing process. Prior to finding solutions for improvement, a thorough quantitative understanding of the mechanical properties of the interface is needed. Here, a quantitative analysis of the nanomechanical properties in 3D printed photopolymers formed by digital light processing (DLP) stereolithography (SLA) is shown. Mapping of the contact Young's modulus across the layered structure is performed by atomic force microscopy (AFM) with a submicrometer resolution. The peakforce quantitative nanomechanical mapping (PF-QNM) mode was employed in the AFM experiments. The layered specimens were obtained from an acrylate-based resin (PR48, Autodesk), containing also a light-absorbing dye. We observed local depressions with values up to 30% of the maximum stiffness at the interface between the consecutively deposited layers, indicating local depletion of molecular cross-link density. The thickness values of the interfacial layers were approximately 11 μm, which corresponds to ∼22% of the total layer thickness (50 μm). We attribute this to heterogeneities of the photopolymerization reaction, related to (1) atmospheric oxygen inhibition and (2) molecular diffusion across the interface. Additionally, a pronounced stiffness decay was observed across each individual layer with a skewed profile. This behavior was rationalized by a spatial variation of the polymer cross-link density related to the variations of light absorption within the layers. This is caused by the presence of light absorbers in the printed material, resulting in a spatial decay of light intensity during photopolymerization.
Collapse
|
research-article |
5 |
42 |
5
|
Bruder FK, Fäcke T, Rölle T. The Chemistry and Physics of Bayfol ® HX Film Holographic Photopolymer. Polymers (Basel) 2017; 9:polym9100472. [PMID: 30965774 PMCID: PMC6418958 DOI: 10.3390/polym9100472] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022] Open
Abstract
Holographic photopolymers are a new technology to create passive diffractive optical elements by a pure laser interference recording. In this review, we explain the chemistry concepts of light harvesting in an interference pattern and the subsequent grating formation as chemical response. Using the example of the newly developed Bayfol® HX film we discuss the reaction-diffusion driven photo-polymerization process for an index modulation formation to create volume phase gratings. Further we elucidate the selection of monomer chemistry and discuss details of the recording conditions based on the concept of exposure dosage and exposure time. Influences ranging from high dosage recording to low power recording are explained and how to affect the desired diffraction efficiency. Finally, we outline and demonstrate the process to mass manufacturing of volume phase gratings.
Collapse
|
Review |
8 |
37 |
6
|
Strehmel B, Schmitz C, Kütahya C, Pang Y, Drewitz A, Mustroph H. Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0. Beilstein J Org Chem 2020; 16:415-444. [PMID: 32273905 PMCID: PMC7113544 DOI: 10.3762/bjoc.16.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanines derived from heptamethines were mainly discussed regarding their functionalization to broaden the solubility in different surroundings exhibiting either hydrophilic or hydrophobic properties and to tailor made the ΔG et photopysical properties with respect to absorption and fluorescence. Electrochemical properties were additionally considered for some selected examples. The cyanines chosen comprised as end groups either indolenine, benzo[e]- or benzo[cd]indolium pattern, which facilitated to shift the absorption between 750-1000 nm. This enabled their use in applications with light sources emitting in the near-infrared (NIR) region selected from high power LEDs or lasers with line-shaped focus. The absorbers considered were discussed regarding their function as sensitizer for applications related to Chemistry 4.0 standards. These were mainly photopolymer coatings, which can be found for applications in the graphic industry or to protect selected substrates. The huge release of heat on demand upon turning ON or OFF the NIR light source enables them for photothermal treatment in processes requesting heat to initiate either chemical (activated reactions) or physical (melting, evaporation) events.
Collapse
|
Review |
5 |
34 |
7
|
Jin SJ, Kim DY, Kim JH, Kim WC. Accuracy of Dental Replica Models Using Photopolymer Materials in Additive Manufacturing: In Vitro Three-Dimensional Evaluation. J Prosthodont 2018; 28:e557-e562. [PMID: 29968424 PMCID: PMC7328798 DOI: 10.1111/jopr.12928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 11/26/2022] Open
Abstract
Purpose To evaluate the accuracy (trueness and precision) of dental replica models produced by using photopolymer materials in additive manufacturing. Materials and Methods A complete arch model was scanned using an extraoral scanner (Identica Blue) and established as reference. For the control group, 10 stone models were acquired through the conventional method from the reference model. For the experimental groups, digital data were acquired using an intraoral scanner (CEREC Omnicam), and 10 stereolithographic apparatus (SLA) models and 10 PolyJet models were made. All models were scanned with an extraoral scanner. Three‐dimensional analysis software was used to measure differences between the 3D scanned images in root mean square values. The ISO‐5725‐1 specification was followed to measure trueness and precision between two 3D scanned data. Trueness was calculated by overlapping scanned data with the reference model and precision by performing pairwise intragroup comparisons. Also the ratio of region out of tolerance (> ±50 μm) was measured. One‐way ANOVA and Tukey's post hoc analysis were applied. Results There was no statistically significant difference in trueness between the stone and the SLA models (p > 0.05). Dental replica models using photopolymer materials showed statistically significantly better precision than that of the stone model (p < 0.05). Regarding tolerance, no statistically significant difference was observed between the stone and the SLA models (p > 0.05). Conclusions Although the dental replica models using photopolymer materials did not show better trueness than the conventional stone models, there was no significant difference between the SLA and the stone models. Concerning precision, dental replica models using photopolymer materials presented better results than that of the conventional stone models. In sum, dental replica models using photopolymer materials showed sufficient accuracy for clinical use.
Collapse
|
Journal Article |
7 |
28 |
8
|
Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C, Fally M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. JOURNAL OF MODERN OPTICS 2016; 63:S1-S31. [PMID: 27594769 PMCID: PMC4986931 DOI: 10.1080/09500340.2016.1143534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/14/2016] [Indexed: 05/12/2023]
Abstract
We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating's morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control.
Collapse
|
other |
9 |
27 |
9
|
Malallah R, Li H, Kelly DP, Healy JJ, Sheridan JT. A Review of Hologram Storage and Self-Written Waveguides Formation in Photopolymer Media. Polymers (Basel) 2017; 9:E337. [PMID: 30971014 PMCID: PMC6418820 DOI: 10.3390/polym9080337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022] Open
Abstract
Photopolymer materials have received a great deal of attention because they are inexpensive, self-processing materials that are extremely versatile, offering many advantages over more traditional materials. To achieve their full potential, there is significant value in understanding the photophysical and photochemical processes taking place within such materials. This paper includes a brief review of recent attempts to more fully understand what is needed to optimize the performance of photopolymer materials for Holographic Data Storage (HDS) and Self-Written Waveguides (SWWs) applications. Specifically, we aim to discuss the evolution of our understanding of what takes place inside these materials and what happens during photopolymerization process, with the objective of further improving the performance of such materials. Starting with a review of the photosensitizer absorptivity, a dye model combining the associated electromagnetics and photochemical kinetics is presented. Thereafter, the optimization of photopolymer materials for HDS and SWWs applications is reviewed. It is clear that many promising materials are being developed for the next generation optical applications media.
Collapse
|
Review |
8 |
26 |
10
|
Malas A, Isakov D, Couling K, Gibbons GJ. Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3818. [PMID: 31757114 PMCID: PMC6926829 DOI: 10.3390/ma12233818] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022]
Abstract
The formulation of a high dielectric permittivity ceramic/polymer composite feedstock for daylight vat photopolymerization 3D printing (3DP) is demonstrated, targeting 3DP of devices for microwave and THz applications. The precursor is composed of a commercial visible light photo-reactive polymer (VIS-curable photopolymer) and dispersed titanium dioxide (TiO2, TO) ceramic nano-powder or calcium copper titanate (CCT) micro-powder. To provide consistent 3DP processing from the formulated feedstocks, the carefully chosen dispersant performed the double function of adjusting the overall viscosity of the photopolymer and provided good matrix-to-filler bonding. Depending on the ceramic powder content, the optimal viscosities for reproducible 3DP with resolution better than 100 µm were η(TO) = 1.20 ± 0.02 Pa.s and η (CCT) = 0.72 ± 0.05 Pa.s for 20% w/v TO/resin and 20% w/v CCT/resin composites at 0.1 s-1 respectively, thus showing a significant dependence of the "printability" on the dispersed particle sizes. The complex dielectric properties of the as-3D printed samples from pure commercial photopolymer and the bespoke ceramic/photopolymer mixes are investigated at 2.5 GHz, 5 GHz, and in the 12-18 GHz frequency range. The results show that the addition of 20% w/v of TO and CCT ceramic powder to the initial photopolymer increased the real part of the permittivity of the 3DP composites from ε' = 2.7 ± 0.02 to ε'(TO) = 3.88 ± 0.02 and ε'(CCT) = 3.5 ± 0.02 respectively. The present work can be used as a guideline for high-resolution 3DP of structures possessing high-ε.
Collapse
|
research-article |
6 |
22 |
11
|
Mavila S, Sinha J, Hu Y, Podgórski M, Shah PK, Bowman CN. High Refractive Index Photopolymers by Thiol-Yne "Click" Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15647-15658. [PMID: 33780226 DOI: 10.1021/acsami.1c00831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A scalable synthesis of high refractive index, optically transparent photopolymers from a family of low-viscosity multifunctional thiol and alkyne monomers via thiol-yne "click" is described herein. The monomers designed to incorporate high refractive index cores consisting of aryl and sulfide groups with high intrinsic molar refraction were synthesized starting from commercially available low-cost raw materials. The low-viscosity (<500 cP) thiol-yne resins formulated with these new multifunctional monomers and a phosphine oxide photoinitiator underwent efficient thiol-yne polymerizations upon exposure to 405 nm light at 30 mW/cm2. In contrast to the previously reported thiol-ene systems, the kinetic profile of these photopolymerizations showed significant dependence on the nature of the thiol and alkyne monomers. However, the ability of the thiol-yne reaction to introduce a large number of sulfide linkages compared to that of thiol-ene systems yielded cross-linked high optical quality photopolymers with a polymer refractive index that exceeds 1.68 (nD/20 °C). Interestingly, the photopolymer formed from the least sterically hindered alkynyl thioether monomer 2b with flexible thioether core and the dithiol 1a exhibited unprecedented difference in the polymer refractive index as compared to that of the resin with polymerization-induced changes reaching up to 0.08. Furthermore, the implementation of these low-viscosity thiol-yne resins was demonstrated by preparing two-stage photopolymeric holographic materials with a dynamic range of ∼0.02 and haze < 1.5% in two-dimensional high refractive index structures.
Collapse
|
|
4 |
20 |
12
|
Saha SK, Oakdale JS, Cuadra JA, Divin C, Ye J, Forien JB, Bayu Aji LB, Biener J, Smith WL. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1164-1172. [PMID: 29171264 DOI: 10.1021/acsami.7b12654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2-3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for the evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. Here, we present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the "feedstock" for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.
Collapse
|
|
7 |
15 |
13
|
Cody D, Gribbin S, Mihaylova E, Naydenova I. Low-Toxicity Photopolymer for Reflection Holography. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18481-18487. [PMID: 27391405 DOI: 10.1021/acsami.6b05528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel composition for a low-toxicity, water-soluble, holographic photopolymer capable of recording bright reflection gratings with diffraction efficiency of up to 50% is reported. The unique combination of two chemical components, namely, a chain transfer agent and a free radical scavenger, is reported to enhance the holographic recording ability of a diacetone acrylamide (DA)-based photopolymer in reflection mode by 3-fold. Characterization of the dependence of diffraction efficiency of the reflection gratings on spatial frequency, recording intensity, exposure energy, and recording wavelength has been carried out for the new low-toxicity material. The use of UV postexposure as a method of improving the stability of the photopolymer-based reflection holograms is reported. The ability of the modified DA photopolymer to record bright Denisyuk holograms which are viewable in different lighting conditions is demonstrated.
Collapse
|
|
9 |
13 |
14
|
Zhu WY, Su YX, Pow EHN, Yang WF, Qin L, Choi WS. "Three-in-one" patient-specific surgical guides for simultaneous dental implants in fibula flap jaw reconstruction: A prospective case series. Clin Implant Dent Relat Res 2020; 23:43-53. [PMID: 33180980 DOI: 10.1111/cid.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conventional freehand immediate placement of dental implants is technically challenging in the jaw reconstructive surgery. Computer-aided surgery might be the best solution, however, there has not been any standard approach to ensure the accuracy and efficiency of simultaneous dental implants in fibula flap jaw reconstruction. PURPOSE We aim to evaluate the clinical outcome of simultaneous dental implant in fibula flap using the "three-in-one" patient-specific surgical guide (3-in-1-PSSG) in an open-label, prospective, single-arm, and single-center clinical trial. MATERIALS AND METHODS A novel computer-aided designed and three-dimensional (3D) printed 3-in-1-PSSG, which contains functions of fibula segmentation, surgical plate positioning and implant placement, was used to facilitate the reconstructive surgery and simultaneous dental implant placement. The intraoperative success of dental implant placement, implant survival rate and accuracy of dental implant placement were reported. RESULTS From November 2018 to June 2020, 15 consecutive patients with 48 dental implants were enrolled in this study. Fifteen 3-in-1-PSSGs were fabricated with a mean number of dental implants per guide of 3.2 ± 1.5. The intraoperative success rate of this approach was 14 out of 15. With an average follow-up period of 40 weeks, the overall implant survival rate was 83.3% (40/48). Eight implants were removed due to two fibula flap failures. The mean deviation at the implant platform and implant apex were 2.8 mm (interquartile range [IQR]: 1.9-3.4) and 3.2 mm (IQR: 2.0-4.6), and the angular deviation was 2.5° (IQR: 1.1-6.8). CONCLUSIONS Our preliminary data indicated that the 3D printed 3-in-1-PSSG facilitated simultaneous dental implant in fibula flap jaw reconstruction with a favorable intraoperative success and short-term clinical outcome. It might be a viable alternative to allow one-step immediate oral rehabilitation in patients underwent jaw reconstruction with free flaps. Long-term results with a larger sample size are warranted.
Collapse
|
Journal Article |
5 |
12 |
15
|
Hu P, Li J, Jin J, Lin X, Tan X. Highly Sensitive Photopolymer for Holographic Data Storage Containing Methacryl Polyhedral Oligomeric Silsesquioxane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21544-21554. [PMID: 35486469 PMCID: PMC9100513 DOI: 10.1021/acsami.2c04011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Herein, via introducing eight methacryl polyhedral oligomeric silsesquioxane (Ma-POSS), we dramatically enhance the holographic performance of phenanthraquinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer with excellent characteristics of high sensitivity, high diffraction efficiency, and neglectable volume shrinkage for holographic data storage, the photosensitivity, diffraction efficiency, and volume shrinkage reaching 1.47 cm/J, ∼75%, and ∼0.09%, respectively. Ma-POSS here dramatically enhances the photosensitivity ∼5.5 times, diffraction efficiency more than 50%, and suppressed the volume shrinkage over 4 times. Further analysis reveals that Ma-POSS obviously increased the molecular weight by grafting PMMA to be a star-shaped macromolecule. And the residual C═C of POSS-PMMA dramatically increased the photosensitivity. Moreover, the star-shaped POSS-PMMA acting as a plasticizer dramatically enhances the mechanical properties and so reduces the photoinduced volume shrinkage of PQ/PMMA. Finally, by the use of the POSS-PMMA/PQ in a collinear holography system, it appeared to be promising for a fast but low bit error rate in holographic information storage. The current study thence has not only successfully synthesized photopolymer materials with potential for highly sensitive holographic storage applications but also investigated the microphysical mechanism of the impact of Ma-POSS on the holographic properties of PQ/PMMA photopolymer and clarified the thermal- and photoreaction processes of the POSS-PMMA/PQ photopolymer.
Collapse
|
research-article |
3 |
11 |
16
|
Miki M, Ohira R, Tomita Y. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment. MATERIALS 2014; 7:3677-3698. [PMID: 28788643 PMCID: PMC5453218 DOI: 10.3390/ma7053677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 11/16/2022]
Abstract
We report on theoretical and experimental investigations of optical wave propagations in two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal (HPDLC) film. In the theoretical analysis we employed the 2×2 matrix formulation and the statistical thermodynamics model to analyze the formation of anisotropic photonic lattice structures by holographic polymerization. The influence of multiple reflections inside an HPDLC film on the formed refractive index distribution was taken into account in the analysis. In the experiment we fabricated two-dimensional photonic lattice structures in an HPDLC film under three-beam interference holographic polymerization and performed optical measurements of spectral transmittances and wavelength dispersion. We also demonstrated the electrical control capability of the fabricated photonic lattice structure and its dependence on incident wave polarization. These measured results were compared with the calculated ones by means of photonic band and beam propagation calculations.
Collapse
|
|
11 |
10 |
17
|
Fenoll S, Brocal F, Segura JD, Ortuño M, Beléndez A, Pascual I. Holographic Characteristics of Photopolymers Containing Different Mixtures of Nematic Liquid Crystals. Polymers (Basel) 2019; 11:polym11020325. [PMID: 30960308 PMCID: PMC6419176 DOI: 10.3390/polym11020325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/05/2022] Open
Abstract
A holographic polymer dispersed liquid crystal (HPDLC) is used to record holographic diffraction gratings. Several mixtures of nematic liquid crystals (LC) are used as components of the HPDLC to evaluate their influence in static and dynamic basic properties. The diffraction efficiency obtained in the reconstruction of the holograms is evaluated to compare the influence of the different LC. Additionally, the samples are exposed to a variable electric field and the diffracted light intensity as a function of the applied voltage is measured to evaluate the influence of the LC. The results obtained show significant differences depending on the LC incorporated to the photopolymer.
Collapse
|
|
6 |
9 |
18
|
Shaban H, Yen SC, Lee MJ, Lee W. Signal Amplification in an Optical and Dielectric Biosensor Employing Liquid Crystal- Photopolymer Composite as the Sensing Medium. BIOSENSORS 2021; 11:bios11030081. [PMID: 33805735 PMCID: PMC7998463 DOI: 10.3390/bios11030081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
An optical and dielectric biosensor based on a liquid crystal (LC)-photopolymer composite was established in this study for the detection and quantitation of bovine serum albumin (BSA). When the nematic LC E7 was doped with 4-wt.% NOA65, a photo-curable prepolymer, and photopolymerized by UV irradiation at 20 mW/cm2 for 300 s, the limit of detection determined by image analysis of the LC optical texture and dielectric spectroscopic measurements was 3400 and 88 pg/mL for BSA, respectively, which were lower than those detected with E7 alone (10 μg/mL BSA). The photopolymerized NOA65, but not the prepolymer prior to UV exposure, contributed to the enhanced optical signal, and UV irradiation of pristine E7 in the absence of NOA65 had no effect on the optical texture. The effective tilt angle θ, calculated from the real-part dielectric constant ε', decreased with increasing BSA concentration, providing strong evidence for the correlation of photopolymerized NOA65 to the intensified disruption in the vertically oriented LC molecules to enhance the optical and dielectric signals of BSA. The optical and dielectric anisotropy of LCs and the photo-curable dopant facilitate novel quantitative and signal amplification approaches to potential development of LC-based biosensors.
Collapse
|
research-article |
4 |
7 |
19
|
Verisqa F, Cha JR, Nguyen L, Kim HW, Knowles JC. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering. Biomolecules 2022; 12:1692. [PMID: 36421706 PMCID: PMC9687763 DOI: 10.3390/biom12111692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/28/2023] Open
Abstract
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration.
Collapse
|
research-article |
3 |
7 |
20
|
Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals. MATERIALS 2016; 9:ma9030188. [PMID: 28773314 PMCID: PMC5456659 DOI: 10.3390/ma9030188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms.
Collapse
|
|
9 |
7 |
21
|
A Review of Polarization-Sensitive Materials for Polarization Holography. MATERIALS 2020; 13:ma13235562. [PMID: 33291278 PMCID: PMC7730873 DOI: 10.3390/ma13235562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields. The choice of its high-performance materials is particularly important. To further develop polarization holography applications and improve the quality of the information recorded (i.e., material sensitivity and resolution), a deeper understanding of such materials is needed. We present an overview of the polarization-sensitive materials, which introduced polarization holographic technology and the development of polarization holographic materials. The three main types of polarization holographic materials are described, including azopolymer materials, photopolymer material, and photorefractive polymer material. We examine the key contributions of each work and present many of the suggestions that have been made to improve the different polarization-sensitive photopolymer materials.
Collapse
|
Review |
5 |
6 |
22
|
Shen Z, Weng Y, Zhang Y, Wang C, Liu A, Li X. Holographic Recording Performance of Acrylate-Based Photopolymer under Different Preparation Conditions for Waveguide Display. Polymers (Basel) 2021; 13:polym13060936. [PMID: 33803646 PMCID: PMC8078166 DOI: 10.3390/polym13060936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
This work proposes a green light-sensitive acrylate-based photopolymer. The effects of the preparation conditions for the waveguide applied volume holographic gratings (VHGs) were experimentally investigated. The optimum preparation conditions for holographic recording were revealed. After optimization, the peak of VHG diffraction efficiency reached 99%, the diffractive wavelength bandwidth increased from 13 nm to 22 nm, and the corresponding RIM was 0.06. To prove the wide application prospect of the acrylate-based photopolymer in head-mounted augmented reality (AR) displays, green monochromatic volume holographic waveguides were fabricated. The display results showed that the prototype was able to achieve a 28° diagonal FOV and possessed a system luminance of 300 cd/m2.
Collapse
|
|
4 |
6 |
23
|
Bae JH, Won JC, Lim WB, Lee JH, Min JG, Kim SW, Kim JH, Huh P. Highly Flexible and Photo-Activating Acryl-Polyurethane for 3D Steric Architectures. Polymers (Basel) 2021; 13:polym13060844. [PMID: 33801858 PMCID: PMC7999262 DOI: 10.3390/polym13060844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
An acryl-functionalized polyurethane (PU) series was successfully synthesized using poly(tetramethylene ether) glycol-methylene diphenyl diisocyanate (PTMG-MDI) oligomer based on urethane methacrylates to control the flexibility of photo-cured 3D printing architectures. The mass ratio of acryl-urethane prepolymer: 1,4-butanediol (BD) chain-extender: diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) photoinitiator was 10:0.25:1. To produce suitably hard and precisely curved 3D architectures, the optimal UV absorbance and exposure energy of the acryl-PTMG-MDI resin were controlled precisely. Owing to the optimized viscosity of the acryl-PTMG-MDI resins, they could be printed readily by digital light processing (DLP) to form precisely curved 3D architectures after mixing with 1,6-hexanediol diacrylate (HDDA). The acryl-PTMG-MDI formulations showed much better flexural resolution than the neat resins. The printed 3D structure exhibited high surface hardness, good mechanical strength, and high elasticity for flexible applications in consumer/industrial and biomedical fields.
Collapse
|
|
4 |
6 |
24
|
Bae JH, Won JC, Lim WB, Min JG, Lee JH, Kwon CR, Lee GH, Huh P. Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers (Basel) 2020; 13:polym13010044. [PMID: 33374360 PMCID: PMC7794856 DOI: 10.3390/polym13010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
Photo-cured 3D architectures are successfully printed using the designed waterborne polyurethane-acrylate (WPUA) formulation. A WPUA series is synthesized in the presence of polycaprolactone diol (PCL) and 4,4′-methylene dicyclohexyl diisocyanate (H12MDI) as the soft segment part, dimethylolbutanoic acid (DMBA) as the emulsifier, and triethylamine (TEA) as the neutralizer, as a function of prepolymer molecular weight. The compatibility of WPUA and the photo-activating acryl monomer is as a key factor to guarantee the high resolution of 3D digital light processing (DLP) printing. The optimized blending formulations are tuned by using triacrylate monomers instead of diacrylate derivatives. For the high-accuracy and fine features of 3D DLP printing, WPUA are designed to be a suitable molecular structure for a 385 nm wavelength source, and the target viscosity is achieved in the range from 150 to 250 Cp. Photo-cured 3D architectures based on WPUA exhibit good flexural strength and high resolution.
Collapse
|
|
5 |
5 |
25
|
Thermal Properties of Bayfol ® HX200 Photopolymer. MATERIALS 2020; 13:ma13235498. [PMID: 33276613 PMCID: PMC7730596 DOI: 10.3390/ma13235498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Bayfol® HX200 photopolymer is a holographic recording material used in a variety of applications such as a holographic combiner for a heads-up display and augmented reality, dispersive grating for spectrometers, and notch filters for Raman spectroscopy. For these systems, the thermal properties of the holographic material are extremely important to consider since temperature can affect the diffraction efficiency of the hologram as well as its spectral bandwidth and diffraction angle. These thermal variations are a consequence of the distance and geometry change of the diffraction Bragg planes recorded inside the material. Because temperatures can vary by a large margin in industrial applications (e.g., automotive industry standards require withstanding temperature up to 125°C), it is also essential to know at which temperature the material starts to be affected by permanent damage if the temperature is raised too high. Using thermogravimetric analysis, as well as spectral measurement on samples with and without hologram, we measured that the Bayfol® HX200 material does not suffer from any permanent thermal degradation below 160°C. From that point, a further increase in temperature induces a decrease in transmission throughout the entire visible region of the spectrum, leading to a reduced transmission for an original 82% down to 27% (including Fresnel reflection). We measured the refractive index change over the temperature range from 24°C to 100°C. Linear interpolation give a slope 4.5×10-4K-1 for unexposed film, with the extrapolated refractive index at 0°C equal to n0=1.51. This refractive index change decreases to 3×10-4K-1 when the material is fully cured with UV light, with a 0°C refractive index equal to n0=1.495. Spectral properties of a reflection hologram recorded at 532 nm was measured from 23°C to 171°C. A consistent 10 nm spectral shift increase was observed for the diffraction peak wavelength when the temperature reaches 171°C. From these spectral measurements, we calculated a coefficient of thermal expansion (CTE) of 384×10-6K-1 by using the coupled wave theory in order to determine the increase of the Bragg plane spacing with temperature.
Collapse
|
Journal Article |
5 |
5 |