1
|
Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol 2014; 64:472-81. [PMID: 25082581 PMCID: PMC4131752 DOI: 10.1016/j.jacc.2014.04.058] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although running is a popular leisure-time physical activity, little is known about the long-term effects of running on mortality. The dose-response relations between running, as well as the change in running behaviors over time, and mortality remain uncertain. OBJECTIVES We examined the associations of running with all-cause and cardiovascular mortality risks in 55,137 adults, 18 to 100 years of age (mean age 44 years). METHODS Running was assessed on a medical history questionnaire by leisure-time activity. RESULTS During a mean follow-up of 15 years, 3,413 all-cause and 1,217 cardiovascular deaths occurred. Approximately 24% of adults participated in running in this population. Compared with nonrunners, runners had 30% and 45% lower adjusted risks of all-cause and cardiovascular mortality, respectively, with a 3-year life expectancy benefit. In dose-response analyses, the mortality benefits in runners were similar across quintiles of running time, distance, frequency, amount, and speed, compared with nonrunners. Weekly running even <51 min, <6 miles, 1 to 2 times, <506 metabolic equivalent-minutes, or <6 miles/h was sufficient to reduce risk of mortality, compared with not running. In the analyses of change in running behaviors and mortality, persistent runners had the most significant benefits, with 29% and 50% lower risks of all-cause and cardiovascular mortality, respectively, compared with never-runners. CONCLUSIONS Running, even 5 to 10 min/day and at slow speeds <6 miles/h, is associated with markedly reduced risks of death from all causes and cardiovascular disease. This study may motivate healthy but sedentary individuals to begin and continue running for substantial and attainable mortality benefits.
Collapse
|
Observational Study |
11 |
529 |
2
|
Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016; 5. [PMID: 27253067 PMCID: PMC4915811 DOI: 10.7554/elife.15092] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF. DOI:http://dx.doi.org/10.7554/eLife.15092.001 Exercise is not only good for our physical health but it benefits our mental health and abilities too. Physical exercise can affect how much of certain proteins are made in the brain. In particular, the levels of a protein called brain derived neurotrophic factor (or BDNF for short) increase after exercise. BDNF has already been shown to enhance mental abilities at the same time as acting against anxiety and depression in mice, and might act in similar way in humans. Nevertheless, it is currently not clear how exercise increases the production of BDNF by cells in the brain. Sleiman et al. have now investigated this question by comparing mice that were allowed to use a running wheel for 30 days with control mice that did not exercise. The comparison showed that the exercising mice had higher levels of BDNF in their brains than the control mice, which confirms the results of previous studies. Next, biochemical experiments showed that this change occurred when enzymes known as histone deacetylases stopped inhibiting the production of BDNF. Therefore Sleiman et al. hypothesised that exercise might produce a chemical that itself inhibits the histone deacetylases. Indeed, the exercising mice produced more of a molecule called β-hydroxybutyrate in their livers, which travels through the blood into the brain where it could inhibit histone deacetylases. Further experiments showed that injecting β-hydroxybutyrate directly into the brains of mice led to increase in BDNF. These new findings reveal with molecular detail one way in which exercise can affect the expression of proteins in the brain. This new understanding may provide ideas for new therapies to treat psychiatric diseases, such as depression, and neurodegenerative disorders, such as Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.15092.002
Collapse
|
Research Support, N.I.H., Extramural |
9 |
493 |
3
|
Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front Psychol 2018; 9:509. [PMID: 29755380 PMCID: PMC5934999 DOI: 10.3389/fpsyg.2018.00509] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Much evidence shows that physical exercise (PE) is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.
Collapse
|
Review |
7 |
484 |
4
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
|
Review |
5 |
307 |
5
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
Review |
6 |
300 |
6
|
Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 2007; 17:1017-22. [PMID: 17636549 PMCID: PMC2956984 DOI: 10.1002/hipo.20348] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Physical activity enhances hippocampal function but its effects on neuronal structure remain relatively unexplored outside of the dentate gyrus. Using Golgi impregnation and the lipophilic tracer DiI, we show that long-term voluntary running increases the density of dendritic spines in the entorhinal cortex and hippocampus of adult rats. Exercise was associated with increased dendritic spine density not only in granule neurons of the dentate gyrus, but also in CA1 pyramidal neurons, and in layer III pyramidal neurons of the entorhinal cortex. In the CA1 region, changes in dendritic spine density are accompanied by changes in dendritic arborization and alterations in the morphology of individual spines. These findings suggest that physical activity exerts pervasive effects on neuronal morphology in the hippocampus and one of its afferent populations. These structural changes may contribute to running-induced changes in cognitive function.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
252 |
7
|
Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A 2014; 111:15810-5. [PMID: 25331877 DOI: 10.1073/pnas.1415219111] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
251 |
8
|
Exercising in Times of Lockdown: An Analysis of the Impact of COVID-19 on Levels and Patterns of Exercise among Adults in Belgium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114144. [PMID: 32532013 PMCID: PMC7312512 DOI: 10.3390/ijerph17114144] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Countries all over the world implemented lockdowns to counteract COVID-19. These lockdowns heavily limited people’s exercise possibilities. At the same time, experts advocated to remain physically active to prevent future health problems. Based on an online survey, this study examines adults’ exercise levels and patterns during the COVID-19 lockdown in Belgium. Ordinal logistic regression analyses of 13,515 valid and population-weighted responses indicate a general increase in exercise frequencies, as well as in sedentary behavior. Except for people aged 55+, previously low active adults self-reported to exercise more during the lockdown. Among the people who were already high active before COVID-19, those above 55 years old, those with low education, those used to exercise with friends or in a sport club, and those who were not using online tools to exercise, self-reported to exercise less during the lockdown. Having less time, sitting more, and missing the familiar way and competitive element of exercising were the main reasons for a self-reported exercise reduction. Given the health risks associated with physical inactivity, results imply that governments should consider how those who were not reached can be encouraged to exercise during a lockdown. After all, additional COVID-19 lockdowns might be implemented in the future.
Collapse
|
Journal Article |
5 |
248 |
9
|
Hannan AJ. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 2014; 40:13-25. [PMID: 24354721 DOI: 10.1111/nan.12102] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
Environmental enrichment (EE) increases levels of novelty and complexity, inducing enhanced sensory, cognitive and motor stimulation. In wild-type rodents, EE has been found to have a range of effects, such as enhancing experience-dependent cellular plasticity and cognitive performance, relative to standard-housed controls. Whilst environmental enrichment is of course a relative term, dependent on the nature of control environmental conditions, epidemiological studies suggest that EE has direct clinical relevance to a range of neurological and psychiatric disorders. EE has been demonstrated to induce beneficial effects in animal models of a wide variety of brain disorders. The first evidence of beneficial effects of EE in a genetically targeted animal model was generated using Huntington's disease transgenic mice. Subsequent studies found that EE was also therapeutic in mouse models of Alzheimer's disease, consistent with epidemiological studies of relevant environmental modifiers. EE has also been found to ameliorate behavioural, cellular and molecular deficits in animal models of various neurological and psychiatric disorders, including Parkinson's disease, stroke, traumatic brain injury, epilepsy, multiple sclerosis, depression, schizophrenia and autism spectrum disorders. This review will focus on the effects of EE observed in animal models of neurodegenerative brain diseases, at molecular, cellular and behavioural levels. The proposal that EE may act synergistically with other approaches, such as drug and cell therapies, to facilitate brain repair will be discussed. I will also discuss the therapeutic potential of 'enviromimetics', drugs which mimic or enhance the therapeutic effects of cognitive activity and physical exercise, for both neuroprotection and brain repair.
Collapse
|
Review |
11 |
177 |
10
|
Delezie J, Handschin C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front Neurol 2018; 9:698. [PMID: 30197620 PMCID: PMC6117390 DOI: 10.3389/fneur.2018.00698] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is an essential regulator of energy homeostasis and a potent coordinator of exercise-induced adaptations in other organs including the liver, fat or the brain. Skeletal muscle-initiated crosstalk with other tissues is accomplished though the secretion of myokines, protein hormones which can exert autocrine, paracrine and long-distance endocrine effects. In addition, the enhanced release or uptake of metabolites from and into contracting muscle cells, respectively, likewise can act as a powerful mediator of tissue interactions, in particular in regard to the central nervous system. The present review will discuss the current stage of knowledge regarding how exercise and the muscle secretome improve a broad range of brain functions related to vascularization, neuroplasticity, memory, sleep and mood. Even though the molecular and cellular mechanisms underlying the communication between muscle and brain is still poorly understood, physical activity represents one of the most effective strategies to reduce the prevalence and incidence of depression, cognitive, metabolic or degenerative neuronal disorders, and thus warrants further study.
Collapse
|
Review |
7 |
168 |
11
|
Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21165895. [PMID: 32824367 PMCID: PMC7460620 DOI: 10.3390/ijms21165895] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
Physical exercise (PE) improves physical performance, mental status, general health, and well-being. It does so by affecting many mechanisms at the cellular and molecular level. PE is beneficial for people suffering from neuro-degenerative diseases because it improves the production of neurotrophic factors, neurotransmitters, and hormones. PE promotes neuronal survival and neuroplasticity and also optimizes neuroendocrine and physiological responses to psychosocial and physical stress. PE sensitizes the parasympathetic nervous system (PNS), Autonomic Nervous System (ANS) and central nervous system (CNS) by promoting many processes such as synaptic plasticity, neurogenesis, angiogenesis, and autophagy. Overall, it carries out many protective and preventive activities such as improvements in memory, cognition, sleep and mood; growth of new blood vessels in nervous system; and the reduction of stress, anxiety, neuro-inflammation, and insulin resistance. In the present work, the protective effects of PE were overviewed. Suitable examples from the current research work in this context are also given in the article.
Collapse
|
Review |
5 |
168 |
12
|
Ormel HL, van der Schoot GGF, Sluiter WJ, Jalving M, Gietema JA, Walenkamp AME. Predictors of adherence to exercise interventions during and after cancer treatment: A systematic review. Psychooncology 2018; 27:713-724. [PMID: 29247584 PMCID: PMC5887924 DOI: 10.1002/pon.4612] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Objective Exercise interventions benefit cancer patients. However, only low numbers of patients adhere to these interventions. This review aimed to identify predictors of exercise intervention adherence in patients with cancer, during and after multimodality cancer treatment. Methods A literature search was performed using electronic databases (PubMed, Embase, and Cochrane) to identify relevant papers published before February 1, 2017. Papers reporting randomized controlled trials, conducted in adult cancer patients who participated in an exercise intervention during and/or after multimodality cancer treatment, and providing outcome of factors predicting exercise adherence were included. Papers were assessed for methodological quality by using the Physiotherapy Evidence Database scale. Results The search identified 720 potentially relevant papers, of which 15 fulfilled the eligibility criteria. In these 15 studies, 2279 patients were included and 1383 of these patients were randomized to an exercise intervention. During cancer treatment, the factors predicting exercise adherence were as follows: location of the rehabilitation center, extensive exercise history, high motivation for exercise, and fewer exercise limitations. After cancer treatment, factors that predicted adherence were as follows: less extensive surgery, low alcohol consumption, high previous exercise adherence, family support, feedback by trainers, and knowledge and skills of exercise. Methodological quality of the included papers was rated “high”. Conclusions The most prominent predictors of adherence to exercise interventions were location of the rehabilitation center, extensive exercise history, high motivation for exercise, and fewer exercise limitations. To increase the number of cancer patients who will benefit, these results should be considered into the development and implementation of future exercise interventions.
Collapse
|
Systematic Review |
7 |
152 |
13
|
Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. Int J Mol Sci 2017; 18:ijms18040701. [PMID: 28346354 PMCID: PMC5412287 DOI: 10.3390/ijms18040701] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
Irisin, an adipomiokine known as a mediator of physical activity, induces the browning of adipose tissue and it has potentially protective properties in the development of obesity-related states, such as insulin resistance, arteriosclerosis, and type 2 diabetes. Despite numerous studies conducted on this factor, still little is known about its impact on the functioning of immunocompetent cells, but its potential anti-inflammatory properties were previously suggested. In the current study we investigated the role of irisin (0-100 nM) in the downstream pathway activation of Toll-like receptor 4 (TLR4) in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS; 100 ng/mL). The results have shown that irisin in high concentrations (50, 100 nM) significantly decreased the TLR4 and MyD88 protein levels, as well as the phosphorylation of nuclear factor-κB (NF-κB), consequently leading to the reduction in the release of crucial pro-inflammatory cytokines. The above was confirmed for interleukin 1β (IL-1β), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), keratinocyte chemoattractant (KC), monocyte chemotactic protein 1 (MCP-1), as well as for high mobility group box 1 (HMGB1). Moreover, our results indicate that this effect is connected with irisin's impact on the phosphorylation of mitogen-activated protein kinases (MAPKs), where a significant reduction in p-JNK and p-ERK but not p-p38 was observed. In conclusion, these data suggest that irisin has potentially anti-inflammatory properties connected with the downregulation of downstream pathways of TLR4/MyD88.
Collapse
|
Journal Article |
8 |
151 |
14
|
Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front Endocrinol (Lausanne) 2018; 9:258. [PMID: 29887832 PMCID: PMC5980968 DOI: 10.3389/fendo.2018.00258] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
World population has been continuously increasing and progressively aging. Aging is characterized by a complex and intraindividual process associated with nine major cellular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This review exposes the positive antiaging impact of physical exercise at the cellular level, highlighting its specific role in attenuating the aging effects of each hallmark. Exercise should be seen as a polypill, which improves the health-related quality of life and functional capabilities while mitigating physiological changes and comorbidities associated with aging. To achieve a framework of effective physical exercise interventions on aging, further research on its benefits and the most effective strategies is encouraged.
Collapse
|
Review |
7 |
141 |
15
|
Brenner PS, DeLamater J. Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias. SOCIAL PSYCHOLOGY QUARTERLY 2016; 79:333-354. [PMID: 29038609 DOI: 10.1177/0190272516628298] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Explanations of error in survey self-reports have focused on social desirability: that respondents answer questions about normative behavior to appear prosocial to interviewers. However, this paradigm fails to explain why bias occurs even in self-administered modes like mail and web surveys. We offer an alternative explanation rooted in identity theory that focuses on measurement directiveness as a cause of bias. After completing questions about physical exercise on a web survey, respondents completed a text message-based reporting procedure, sending updates on their major activities for five days. Random assignment was then made to one of two conditions: instructions mentioned the focus of the study, physical exercise, or not. Survey responses, text updates, and records from recreation facilities were compared. Direct measures generated bias-overreporting in survey measures and reactivity in the directive text condition-but the nondirective text condition generated unbiased measures. Findings are discussed in terms of identity.
Collapse
|
Journal Article |
9 |
140 |
16
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
|
Review |
6 |
138 |
17
|
Billot M, Calvani R, Urtamo A, Sánchez-Sánchez JL, Ciccolari-Micaldi C, Chang M, Roller-Wirnsberger R, Wirnsberger G, Sinclair A, Vaquero-Pinto N, Jyväkorpi S, Öhman H, Strandberg T, Schols JMGA, Schols AMWJ, Smeets N, Topinkova E, Michalkova H, Bonfigli AR, Lattanzio F, Rodríguez-Mañas L, Coelho-Júnior H, Broccatelli M, D'Elia ME, Biscotti D, Marzetti E, Freiberger E. Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions. Clin Interv Aging 2020; 15:1675-1690. [PMID: 32982201 PMCID: PMC7508031 DOI: 10.2147/cia.s253535] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most widely conserved hallmarks of aging is a decline in functional capabilities. Mobility loss is particularly burdensome due to its association with negative health outcomes, loss of independence and disability, and the heavy impact on quality of life. Recently, a new condition, physical frailty and sarcopenia, has been proposed to define a critical stage in the disabling cascade. Physical frailty and sarcopenia are characterized by weakness, slowness, and reduced muscle mass, yet with preserved ability to move independently. One of the strategies that have shown some benefits in combatting mobility loss and its consequences for older adults is physical activity. Here, we describe the opportunities and challenges for the development of physical activity interventions in people with physical frailty and sarcopenia. The aim of this article is to review age-related physio(patho)logical changes that impact mobility in old age and to provide recommendations and procedures in accordance with the available literature.
Collapse
|
Review |
5 |
133 |
18
|
Demurtas J, Schoene D, Torbahn G, Marengoni A, Grande G, Zou L, Petrovic M, Maggi S, Cesari M, Lamb S, Soysal P, Kemmler W, Sieber C, Mueller C, Shenkin SD, Schwingshackl L, Smith L, Veronese N. Physical Activity and Exercise in Mild Cognitive Impairment and Dementia: An Umbrella Review of Intervention and Observational Studies. J Am Med Dir Assoc 2020; 21:1415-1422.e6. [PMID: 32981668 DOI: 10.1016/j.jamda.2020.08.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this umbrella review was to determine the effect of physical activity/exercise on improving cognitive and noncognitive outcomes in people with MCI (mild cognitive impairment) and dementia. DESIGN Umbrella review of systematic reviews (SR), with or without meta-analyses (MAs), of randomized controlled trials (RCTs) and observational studies. SETTINGS AND PARTICIPANTS People with MCI or dementia, confirmed through validated assessment measures. Any form of physical activity/exercise was included. As controls, we included participants not following any prespecified physical activity/exercise intervention or following the same standard protocol with the intervention group. METHODS The protocol was registered in PROSPERO (CDR 164197). Major databases were searched until December 31, 2019. The certainty of evidence of statistically significant outcomes was evaluated using the Grading of Recommendations Assessment, Development and Evaluation approach. SRs' findings, without a formal MA, were reported descriptively. RESULTS Among 1160 articles initially evaluated, 27 SRs (all of RCTs, 9 without MA) for a total of 28,205 participants with MCI/dementia were included. In patients with MCI, mind-body intervention (standardized mean difference [SMD] = 0.36; 95% confidence intervals [CI] 0.20-0.52; low certainty) and mixed physical activity interventions (SMD = 0.30; 95% CI 0.11-0.49; moderate certainty) had a small effect on global cognition, whereas resistance training (SMD = 0.80; 95% CI 0.29-1.31; very low certainty) had a large effect on global cognition. In people affected by dementia, physical activity/exercise was effective in improving global cognition in Alzheimer disease (SMD = 1.10; 95% CI 0.65-1.64; very low certainty) and in all types of dementia (SMD = 0.48; 95% CI 0.22-0.74; low certainty). Finally, physical activity/exercise improved noncognitive outcomes in people with dementia including falls, and neuropsychiatric symptoms. CONCLUSIONS AND IMPLICATIONS Supported by very low-to-moderate certainty of evidence, physical activity/exercise has a positive effect on several cognitive and noncognitive outcomes in people with MCI and dementia, but RCTs, with low risk of bias/confounding, are still needed to confirm these relationships.
Collapse
|
Systematic Review |
5 |
128 |
19
|
|
Review |
7 |
125 |
20
|
Sirico F, Bianco A, D'Alicandro G, Castaldo C, Montagnani S, Spera R, Di Meglio F, Nurzynska D. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child Obes 2018; 14:207-217. [PMID: 29762052 PMCID: PMC5994661 DOI: 10.1089/chi.2017.0269] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND New findings on adipose tissue physiology and obesity-associated inflammation status suggest that modification of the adipokine level can be relevant for the long-term prevention of obesity-associated chronic disease. OBJECTIVES The scope of the present study was to investigate the effectiveness of physical exercise in reducing the systemic inflammation related to obesity in children. METHODS We conducted a systematic review with meta-analysis of controlled randomized trials, identified through electronic database search, which investigated the effect of physical exercise, without concomitant dietary intervention, on adiponectin, leptin, and/or other inflammatory markers in children up to age 18 years with a body mass index greater than the 95th percentile for age and sex. RESULTS Seven trials were included in the meta-analysis, with a total of 250 participants. Compared with the control group without any lifestyle modification, the physical exercise resulted in a reduction in leptin [standardized mean difference (SMD) -1.13; 95% confidence interval (95%CI): -1.89 to -0.37; I2 = 79.9%] and interleukin-6 (SMD -0.84; 95%CI: -1.45 to -0.23, I2 = 0.9%) and an increase in adiponectin plasma concentration (SMD 0.69; 95%CI: 0.02-1.35; I2 = 74.3%). CONCLUSIONS These results indicate that physical exercise improved the inflammatory state in children with obesity. It is unclear whether this effect can reduce the risk of cardiovascular and metabolic disease in adulthood. Clinical trials with a uniform intervention protocol and outcome measurements are required to put our knowledge on adipose tissue biology into a clinical perspective.
Collapse
|
Meta-Analysis |
7 |
119 |
21
|
Müller P, Duderstadt Y, Lessmann V, Müller NG. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med 2020; 9:jcm9041136. [PMID: 32326586 PMCID: PMC7230639 DOI: 10.3390/jcm9041136] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence from animal and human studies supports the notion that physical exercise can enhance neuroplasticity and thus reduce the risk of several neurodegenerative diseases (e.g., dementia). However, the underlying neurobiological mechanisms of exercise induced neuroplasticity are still largely unknown. One potential mediator of exercise effects is the neurotrophin BDNF, which enhances neuroplasticity via different pathways (e.g., synaptogenesis, neurogenesis, long-term potentiation). Current research has shown that (i) increased peripheral lactate levels (following high intensity exercise) are associated with increased peripheral BDNF levels, (ii) lactate infusion at rest can increase peripheral and central BDNF levels and (iii) lactate plays a very complex role in the brain’s metabolism. In this review, we summarize the role and relationship of lactate and BDNF in exercise induced neuroplasticity.
Collapse
|
Review |
5 |
118 |
22
|
Rapid stimulation of human dentate gyrus function with acute mild exercise. Proc Natl Acad Sci U S A 2018; 115:10487-10492. [PMID: 30249651 DOI: 10.1073/pnas.1805668115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Physical exercise has beneficial effects on neurocognitive function, including hippocampus-dependent episodic memory. Exercise intensity level can be assessed according to whether it induces a stress response; the most effective exercise for improving hippocampal function remains unclear. Our prior work using a special treadmill running model in animals has shown that stress-free mild exercise increases hippocampal neuronal activity and promotes adult neurogenesis in the dentate gyrus (DG) of the hippocampus, improving spatial memory performance. However, the rapid modification, from mild exercise, on hippocampal memory function and the exact mechanisms for these changes, in particular the impact on pattern separation acting in the DG and CA3 regions, are yet to be elucidated. To this end, we adopted an acute-exercise design in humans, coupled with high-resolution functional MRI techniques, capable of resolving hippocampal subfields. A single 10-min bout of very light-intensity exercise (30%[Formula: see text]) results in rapid enhancement in pattern separation and an increase in functional connectivity between hippocampal DG/CA3 and cortical regions (i.e., parahippocampal, angular, and fusiform gyri). Importantly, the magnitude of the enhanced functional connectivity predicted the extent of memory improvement at an individual subject level. These results suggest that brief, very light exercise rapidly enhances hippocampal memory function, possibly by increasing DG/CA3-neocortical functional connectivity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
117 |
23
|
Abizanda P, López MD, García VP, Estrella JDD, da Silva González Á, Vilardell NB, Torres KA. Effects of an Oral Nutritional Supplementation Plus Physical Exercise Intervention on the Physical Function, Nutritional Status, and Quality of Life in Frail Institutionalized Older Adults: The ACTIVNES Study. J Am Med Dir Assoc 2015; 16:439.e9-439.e16. [PMID: 25841327 DOI: 10.1016/j.jamda.2015.02.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The objective of this study was to assess the effects of a hyperproteic, hypercaloric oral nutritional supplement with prebiotic fiber, vitamin D, and calcium, plus a standardized physical intervention, in the functional status, strength, nutritional status, and quality of life of frail institutionalized older adults. DESIGN Multicentric prospective observational study under usual clinical practice conditions. SETTING Four nursing homes from Burgos (2), Albacete, and Madrid, Spain. PARTICIPANTS Participants included 91 institutionalized older adults (age ≥70), able to walk 50 m, and meeting at least 3 of the Fried frailty phenotype criteria. INTERVENTION Daily intake of two 200-mL bottles of an oral nutritional supplement, each bottle containing 300 kcal, 20 g protein, 3 g fiber, 500 IU vitamin D, and 480 mg calcium, plus a standardized physical exercise training consisting of flexibility, balance, and strengthening exercises for arms and legs, 5 days per week. MEASUREMENTS Short Physical Performance Battery (SPPB), Short-Form-Late-Life Function and Disability Instrument (SF-LLFDI) function subscale, handgrip strength, EuroQoL-5 Dimensions visual analogic scale (EQ5DVAS), weight, body mass index (BMI), and Short-Form Mini Nutritional Assessment (MNA-SF) at baseline and 6 and 12 weeks. RESULTS Forty-eight participants (52.7%) improved at least 1 point in the SPPB at week 6, and 44 (48.4%) did so at week 12; 39 participants (42.9%) improved at least 2 points in the SF-LLFDI at week 6, and 46 (50.5%) at week 12. Participants improved their quality of life measured with the EQ5DVAS by 6% (95% confidence interval [CI] 3%-10%) at week 6, and by 5% (95% CI 0%-10%) at week 12. They also improved their nutritional status (weight gain, BMI increase, and higher MNA-SF scores at 6- and 12-week follow-up). This improvement was higher in participants with more frailty criteria, lower functional level, lower vitamin D levels, and poorer nutritional status. CONCLUSION A 12-week intervention with oral nutritional supplementation plus physical exercise improves function, nutritional status, and quality of life in frail institutionalized older adults.
Collapse
|
Observational Study |
10 |
116 |
24
|
Abstract
We review the definitions, determinants, and ways of enhancing successful cognitive and emotional aging. Objective definitions of successful aging based on physical health emphasize outcomes including freedom from disability and disease, whereas subjective definitions center on well-being, social connectedness, and adaptation. Most older people do not meet objective criteria for successful aging, while a majority meet the subjective criteria. Older people with severe mental illness are not excluded from successful aging. The determinants of successful aging include complex interactions of lifestyle behaviors and social environment with genes. Depression interferes with nearly all determinants of successful aging. Evidence-based means of enhancing successful aging include calorie restriction, physical exercise, cognitive stimulation, social support, and optimization of stress. Future directions for successful aging research and implications for geriatric psychiatry are discussed.
Collapse
|
review-article |
15 |
112 |
25
|
Pastore N, Vainshtein A, Klisch TJ, Armani A, Huynh T, Herz NJ, Polishchuk EV, Sandri M, Ballabio A. TFE3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Mol Med 2017; 9:605-621. [PMID: 28283651 PMCID: PMC5412821 DOI: 10.15252/emmm.201607204] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TFE3 and TFEB are members of the MiT family of HLH–leucine zipper transcription factors. Recent studies demonstrated that they bind overlapping sets of promoters and are post‐transcriptionally regulated through a similar mechanism. However, while Tcfeb knockout (KO) mice die during early embryonic development, no apparent phenotype was reported in Tfe3 KO mice. Thus raising the need to characterize the physiological role of TFE3 and elucidate its relationship with TFEB. TFE3 deficiency resulted in altered mitochondrial morphology and function both in vitro and in vivo due to compromised mitochondrial dynamics. In addition, Tfe3 KO mice showed significant abnormalities in energy balance and alterations in systemic glucose and lipid metabolism, resulting in enhanced diet‐induced obesity and diabetes. Conversely, viral‐mediated TFE3 overexpression improved the metabolic abnormalities induced by high‐fat diet (HFD). Both TFEB overexpression in Tfe3 KO mice and TFE3 overexpression in Tcfeb liver‐specific KO mice (Tcfeb LiKO) rescued HFD‐induced obesity, indicating that TFEB can compensate for TFE3 deficiency and vice versa. Analysis of Tcfeb LiKO/Tfe3 double KO mice demonstrated that depletion of both TFE3 and TFEB results in additive effects with an exacerbation of the hepatic phenotype. These data indicate that TFE3 and TFEB play a cooperative, rather than redundant, role in the control of the adaptive response of whole‐body metabolism to environmental cues such as diet and physical exercise.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
109 |