1
|
Reichmann K, Feteira A, Li M. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators. MATERIALS 2015; 8:8467-8495. [PMID: 28793724 PMCID: PMC5458809 DOI: 10.3390/ma8125469] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.
Collapse
|
Review |
10 |
94 |
2
|
El-Sayed AM, Abo-Ismail A, El-Melegy MT, Hamzaid NA, Abu Osman NA. Development of a micro-gripper using piezoelectric bimorphs. SENSORS (BASEL, SWITZERLAND) 2013; 13:5826-40. [PMID: 23653051 PMCID: PMC3690032 DOI: 10.3390/s130505826] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/25/2013] [Accepted: 04/28/2013] [Indexed: 11/16/2022]
Abstract
Piezoelectric bimorphs have been used as a micro-gripper in many applications, but the system might be complex and the response performance might not have been fully characterized. In this study the dynamic characteristics of bending piezoelectric bimorphs actuators were theoretically and experimentally investigated for micro-gripping applications in terms of deflection along the length, transient response, and frequency response with varying driving voltages and driving signals. In addition, the implementation of a parallel micro-gripper using bending piezoelectric bimorphs was presented. Both fingers were actuated separately to perform mini object handling. The bending piezoelectric bimorphs were fixed as cantilevers and individually driven using a high voltage amplifier and the bimorph deflection was measured using a non contact proximity sensor attached at the tip of one finger. The micro-gripper could perform precise micro-manipulation tasks and could handle objects down to 50 µm in size. This eliminates the need for external actuator extension of the microgripper as the grasping action was achieved directly with the piezoelectric bimorph, thus minimizing the weight and the complexity of the micro-gripper.
Collapse
|
research-article |
12 |
43 |
3
|
Deflection of cross-ply composite laminates induced by piezoelectric actuators. SENSORS 2010; 10:719-33. [PMID: 22315564 PMCID: PMC3270865 DOI: 10.3390/s100100719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/04/2010] [Accepted: 01/18/2010] [Indexed: 11/16/2022]
Abstract
The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.
Collapse
|
|
15 |
18 |
4
|
Lu S, Cao G, Zheng H, Li D, Shi M, Qi J. Simulation and Experiment on Droplet Formation and Separation for Needle-Type Micro-Liquid Jetting Dispenser. MICROMACHINES 2018; 9:E330. [PMID: 30424263 PMCID: PMC6082297 DOI: 10.3390/mi9070330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
The needle-type droplet jetting dispenser has wide applications in the field of microelectronic packaging, and for which the good quality of droplet formation and separation is the key to successful dispensing. This paper simulates the droplet jetting process which has been divided into 5 stages named backflow, growth, droplet extension, breakage, and separation, and analyses the combined effects of system parameters, such as pressure, viscosity, needle stroke, and nozzle diameter, on the changes of morphologies of ejected droplets, which is verified by experiments. The simulation and experiment results show that a higher driving pressure is quite suitable for the high-viscosity liquid to form normal droplets by avoiding adhesion. When increasing the needle stroke, the pressure should also be lowered properly to prevent the flow-stream. Besides, the nozzle with a large diameter is much more likely to cause sputtering or satellite-droplet problems. The results have a great significance for guiding the parameter settings of the needle-type dispensing approach.
Collapse
|
research-article |
7 |
16 |
5
|
Qin Y, Duan H. Single-Neuron Adaptive Hysteresis Compensation of Piezoelectric Actuator Based on Hebb Learning Rules. MICROMACHINES 2020; 11:mi11010084. [PMID: 31940914 PMCID: PMC7019309 DOI: 10.3390/mi11010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 11/21/2022]
Abstract
This paper presents an adaptive hysteresis compensation approach for a piezoelectric actuator (PEA) using single-neuron adaptive control. For a given desired trajectory, the control input to the PEA is dynamically adjusted by the error between the actual and desired trajectories using Hebb learning rules. A single neuron with self-learning and self-adaptive capabilities is a non-linear processing unit, which is ideal for time-variant systems. Based on the single-neuron control, the compensation of the PEA’s hysteresis can be regarded as a process of transmitting biological neuron information. Through the error information between the actual and desired trajectories, the control input is adjusted via the weight adjustment method of neuron learning. In addition, this paper also integrates the combination of Hebb learning rules and supervised learning as teacher signals, which can quickly respond to control signals. The weights of the single-neuron controller can be constantly adjusted online to improve the control performance of the system. Experimental results show that the proposed single-neuron adaptive hysteresis compensation method can track continuous and discontinuous trajectories well. The single-neuron adaptive controller has better adaptive and self-learning performance against the rate-dependence of the PEA’s hysteresis.
Collapse
|
|
5 |
15 |
6
|
Huang W, Sun M. Design, Analysis, and Experiment on a Novel Stick-Slip Piezoelectric Actuator with a Lever Mechanism. MICROMACHINES 2019; 10:mi10120863. [PMID: 31817987 PMCID: PMC6952925 DOI: 10.3390/mi10120863] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023]
Abstract
A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.
Collapse
|
|
6 |
15 |
7
|
A compact vertical scanner for atomic force microscopes. SENSORS 2010; 10:10673-82. [PMID: 22163492 PMCID: PMC3231096 DOI: 10.3390/s101210673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/14/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022]
Abstract
A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated.
Collapse
|
Evaluation Study |
15 |
14 |
8
|
Kawada S, Hayashi H, Ishii H, Kimura M, Ando A, Omiya S, Kubodera N. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes. MATERIALS 2015; 8:7423-7438. [PMID: 28793646 PMCID: PMC5458925 DOI: 10.3390/ma8115389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.
Collapse
|
Review |
10 |
10 |
9
|
Ryndzionek R, Sienkiewicz Ł, Michna M, Kutt F. Design and Experiments of a Piezoelectric Motor Using Three Rotating Mode Actuators. SENSORS 2019; 19:s19235184. [PMID: 31779242 PMCID: PMC6929107 DOI: 10.3390/s19235184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
This paper represents a numerical and experimental investigation of the multicell piezoelectric motor. The proposed design consists of three individual cells that are integrated into the stator, double rotor, and a preload system combined into a symmetrical structure of the motor. Each of the cells is characterized by a traveling wave and rotating mode motor. A finite element numerical analysis is carried out to obtain optimal geometrical dimensions of the individual cell in terms of generated vibrations and resonant frequencies of the structure. The results of the numerical analysis are compared with analytical calculations based on the equivalent circuit theory. Experimental tests are also presented, including laser interferometry measurements of vibrations generated at the surface of the stator, impedance analysis, as well as measurements of mechanical characteristics of the complete motor. The final stage of the study concludes that the presented motor can provide relatively high torque compared with other traveling wave rotary motors.
Collapse
|
Journal Article |
6 |
10 |
10
|
Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant. SENSORS 2018; 18:s18061694. [PMID: 29795018 PMCID: PMC6021934 DOI: 10.3390/s18061694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022]
Abstract
The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics.
Collapse
|
Journal Article |
7 |
10 |
11
|
Neural Network Self-Tuning Control for a Piezoelectric Actuator. SENSORS 2020; 20:s20123342. [PMID: 32545569 PMCID: PMC7349381 DOI: 10.3390/s20123342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022]
Abstract
Piezoelectric actuators (PEA) have been widely used in the ultra-precision manufacturing fields. However, the hysteresis nonlinearity between the input voltage and the output displacement, which possesses the properties of rate dependency and multivalued mapping, seriously impedes the positioning accuracy of the PEA. This paper investigates a control methodology without the hysteresis model for PEA actuated nanopositioning systems, in which the inherent drawback generated by the hysteresis nonlinearity aggregates the control accuracy of the PEA. To address this problem, a neural network self-tuning control approach is proposed to realize the high accuracy tracking with respect to the system uncertainties and hysteresis nonlinearity of the PEA. First, the PEA is described as a nonlinear equation with two variables, which are unknown. Then, using the capabilities of super approximation and adaptive parameter adjustment, the neural network identifiers are used to approximate the two unknown variables automatically updated without any off-line identification, respectively. To verify the validity and effectiveness of the proposed control methodology, a series of experiments is executed on a commercial PEA product. The experimental results illustrate that the established neural network self-tuning control method is efficient in damping the hysteresis nonlinearity and enhancing the trajectory tracking property.
Collapse
|
|
5 |
9 |
12
|
Lin C, Shen Z, Yu J, Li P, Huo D. Modelling and Analysis of Characteristics of a Piezoelectric-Actuated Micro-/Nano Compliant Platform Using Bond Graph Approach. MICROMACHINES 2018; 9:E498. [PMID: 30424431 PMCID: PMC6215115 DOI: 10.3390/mi9100498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022]
Abstract
The piezoelectric-actuated flexure-based compliant platform is commonly adopted in many fields of micro and nanotechnology. In this paper, bond graph modeling, and kinematic and dynamic characteristics of a piezoelectric-actuated micro-/nano compliant platform system are investigated. During modeling, the bond graph model of the piezoelectric actuator (PZT) is derived by considering both the electrical domain and the mechanical domain. Considering the compliances of flexure hinges and elastic linkages, as well as the input ends, the bond graph model for the bridge-type displacement amplification mechanism in the compliant platform is established by combining pseudo-rigid-body (PRB) model theory and elastic beam theory. Based on the interactions between the PZT subsystem and compliant platform subsystem, the kinematic performance of the proposed compliant platform system is evaluated through both computer simulations and experimental tests. Furthermore, the frequency responses, dynamic responses and load capacity of the compliant platform system are studied. This paper explores a new modeling method for a piezoelectric-actuated compliant platform system, which can provide an effective solution when analyzing the micro-/nano system.
Collapse
|
research-article |
7 |
9 |
13
|
Research on a 3-DOF Motion Device Based on the Flexible Mechanism Driven by the Piezoelectric Actuators. MICROMACHINES 2018; 9:mi9110578. [PMID: 30404230 PMCID: PMC6265935 DOI: 10.3390/mi9110578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.
Collapse
|
Journal Article |
7 |
6 |
14
|
Zhang J, Tian J, Ta N, Huang X, Rao Z. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties. Proc Inst Mech Eng H 2016; 230:784-94. [PMID: 27276992 DOI: 10.1177/0954411916652923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices.
Collapse
|
|
9 |
6 |
15
|
Abstract
The existing nano-positioning stages are driven by the piezoelectric ceramics, which have features of high accuracy and resolution, but the traditional positioning stage could not meet the requirement of large working space because the displacement of the piezoelectric ceramics is only tens of microns. To solve the contradiction between high accuracy and large working space, a novel non-resonant piezoelectric linear actuator, which adopted the two parallel v-shaped stators as the double driving feet, was proposed, and both its working principle and structure were discussed in detail. The actuator was used to drive the positioning stage directly to obtain the performance of nano-positioning and large working stroke. The experiment results show that the resolution of the actuator is 0.015 μm, and its stable maximum motion speed is 17.4 mm/s, while the degree-of-freedom of step resolution of teach nano-positioning stage is 0.018 μm, 0.016 μm, and 0.3 μrad, respectively. Compared with the traditional positioning stage, the nano-positioning stage driven by the actuators directly also has excellent working stroke. The key performance of both high resolution and large working stroke of the nano-positioning stage was realized based on different motion modes of only one piezoelectric actuator.
Collapse
|
research-article |
5 |
6 |
16
|
Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser. MICROMACHINES 2019; 10:mi10090623. [PMID: 31540529 PMCID: PMC6780367 DOI: 10.3390/mi10090623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
The needle-type piezoelectric jetting dispenser is widely applied in the microelectronics packaging field, and it is important to control the droplet size to ensure that the droplet jetting process is successful. In this study, we analyzed the influences of system parameters, such as air pressure, nozzle size, needle strokes, and liquid properties, on droplet size and morphology by considering the droplet formation and separation process through a numerical simulation. An experimental platform was also designed to verify the reliability of the simulations and further analyze strategies for controlling the droplet size. We found that the droplet volume can be increased with an increase in air pressure, needle strokes, and nozzle size until the flow-stream or satellite droplets appear. On the other hand, very small values of these parameters will lead to adhesion or micro-dots. A large nozzle and needle displacement should be chosen for the high-viscosity liquid in order to produce normal droplets. The results also show the recommended ranges of parameter values and suitable droplet volumes for liquids with different viscosities, and these findings can be used to guide the droplet volume control process for needle-type jetting dispensers.
Collapse
|
Journal Article |
6 |
6 |
17
|
Velasco J, Barambones O, Calvo I, Zubia J, Saez de Ocariz I, Chouza A. Sliding Mode Control with Dynamical Correction for Time-Delay Piezoelectric Actuator Systems. MATERIALS 2019; 13:ma13010132. [PMID: 31892249 PMCID: PMC6981594 DOI: 10.3390/ma13010132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
In piezoelectric actuators (PEAs), which suffer from inherent nonlinearities, sliding mode control (SMC) has proven to be a successful control strategy. Nonetheless, in micropositioning systems with time delay, integral proportional control (PI), and SMC, feedback control schemes have a tendency to overcompensate and, consequently, high controller gains must be rejected. This may produce a slow and inaccurate response. This paper presents a novel control strategy that deals with time-delay micropositioning systems aimed at achieving precise positioning by combining an open-loop control with a modified SMC scheme. The proposed SMC with dynamical correction (SMC-WDC) uses the dynamical system model to adapt the SMC inputs and avoid undesirable control response caused by delays. In order to develop the SMC-WDC scheme, an exhaustive analysis on the micropositioning system was first performed. Then, a mixed control strategy, combining inverse open-loop control and SMC-WDC, was developed. The performance of the presented control scheme was analyzed and compared experimentally with other control strategies (i.e., PI and SMC with saturation and hyperbolic functions) using different reference signals. It was found that the SMC-WDC strategy presents the best performance, that is, the fastest response and highest accuracy, especially against sudden changes of reference setpoints (frequencies >10 Hz). Additionally, if the setpoint reference frequencies are higher than 10 Hz, high integral gains are counterproductive (since the control response increases the delay), although if frequencies are below 1 Hz the integral control delay does not affect the system's accuracy. The SMC-WDC proved to be an effective strategy for micropositioning systems, dealing with time delay and other uncertainties to achieve the setpoint command fast and precisely without chattering.
Collapse
|
|
6 |
6 |
18
|
Sugi T, Igarashi R, Nishimura M. Noninvasive Mechanochemical Imaging in Unconstrained Caenorhabditis elegans. MATERIALS 2018; 11:ma11061034. [PMID: 29921777 PMCID: PMC6025516 DOI: 10.3390/ma11061034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Physical forces are transduced into chemical reactions, thereby ultimately making a large impact on the whole-animal level phenotypes such as homeostasis, development and behavior. To understand mechano-chemical transduction, mechanical input should be quantitatively delivered with controllable vibration properties⁻frequency, amplitude and duration, and its chemical output should be noninvasively quantified in an unconstrained animal. However, such an experimental system has not been established so far. Here, we develop a noninvasive and unconstrained mechanochemical imaging microscopy. This microscopy enables us to evoke nano-scale nonlocalized vibrations with controllable vibration properties using a piezoelectric acoustic transducer system and quantify calcium response of a freely moving C. elegans at a single cell resolution. Using this microscopy, we clearly detected the calcium response of a single interneuron during C. elegans escape response to nano-scale vibration. Thus, this microscopy will facilitate understanding of in vivo mechanochemical physiology in the future.
Collapse
|
|
7 |
6 |
19
|
Development of Piezo-Actuated Two-Degree-of-Freedom Fast Tool Servo System. MICROMACHINES 2019; 10:mi10050337. [PMID: 31121921 PMCID: PMC6562535 DOI: 10.3390/mi10050337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022]
Abstract
Fast tool servo (FTS) machining technology is a promising method for freeform surfaces and machining micro-nanostructure surfaces. However, limited degrees of freedom (DOF) is an inherent drawback of existing FTS technologies. In this paper, a piezo-actuated serial structure FTS system is developed to obtain translational motions along with z and x-axis directions for ultra-precision machining. In addition, the principle of the developed 2-DOF FTS is introduced and explained. A high-rigidity four-bar (HRFB) mechanism is proposed to produce motion along the z-axis direction. Additionally, through a micro-rotation motion around flexible bearing hinges (FBHs), bi-directional motions along the x-axis direction can be produced. The kinematics of the mechanism are described using a matrix-based compliance modeling (MCM) method, and then the static analysis and dynamic analysis are performed using finite element analysis (FEA). Testing experiments were conducted to investigate the actual performance of the developed system. The results show that low coupling, proper travel, and high natural frequency are obtained. Finally, a sinusoidal wavy surface is uniformly generated by the mechanism developed to demonstrate the effectiveness of the FTS system.
Collapse
|
|
6 |
5 |
20
|
Tan UX, Latt WT, Widjaja F, Shee CY, Riviere CN, Ang WT. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller. SENSORS AND ACTUATORS. A, PHYSICAL 2009; 150:116-123. [PMID: 20161217 PMCID: PMC2717032 DOI: 10.1016/j.sna.2008.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.
Collapse
|
research-article |
16 |
5 |
21
|
Gilchrist KH, Dausch DE, Grego S. Electromechanical performance of piezoelectric scanning mirrors for medical endoscopy. SENSORS AND ACTUATORS. A, PHYSICAL 2012; 178:193-201. [PMID: 22773894 PMCID: PMC3388502 DOI: 10.1016/j.sna.2012.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The electromechanical performance of piezoelectric scanning mirrors for endoscopy imaging is presented. The devices are supported by a single actuating cantilever to achieve a high fill factor, the ratio of mirror area to the combined mirror and actuator area. The largest fill factor devices (74%) achieved 10° mechanical scan range at +/-10V with a 300 μm long cantilever. The largest angular displacement of 30° mechanical scan range was obtained with a 500 μm long cantilever device with a 63% fill factor driven at 40 Vpp. A systematic investigation of device performance (displacement and speed) as a function of fabrication and operational parameters including the stress balance in the cantilever revealed unexpectedly large displacements with lack of inversion at the coercive field. An interpretation of the results is presented based on piezoelectric film domain orientation and clamping with supporting piezoelectric film characterization measurements.
Collapse
|
research-article |
13 |
4 |
22
|
Wang W, Han F, Chen Z, Wang R, Wang C, Lu K, Wang J, Ju B. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model. MICROMACHINES 2021; 12:92. [PMID: 33467202 PMCID: PMC7830347 DOI: 10.3390/mi12010092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Piezoelectric actuators are widely used in micro- and nano-manufacturing and precision machining due to their superior performance. However, there are complex hysteresis nonlinear phenomena in piezoelectric actuators. In particular, the inherent hysteresis can be affected by the input frequency, and it sometimes exhibits asymmetrical characteristic. The existing dynamic hysteresis model is inaccurate in describing hysteresis of piezoelectric actuators at high frequency. In this paper, a Dynamic Delay Prandtl-Ishlinskii (DDPI) model is proposed to describe the asymmetrical and dynamic characteristics of piezoelectric actuators. First, the shape of the Delay Play operator is discussed under two delay coefficients. Then, the accuracy of the DDPI model is verified by experiments. Next, to compensate the asymmetrical and dynamic hysteresis, the compensator is designed based on the Inverse Dynamic Delay Prandtl-Ishlinskii (IDDPI) model. The effectiveness of the inverse compensator was verified by experiments. The results show that the DDPI model can accurately describe the asymmetrical and dynamic hysteresis, and the compensator can effectively suppress the hysteresis of the piezoelectric actuator. This research will be beneficial to extend the application of piezoelectric actuators.
Collapse
|
research-article |
4 |
4 |
23
|
Zhou X, Zhang L, Yang Z, Sun L. Modeling and Inverse Compensation of Cross-Coupling Hysteresis in Piezoceramics under Multi-Input. MICROMACHINES 2021; 12:mi12010086. [PMID: 33467768 PMCID: PMC7830607 DOI: 10.3390/mi12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/05/2022]
Abstract
In the fast tool servo (FTS) system for microstructure surface cutting, the dynamic voltage hysteresis of piezoelectric actuators (PEAs) and the cutting force produced in the manufacturing affect the driving accuracy and the cutting performance. For a multi-input-single-output (MISO) cutting system, in this paper, a dynamic hysteresis model based on a rate-dependent Prandtl–Ishlinskii model is proposed. A backpropagation neural network (BPNN) is established to describe the cross-coupling effect between the applied voltage and external load. An inverse dynamic model is developed to compensate the nonlinearity of PEAs. The accuracy of the model and its inverse is discussed and the performance of the inverse feedforward compensator is validated through experiments.
Collapse
|
|
4 |
4 |
24
|
Design and Locomotion Study of Stick-Slip Piezoelectric Actuator Using Two-Stage Flexible Hinge Structure. MICROMACHINES 2021; 12:mi12020154. [PMID: 33557326 PMCID: PMC7915445 DOI: 10.3390/mi12020154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
A novel piezoelectric actuator using a two-stage flexure hinge structure is proposed in this paper, which is used in a compact and high-precision electromechanical field. The two-stage flexure hinge structure is used to provide horizontal thrust and vertical clamping force to the driving feet, which solves the problems of unstable clamping force and insufficient load capacity in traditional stick-slip piezoelectric actuators. Firstly, the main structure of the driver and the working process under the triangular wave excitation voltage are briefly introduced. Secondly, after many simulation tests, the structure of the actuator is optimized and the stability of the structure in providing clamping force is verified. Finally, through the research of the operating performance, when the amplitude is 150 V and the frequency is 3.25 kHz as the excitation source, the maximum speed can reach 338 mm/s and can bear about 3 kg load. It can be seen from the analysis that the two-stage flexure hinge structure can improve the displacement trajectory.
Collapse
|
|
4 |
3 |
25
|
Li Z, Zhao L, Guo P, Wang Z. Electromagnetic piezoelectric hybrid driven multi-DOF motor contact model considering drive and load state. Sci Prog 2021; 104:368504211002356. [PMID: 33733918 PMCID: PMC10305835 DOI: 10.1177/00368504211002356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper proposes a new research method in view of the rare research on the contact state of hybrid drive multi-degree-of-freedom motor. Firstly, the basic principle and structure of hybrid drive motor are introduced. The air gap magnetic field model and electromagnetic torque model of permanent magnet rotor are obtained by analytical method. Static analysis of piezoelectric stators are carried out by stress-strain relationship. According to the analytical method and the spatial geometric relationship, the piezoelectric driving torque under different driving conditions is obtained. Introducing Hertz contact theory and Mindlin theory, combined with piezoelectric driving torque, electromagnetic driving torque and load torque to analyze the friction situation. A friction interface model considering the dynamic nonlinearity of friction coefficient and the nonlinear change of friction force distribution is established. Finally, using Matlab software, the friction distribution diagram of the contact surface of the hybrid drive three-degree-of-freedom motor under different driving and motion states is obtained. The analysis results verify the rationality of the electromagnetic piezoelectric hybrid driven three-degree-of-freedom motor. It shows that the contact state of the three sets of piezoelectric stators are determined according to the driving condition and load, the relative speed of the piezoelectric stators and the spherical rotor is proportional to the frictional force. It provides an idea for the research of contact state of hybrid drive multi-degree-of-freedom motor, and also lays a basis for further optimizing the friction interface of this kind of motors or actuators.
Collapse
|
research-article |
4 |
3 |