1
|
Zheng J, Wang Z, Yang H, Yao X, Yang P, Ren C, Wang F, Zhang Y. Pituitary Transcriptomic Study Reveals the Differential Regulation of lncRNAs and mRNAs Related to Prolificacy in Different FecB Genotyping Sheep. Genes (Basel) 2019; 10:genes10020157. [PMID: 30781725 PMCID: PMC6410156 DOI: 10.3390/genes10020157] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (LncRNA) have been identified as important regulators in the hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, their expression pattern and potential roles in the pituitary are yet unclear. To explore the potential mRNAs and lncRNAs that regulate the expression of the genes involved in sheep prolificacy, we used stranded specific RNA-seq to profile the pituitary transcriptome (lncRNA and mRNA) in high prolificacy (genotype FecB BB, litter size = 3; H) and low prolificacy sheep (genotype FecB B+; litter size = 1; L). Our results showed that 57 differentially expressed (DE) lncRNAs and 298 DE mRNAs were found in the pituitary between the two groups. The qRT-PCR results correlated well with the RNA-seq results. Moreover, functional annotation analysis showed that the target genes of the DE lncRNAs were significantly enriched in pituitary function, hormone-related pathways as well as response to stimulus and some other terms related to reproduction. Furthermore, a co-expression network of lncRNAs and target genes was constructed and reproduction related genes such as SMAD2, NMB and EFNB3 were included. Lastly, the interaction of candidate lncRNA MSTRG.259847.2 and its target gene SMAD2 were validated in vitro of sheep pituitary cells. These differential mRNA and lncRNA expression profiles provide a valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
43 |
2
|
Téblick A, Langouche L, Van den Berghe G. Anterior pituitary function in critical illness. Endocr Connect 2019; 8:R131-R143. [PMID: 31340197 PMCID: PMC6709544 DOI: 10.1530/ec-19-0318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Critical illness is hallmarked by major changes in all hypothalamic-pituitary-peripheral hormonal axes. Extensive animal and human studies have identified a biphasic pattern in circulating pituitary and peripheral hormone levels throughout critical illness by analogy with the fasting state. In the acute phase of critical illness, following a deleterious event, rapid neuroendocrine changes try to direct the human body toward a catabolic state to ensure provision of elementary energy sources, whereas costly anabolic processes are postponed. Thanks to new technologies and improvements in critical care, the majority of patients survive the acute insult and recover within a week. However, an important part of patients admitted to the ICU fail to recover sufficiently, and a prolonged phase of critical illness sets in. This prolonged phase of critical illness is characterized by a uniform suppression of the hypothalamic-pituitary-peripheral hormonal axes. Whereas the alterations in hormonal levels during the first hours and days after the onset of critical illness are evolutionary selected and are likely beneficial for survival, endocrine changes in prolonged critically ill patients could be harmful and may hamper recovery. Most studies investigating the substitution of peripheral hormones or strategies to overcome resistance to anabolic stimuli failed to show benefit for morbidity and mortality. Research on treatment with selected and combined hypothalamic hormones has shown promising results. Well-controlled RCTs to corroborate these findings are needed.
Collapse
|
Review |
6 |
27 |
3
|
Gentilin E, Tagliati F, Terzolo M, Zoli M, Lapparelli M, Minoia M, Ambrosio MR, Degli Uberti EC, Zatelli MC. Mitotane reduces human and mouse ACTH-secreting pituitary cell viability and function. J Endocrinol 2013; 218:275-85. [PMID: 23814013 DOI: 10.1530/joe-13-0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Medical therapy for Cushing's disease (CD) is currently based on agents mainly targeting adrenocortical function. Lately, pituitary-directed drugs have been developed, with limited efficacy. Mitotane, a potent adrenolytic drug, has been recently investigated for the treatment of CD, but the direct pituitary effects have not been clarified so far. The aim of our study was to investigate whether mitotane may affect corticotroph function and cell survival in the mouse pituitary cell line AtT20/D16v-F2 and in the primary cultures of human ACTH-secreting pituitary adenomas, as an in vitro model of pituitary corticotrophs. We found that in the AtT20/D16v-F2 cell line and in primary cultures, mitotane reduces cell viability by inducing caspase-mediated apoptosis and reduces ACTH secretion. In the AtT20/D16v-F2 cell line, mitotane reduces Pomc expression and blocks the stimulatory effects of corticotropin-releasing hormone on cell viability, ACTH secretion, and Pomc expression. These effects were apparent at mitotane doses greater than those usually necessary for reducing cortisol secretion in Cushing's syndrome, but still in the therapeutic window for adrenocortical carcinoma treatment. In conclusion, our results demonstrate that mitotane affects cell viability and function of human and mouse ACTH-secreting pituitary adenoma cells. These data indicate that mitotane could have direct pituitary effects on corticotroph cells.
Collapse
|
|
12 |
22 |
4
|
Li S, Xiao L, Liu Q, Zheng B, Chen H, Liu X, Zhang Y, Lin H. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper. J Mol Endocrinol 2015; 55:95-106. [PMID: 26162607 DOI: 10.1530/jme-15-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.
Collapse
|
|
10 |
9 |
5
|
Fujio S, Hirano H, Yamashita M, Usui S, Kinoshita Y, Tominaga A, Hanada T, Yamahata H, Tokimura H, Hanaya R, Kurisu K, Arita K. Preoperative and Postoperative Pituitary Function in Patients with Tuberculum Sellae Meningioma -Based on Pituitary Provocation Tests. Neurol Med Chir (Tokyo) 2017; 57:548-556. [PMID: 28845039 PMCID: PMC5638782 DOI: 10.2176/nmc.oa.2017-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the anatomical proximity of tuberculum sellae meningioma (TSM) to the hypothalamo-pituitary system, pituitary function impairments are of great concern. We retrospectively investigated pituitary function changes following surgery in patients with TSM using pituitary provocation tests (PPTs). Thirty-one patients (27 females and 4 males) with TSM underwent initial transcranial surgery (29 patients) or transsphenoidal surgery (two patients); surgeries were performed carefully to avoid injuring the pituitary stalk. In 24 patients, the PPTs were performed via a triple bolus injection with regular insulin, thyrotropin-releasing hormone (TRH), and luteinizing hormone releasing hormone (LH-RH). Seven patients underwent a quadruple test (growth-hormone-releasing factor, corticotrophin-releasing hormone, TRH, and LH-RH). The preoperative and postoperative target hormone levels of the anterior pituitary were normal in 93.5% and 96.8% of patients, respectively. At least one hormonal axis demonstrated impaired PPT responses in two patients (6.5%) preoperatively and in one patient (3.2%) postoperatively. The growth hormone (GH) response was also well preserved. A compromised GH peak level was only observed in one patient (3.2%) preoperatively. Postoperatively, transient diabetes insipidus and transient hyponatremia were observed in four (12.9%) and eight (25.8%) patients, respectively. No patients needed permanent postoperative hormone replacement. The preoperative pituitary function was well preserved in most patients, including those with large tumors pushing against the pituitary stalk considerably or embedded in it. After careful surgery to avoid damaging the pituitary stalk, pituitary function was preserved. However, transient postoperative hyponatremia occurred in 25.8% of patients; thus, surgeons should pay careful attention to this issue.
Collapse
|
Journal Article |
8 |
9 |
6
|
Yang J, Zhang X, Liu Z, Yuan Z, Song Y, Shao S, Zhou X, Yan H, Guan Q, Gao L, Zhang H, Zhao J. High-Cholesterol Diet Disrupts the Levels of Hormones Derived from Anterior Pituitary Basophilic Cells. J Neuroendocrinol 2016; 28:12369. [PMID: 27020952 DOI: 10.1111/jne.12369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Emerging evidence shows that elevated cholesterol levels are detrimental to health. However, it is unclear whether there is an association between cholesterol and the pituitary. We investigated the effects of a high-cholesterol diet on pituitary hormones using in vivo animal studies and an epidemiological study. In the animal experiments, rats were fed a high-cholesterol or control diet for 28 weeks. In rats fed the high-cholesterol diet, serum levels of thyroid-stimulating hormone (TSH; also known as thyrotrophin), luteinising hormone (LH) and follicle-stimulating hormone (FSH) produced by the basophilic cells of the anterior pituitary were elevated in a time-dependent manner. Among these hormones, TSH was the first to undergo a significant change, whereas adrenocorticotrophic hormone (ACTH), another hormone produced by basophilic cells, was not changed significantly. As the duration of cholesterol feeding increased, cholesterol deposition increased gradually in the pituitary. Histologically, basophilic cells, and especially thyrotrophs and gonadotrophs, showed an obvious increase in cell area, as well as a potential increase in their proportion of total pituitary cells. Expression of the β-subunit of TSH, FSH and LH, which controls hormone specificity and activity, exhibited a corresponding increase. In the epidemiological study, we found a similar elevation of serum TSH, LH and FSH and a decrease in ACTH in patients with hypercholesterolaemia. Significant positive correlations existed between serum total cholesterol and TSH, FSH or LH, even after adjusting for confounding factors. Taken together, the results of the present study suggest that the high-cholesterol diet affected the levels of hormones derived from anterior pituitary basophilic cells. This phenomenon might contribute to the pituitary functional disturbances described in hypercholesterolaemia.
Collapse
|
|
9 |
8 |
7
|
Nishioka H, Nagata Y, Fukuhara N, Yamaguchi-Okada M, Yamada S. Endoscopic Endonasal Surgery for Subdiaphragmatic Type Craniopharyngiomas. Neurol Med Chir (Tokyo) 2018; 58:260-265. [PMID: 29877209 PMCID: PMC6002681 DOI: 10.2176/nmc.oa.2018-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subdiaphragmatic type craniopharyngiomas are tumors that originate within the sella. They are divided into two types; those localized within an enlarged sella (intrasellar type) and those accompanying a suprasellar extension (suprasellar extended type). The clinicopathological features and the recent outcomes of endoscopic endonasal surgery were retrospectively reviewed in 32 patients, with 11 surgeries for recurrence. These tumors showed a preponderance in young patients (19 patients were younger than 18-year-old) and suprasellar extended type (25 cases), were mostly composed of a large cyst (96.9%) and were frequently adamantinomatous type (68.8%). Combined transcranial-endoscopic endonasal surgery was applied in three patients with extremely large tumors and significant frontal extension. Total tumor resection and stalk preservation were achieved in 26 and 17 patients, respectively. No complications developed after surgery apart from pituitary dysfunction and visual deterioration. 5 of 6 patients with subtotal tumor resection and 6 of 7 patients with no improvement or deterioration of visual function were in the recurrent cases. Although this type is basically an extraarachnoidal tumor, the suprasellar portion of the tumor showed adherence to important tissues in some patients with recurrence. Pituitary function remained normal in only one third of patients with stalk preservation. To avoid pituitary dysfunction after surgery, sharp excision of firm adherence to the stalk should be considered in some patients.
Collapse
|
Journal Article |
7 |
5 |
8
|
Fujio S, Hanada T, Yonenaga M, Nagano Y, Habu M, Arita K, Yoshimoto K. Surgical aspects in craniopharyngioma treatment. Innov Surg Sci 2020; 6:25-33. [PMID: 34966836 PMCID: PMC8668032 DOI: 10.1515/iss-2019-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Total surgical resection is the gold standard in the treatment of craniopharyngioma. However, there is concern that aggressive surgical resection might result in high rates of endocrinologic, metabolic, and behavioral morbidities. Subtotal resection (SR) with subsequent radiation therapy (RT) may reduce surgical complications, but it may also increase the risk of tumor recurrence and radiation-induced side effects. Therefore, the optimal surgical strategy remains debatable. Methods To determine the optimal surgical strategy, we assessed the clinical courses of 39 patients (19 male patients and 20 female patients) with newly diagnosed craniopharyngioma who were treated at our institute. The median age at diagnosis was 34 years (range: 0–76 years). The median follow-up period was 8.5 years (range: 3–160 months). Our treatment strategy comprised gross total resection (GTR) for craniopharyngioma in patients that were not at surgical risk. Conversely, after adequate tumor decompression, we used RT, mainly Gamma Knife radiosurgery, in patients at risk. We divided the patients into the following three groups depending on the treatment course: GTR, SR with RT, and SR with staged surgery. We compared tumor characteristics, as well as patients’ conditions at the preoperative stage and last follow-up, among the three groups. Results There were 8, 21, and 10 patients in the GTR, SR with RT, and SR with staged surgery groups, respectively. There were no differences in the maximum tumor diameter, tumor volume, composition, and presence of calcification among the groups. Among the 39 patients, 24 underwent transcranial microsurgery and 15 underwent trans-sphenoidal surgery as the initial treatment. No cases involving surgical mortality, cerebrospinal fluid leakage, severely deteriorated visual function, or severe hypothalamic damage were observed. No tumor recurrence was noted in the GTR group. One patient required additional RT, and one patient underwent second surgery for tumor recurrence in the SR with RT group. In the SR with staged surgery group, 8 of the 10 patients eventually underwent RT, but tumor control was achieved in all patients at the latest follow-up. In this group, the third trans-sphenoidal surgery caused a severe vascular injury in one patient. At the final follow-up, 33 (85%) patients were undergoing anterior pituitary hormone replacement, and the rate of diabetes insipidus was 51%. There was no significant difference in the pituitary dysfunction rate among the groups. Conclusions We observed a low rate of surgical complications and a sufficient tumor control rate in response to our treatment strategy. Despite attempting preservation of the pituitary stalk, we found it difficult to rescue anterior pituitary function.
Collapse
|
|
5 |
5 |
9
|
Lee HC, Lee EJ, Lee KW, Ahn KJ, Jung TS, Kim DI, Huh KB. Computed tomographic correlation with pituitary function in Sheehan's syndrome. Korean J Intern Med 1992; 7:48-53. [PMID: 1477030 PMCID: PMC4532096 DOI: 10.3904/kjim.1992.7.1.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty six patients with Sheehan's syndrome were studied with high-resolution computed tomography (CT) and the sequential pituitary stimulation test in order to correlate the CT findings of the sella turcica with the pituitary reserve functions. CT revealed 21 completely empty sella (CES), 4 partially empty sella (PES) and 1 normal sella. Panhypopituitarism occurred in 1 of 4 patients with PES and 20 of 21 with CES. One patient showing normal sella had a normal preservation of prolactin (PRL), thyroid stimulating hormone (TSH), follicle stimulating hormone (FSH) and lutenizing hormone (LH). In all patients with PES and CES, growth hormone (GH) responses to hypoglycemia and PRL responses to thyrotropin releasing hormone (TRH) were blunted. Three (75.0%) with PES had normal basal cortisol levels, which were more frequent than two (9.6%) with CES; however, most of the PES (3 of 4) and CES (20 of 21) demonstrated blunted cortisol responses to hypoglycemia. Three (75.0%) with PES and only one (4.8%) with CES had normal thyroxine levels and TSH responses to TRH. None with PES showed decreased basal and stimulated levels of FSH and LH, whereas 15 of 21 with CES did. The pituitary functions of the patients having considerable amounts of pituitary remnants visualized by CT were relatively preserved for TSH, cortisol, FSH and LH. Considering the above results, changes in the amounts of pituitary remnants detected by CT might correlate with hormonal secretory capacity.
Collapse
|
research-article |
33 |
5 |
10
|
Briet C, Braun K, Lefranc M, Toussaint P, Boudailliez B, Bony H. Should We Assess Pituitary Function in Children After a Mild Traumatic Brain Injury? A Prospective Study. Front Endocrinol (Lausanne) 2019; 10:149. [PMID: 30941101 PMCID: PMC6433821 DOI: 10.3389/fendo.2019.00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: The aim of this study was to evaluate the frequency of hypopituitarism following TBI in a cohort of children who had been hospitalized for mild TBI and to identify the predictive factors for this deficiency. Design: A prospective study was conducted on children between 2 and 16 years of age who had been hospitalized for mild TBI according to the Glasgow Coma Scale between September 2009 and June 2013. Clinical parameters, basal pituitary hormone assessment at 0, 6, and 12 months, as well as a dynamic testing (insulin tolerance test) 12 months after TBI were performed. Results: The study included 109 children, the median age was 8.5 years. Patients were examined 6 months (n = 99) and 12 months (n = 96) after TBI. Somatotropic deficiency (defined by a GH peak <20 mUI/l in two tests, an IGF-1 <-1SDS and a delta height <0SDS) were confirmed in 2 cases. One case of gonadotrophic deficiency occurred 1 year after TBI among 13 pubertal children. No cases of precocious puberty, 5 cases of low prolactin level, no cases of corticotropic insufficiency (cortisol peak <500 nmol/l) and no cases diabetes insipidus were recorded. Conclusion: Pituitary insufficiency was present 1year after mild TBI in about 7% of children. Based on our results, we suggest testing children after mild TBI in case of clinical abnormalities. i.e., for GH axis, IGF-1, which should be assessed in children with a delta height <0 SDS, 6 to 12 months after TBI, and a dynamic GH testing (preferentially by an ITT) should be performed in case of IGF-1 <-1SDS, with a GH threshold at 20 mUI/L. However, if a systematic pituitary assessment is not required for mild TBI, physicians should monitor children 1 year after mild TBI with particular attention to growth and weight gain.
Collapse
|
research-article |
6 |
3 |
11
|
Ju JS, Cui T, Zhao J, Chen JL, Ju HB. Clinical presentation and magnetic resonance imaging characteristics of lymphocytic hypophysitis: a systematic review with meta-analysis. Arch Med Sci 2021; 19:976-986. [PMID: 37560735 PMCID: PMC10408024 DOI: 10.5114/aoms/144628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/07/2021] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION This meta-analysis was performed to analyze the clinical presentation, magnetic resonance imaging (MRI) characteristics, and the management of lymphocytic hypophysitis (LYH). MATERIAL AND METHODS Four different databases were searched from January 2010 to December 2020, two researchers independently conducted literature screening, data extraction, and quality evaluation. We used a random effects meta-analysis to calculate summary relative risks with 95% CI. RESULTS This meta-analysis showed that the percentage of women among LYH patients was 78%. LYH was associated with pregnancy in 15% of female patients, with headache (49%) and symptoms of central diabetes insipidus (CDI) (45%) being the most frequent presentation. In 24% of LYH patients, there was an association with another autoimmune disease. The incidence of secondary hypogonadism, secondary hypoadrenalism, secondary hypothyroidism, and growth hormone deficit was 54%, 49%, 43%, and 22%, respectively. Pituitary contrast enhancement (63%), symmetrical pituitary enlargement (60%), thickening of the pituitary stalk (58%), sella mass or suprasellar extension (58%), and loss of posterior pituitary hyperintensity (50%) were typical MRI findings. Regarding LYH treatment, the percentage of patients who had observation or hormone replacement, steroid therapy, and surgery was 43%, 36%, and 34%, respectively. CONCLUSIONS It is of great significance to fully understand the clinical characteristics of lymphocytic hypophysitis, reduce missed diagnosis and misdiagnosis, avoid unnecessary surgery and maintain normal pituitary function.
Collapse
|
Review |
4 |
1 |
12
|
Takala RSK, Kiviranta R, Olkkola KT, Vahlberg T, Laukka D, Kotkansalo A, Rahi M, Sankinen M, Posti J, Katila A, Rinne J. Acute hormonal findings after aneurysmal subarachnoid hemorrhage - report from a single center. Endocr Res 2017; 42:125-131. [PMID: 27754735 DOI: 10.1080/07435800.2016.1242603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim was to assess anterior pituitary hormone levels during the acute phase of aneurysmal subarachnoid hemorrhage (aSAH) and analyze the possible association with the clinical condition and outcome. MATERIAL AND METHODS Forty patients with aSAH whose aneurysm was secured by endovascular coiling were enrolled. Basal secretions of cortisol, testosterone, luteinizing hormone (LH), prolactin (PRL), and sex hormone binding globulin (SHBG) levels were measured up to 14 days after the incident. RESULTS The main finding was that hypocortisolism was rare whereas testosterone deficiency was common in male patients. Furthermore, various other hormone deviations were frequent and there was wide interindividual variability. We found no association between delayed cerebral ischemia (DCI), outcome of the patients or aneurysm location, and hormone abnormalities, while both Hunt & Hess and Fisher grade were associated with low PRL levels. Hunt & Hess 5 was associated with low PRL concentration when compared to grades 1 (OR = 4.81, 95% CI 1.15-20.14, p = 0.03), 3 (OR 7.73, 95% CI 1.33-45.01, p = 0.02), and 4 (OR = 6.86 95% CI 1.28-26.83, p = 0.02). Fisher grade 4 was associated with low PRL concentration when compared to grades 3 (OR 3.37, 95% CI 1.06-10.73, p = 0.03) and 2 (OR 9.71, 95% CI 1.22-77.10, p = 0.04). CONCLUSION Deviations from normal and huge interindividual differences are common in hormone levels during the acute phase of aSAH. Routine assessment of anterior pituitary function in the acute phase of aSAH is not warranted. During the follow-up in the outpatient clinic, hormone concentrations were not measured, which would have brought a more long-term perspective into our findings.
Collapse
|
|
8 |
1 |
13
|
Fujio S, Tokimura H, Hirano H, Hanaya R, Kubo F, Yunoue S, Bohara M, Kinoshita Y, Tominaga A, Arimura H, Arita K. Severe growth hormone deficiency is rare in surgically-cured acromegalics. Pituitary 2013; 16:326-32. [PMID: 22918542 PMCID: PMC3730151 DOI: 10.1007/s11102-012-0424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth hormone deficiency (GHD) in surgically-cured acromegalics has been reported to negatively affect their metabolic condition and quality of life (QOL). The incidence of GHD, its causes, and its effects on their physio-psychological condition remain to be examined in detail. We performed a retrospective study to investigate GH secretory function in surgically-cured acromegalics, prognostic factors of GHD, and its impact on QOL. The study population consisted of 72 acromegalics who were determined to be surgically cured according to the Cortina consensus criteria. We recorded the incidence of impaired GH secretory function based on the peak GH level during postoperative insulin tolerance test (ITT) which lowered their nadir blood sugar to under 50 mg/dL. Their QOL was evaluated by SF-36. In surgically-cured acromegalics, the incidence of severe GHD (peak GH during ITT ≦ 3.0 μg/L) was 12.5 % (9/72). The preoperative tumor size was significantly larger in patients with severe GHD than without severe GHD (21.9 ± 9.0 vs. 15.5 ± 7.1 mm, p = 0.017). The peak GH levels during postoperative ITT were statistically correlated with the physical but not the mental component summary of the SF-36 score. The incidence of GHD was 12.5 % in our surgically-cured acromegalics. As some QOL aspects are positively related with peak GH levels during postoperative ITT, efforts should be made to preserve pituitary function in acromegalic patients undergoing adenomectomy.
Collapse
|
research-article |
12 |
1 |
14
|
Krysiak R, Kowalcze K, Okopień B. Subclinical Hyperthyroidism Enhances Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women. J Clin Pharmacol 2025; 65:318-327. [PMID: 39363530 DOI: 10.1002/jcph.6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Metformin treatment decreases elevated concentrations of anterior pituitary hormones. The aim of this prospective, cohort study was to investigate whether hyperthyroidism modulates the impact of metformin on gonadotroph secretory function. The study population included 48 postmenopausal women with untreated type 2 diabetes or prediabetes, 24 of whom had coexisting grade 1 subclinical hyperthyroidism. Both groups were matched for age, insulin sensitivity, and gonadotropin levels. Over the entire study period, all participants were treated with metformin (2.55-3 g daily). Plasma glucose, insulin, thyroid-stimulating hormone (TSH), total and free thyroid hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, prolactin, adrenocorticotropic hormone (ACTH), and insulin-like growth factor-1 (IGF-1) were assayed at entry and 6 months later. At baseline, the study groups differed in levels of TSH and thyroid hormones but not in body mass index, blood pressure, glucose homeostasis markers (fasting glucose, homeostatic model assessment 1 of insulin resistance ratio [HOMA1-IR], and glycated hemoglobin [HbA1c]), and the remaining hormones. There were no differences between both groups in the degree of reduction in plasma glucose and HbA1c in response to metformin treatment. Although metformin decreased HOMA1-IR in both groups, this effect was stronger in women with hyperthyroidism than with normal thyroid function (-50 ± 20% vs -30 ± 15%). Similar relationships were observed for FSH (-43 ± 21% vs -21 ± 12%). Only in hyperthyroid women did the drug reduce LH concentration (by 35 ± 17%). Metformin did not affect circulating levels of TSH, total and free thyroxine, total and free triiodothyronine, estradiol, prolactin, ACTH, and IGF-1. The obtained results indicate that hyperthyroidism enhances the gonadotropin-lowering effects of metformin, as well as the fact that this agent has a neutral effect on the hypothalamic-pituitary-thyroid axis in case of its overactivity.
Collapse
|
|
1 |
|
15
|
Huang H, Li J, Li Z, Xiao Y, Wang S. Rathke's Cleft Cyst Leads to Stunted Growth in Children: A Case Report Written With the Help of ChatGPT. Cureus 2024; 16:e53384. [PMID: 38440018 PMCID: PMC10911638 DOI: 10.7759/cureus.53384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
In recent times, ChatGPT has become a globally renowned AI tool, revolutionizing academic research by offering innovative methods and opportunities. The integration of AI into various domains is a prevailing topic, focusing on optimizing its utility. This article presents a case study of a child with Rathke's cyst, primarily exhibiting symptoms of growth and developmental delay. The patient's self-perception of stunted growth, coupled with previous assessments indicating partial growth hormone deficiency, prompted further investigation. Laboratory assessments revealed low growth hormone and insulin-like growth factor levels, while imaging disclosed a pituitary lesion. Rathke's cyst was postulated as the probable cause of the growth hormone deficiency. Rathke's cyst remains a rare medical condition with substantial research knowledge gaps. In this article, we synergize ChatGPT responses with a comprehensive case report of a child with Rathke's cyst as the primary symptom-growth and developmental delay. We explore the methods and feasibility of employing ChatGPT within this case report.
Collapse
|
Case Reports |
1 |
|
16
|
Marina D, Feldt-Rasmussen U, Klose M. Long-term pituitary function and functional and patient-reported outcomes in severe acquired brain injury. Eur J Endocrinol 2024; 190:382-390. [PMID: 38679947 DOI: 10.1093/ejendo/lvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Assessment of posttraumatic hypothalamic-pituitary dysfunctions is expected to be the most relevant assessment to offer patients with severe intracranial affection. In this study, we aim to investigate the prevalence of hypopituitarism in patients with severe acquired traumatic brain injury (TBI) compared with nontraumatic brain injury (NTBI) and to relate pituitary insufficiency to functional and patient-reported outcomes. DESIGN This is a prospective study. METHODS We included patients admitted for inpatient neurorehabilitation after severe TBI (N = 42) and NTBI (N = 18). The patients underwent a pituitary function assessment at a mean of 2.4 years after the injury. Functional outcome was assessed by using Functional Independence Measure and Glasgow Outcome Scale-Extended (both 1 year after discharge from neurorehabilitation) and patient-reported outcome was assessed by using Multiple Fatigue Inventory-20 and EQ-5D-3L. RESULTS Hypopituitarism was reported in 10/42 (24%) patients with TBI and 7/18 (39%) patients with NTBI (P = .23). Insufficiencies affected 1 axis in 14/17 (82%) patients (13 hypogonadotropic hypogonadism and 1 growth hormone [GH] deficiency) and 2 axes in 3/17 (18%) patients (1 hypogonadotropic hypogonadism and GH deficiency, and 2 hypogonadotropic hypogonadism and arginin vasopressin deficiency). None had central hypoadrenalism or central hypothyroidism. In patients with both TBI and NTBI, pituitary status was unrelated to functioning and ability scores at 1 year and to patient-reported outcome scores at a mean of 2.4 years after the injury. CONCLUSION Patients with severe acquired brain injury may develop long-term hypothalamus-pituitary insufficiency, with an equal occurrence in patients with TBI and NTBI. In both types of patients, mainly isolated deficiencies, most commonly affecting the gonadal axis, were seen. Insufficiencies were unrelated to functional outcomes and patient-reported outcomes, probably reflecting the complexity and heterogeneous manifestations in both patient groups.
Collapse
|
|
1 |
|
17
|
Kawalec J, Horzelski W, Karbownik-Lewińska M, Lewiński A, Lewandowski KC. Determination of glucose cut-off points for optimal performance of glucagon stimulation test. Front Endocrinol (Lausanne) 2024; 15:1448467. [PMID: 39262672 PMCID: PMC11387979 DOI: 10.3389/fendo.2024.1448467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The glucagon stimulation test (GST) is widely used to assess growth hormone (GH) and cortisol secretion, nevertheless the precise mechanisms underpinning these hormonal responses remain unclear. We have endeavoured to explore the relationship between glucose and insulin fluctuations during GST and their impact on GH and cortisol secretion. Subjects and methods We retrospectively studied 139 subjects (mean age 35.5 ± 15.1 years, BMI 26.6 ± 6.61 kg/m²), including 62 individuals with a history of pituitary disease (27 with an intact adrenal axis) and 77 healthy controls. Standard dose intramuscular GST was performed in all subjects. Results Once BMI and age were excluded from multivariate model, the nadir of glucose concentration during GST was the sole variable associated with maximal GH secretion (ΔGH, p<0.0003), while neither glucose/insulin peak, nor Δglucose/Δinsulin concentrations contributed to ΔGH. 100% pass rate for GH secretion above 3 ng/ml or 1.07 ng/ml cut-offs was observed for glucose concentrations at, or below 60 mg/dl (3.33 mmol/l) (for Controls), or 62 mg/dl (3.44 mmol/l) (for Controls and patients with an intact adrenocortical axis). Such low glucose concentrations were obtained, however, only in about 30% of studied individuals. Conversely, cortisol secretion did not correlate with glucose or insulin fluctuations, suggesting alternative regulatory mechanisms. Conclusions This study reveals that glucose nadir below 3.33 mmol/l is the only biochemical biovariable linked with optimal GH secretion during GST, whereas mechanisms responsible for cortisol secretion remain unclear. We emphasize the importance of glucose monitoring during GST to validate GH stimulation and support clinical decisions in GH deficiency management.
Collapse
|
|
1 |
|
18
|
Xu X, Liu R, Yang X, Bai B, Du Q, Wang Y, Liu P. A retrospective analysis of 338 surgically treated pituitary adenomas. World Neurosurg 2025:123701. [PMID: 39855545 DOI: 10.1016/j.wneu.2025.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE To summarize the clinical characteristics, pituitary function assessment, postoperative pathological features, and postoperative recurrence of surgically treated pituitary adenomas (PAs). METHODS We retrospectively reviewed the data of 338 patients (169 women; average age: 50.01 ± 12.47 years) who underwent surgical PA resection at our hospital during 2016-2020. Pathological PA classification was based on postoperative immunohistochemical staining for pituitary hormones. The clinical, imaging, laboratory, and follow-up data of the patients were statistically analyzed using SPSS v25.0. RESULTS The main complaints of PA patients were compressive symptoms, followed by endocrine symptoms; 23 tumors were incidentalomas. Compared with the 93 patients with functioning PAs, the 245 patients with non-functioning PAs were older, and had greater tumor diameters and rates of cavernous sinus invasion and pituitary apoplexy (P < 0.05). Postoperative hormonal staining most commonly revealed ACTH (27.4%) and FSH/LH positivity (20.6%); 23.1% of non-functioning tumors stained negative for pituitary hormones. Preoperative anterior hypopituitarism commonly involved the gonadal and thyroid axes, and was correlated with male sex and tumor diameter (P < 0.05). The optimal cut-off for tumor diameter was 1.95 cm for predicting preoperative hypopituitarism in patients with non-functioning PAs. The number of operations and preoperative hypopituitarism were correlated with postoperative pituitary dysfunction (P < 0.05). In the non-functioning PA group, tumor diameter was a risk factor for postoperative recurrence (optimal cutoff: 2.75 cm). CONCLUSIONS The management of patients with surgically treated PAs is limited by deficiencies in pathological classification, assessment of hypopituitarism, and detection of recurrence.
Collapse
|
|
1 |
|
19
|
Kamaludin AI, Amoo M, Henry J, Reischer G, Javadpour M. Effect of pituitary stalk preservation during craniopharyngioma removal on pituitary function, extent of resection, and recurrence: systematic review and meta-analysis. J Neurosurg 2025; 142:741-755. [PMID: 39366020 DOI: 10.3171/2024.5.jns232790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE Optimal management of the pituitary stalk during craniopharyngioma resection remains a controversial subject. This meta-analysis aimed to evaluate the effect of pituitary stalk preservation on postoperative diabetes insipidus (DI), anterior pituitary function (PF), extent of resection, and recurrence. METHODS Medline was searched via Ovid for relevant articles from inception to September 2, 2022. Studies reporting the rates of DI or anterior PF postoperatively or at last follow-up, extent of resection, or tumor recurrence at last follow-up were eligible for inclusion. The risk ratio (RR) for each outcome was calculated. Random-effects meta-analyses were performed with additional stratification by age. To assess for risk of bias across studies, funnel plots and the Egger's test were utilized. RESULTS In total, 3488 abstracts and 150 full-text articles were reviewed, resulting in 33 studies with a total of 2366 patients for inclusion. In the comparative meta-analysis, pituitary stalk preservation significantly decreased the risk of DI postoperatively (17 studies, RR 0.67, 95% CI 0.55-0.81, I2 = 75%), DI at last follow-up (6 studies, RR 0.54, 95% CI 0.41-0.72, I2 = 20%), and abnormal anterior PF postoperatively (15 studies, RR 0.78, 95% CI 0.69-0.89, I2 = 49%) but not abnormal anterior PF at last follow-up (4 studies, RR 0.38, 95% CI 0.09-1.63, I2 = 64%). There were no significant differences in the rates of incomplete resection (12 studies, RR 1.59, 95% CI 0.77-3.28, I2 = 68%) or tumor recurrence (9 studies, RR 1.18, 95% CI 0.92-1.51, I2 = 0%) between the preservation and sacrifice groups. However, subgroup analysis of pediatric patients revealed a higher risk of incomplete resection (RR 3.29, 95% CI 1.17-9.26, I2 = 70%) in the stalk preservation group. CONCLUSIONS Pituitary stalk preservation was demonstrated to confer protective benefit on PF, although the benefit persisted on long-term follow-up for posterior PF only. Stalk preservation in pediatric patients should be given careful consideration, as it is associated with higher rates of incomplete resection. These results should be interpreted with caution due to inclusion of small studies and inadequate reporting of outcomes in the literature.
Collapse
|
Systematic Review |
1 |
|
20
|
Matmusayev M, Kariev GM, Asadullaev U, Takeuchi K, Nagata Y, Harada H, Saito R. Extended Endoscopic Endonasal Transplanum and Transdorsum Sellar Approach for the Resection of Retroinfundibular Craniopharyngioma With Two-Piece Dural Opening: A Technical Case Report. Cureus 2024; 16:e51850. [PMID: 38327935 PMCID: PMC10849817 DOI: 10.7759/cureus.51850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/09/2024] Open
Abstract
The surgical treatment of retroinfundibular craniopharyngiomas is challenging due to their location and the surrounding neurovascular structures. In this report, the transdorsum sellar approach with posterior clinoidectomy, the efficacy of direct cyst puncture, and the suitability of a two-piece dural opening are presented. A 56-year-old male with visual and cognitive disturbances was referred to our hospital. Preoperative CT and MRI demonstrated a mostly cystic lesion with calcifications in the suprasellar and retroinfundibular areas. The imaging findings were suspected craniopharyngioma, and an extended endoscopic endonasal transdorsum sellar approach with posterior clinoidectomy was performed for direct access to the lesion. Two pieces of the dura were opened to prevent postoperative CSF leakage. The patient's postoperative course was uneventful. The endoscopic transdorsum sellar approach gives direct access to the posterior cranial fossa. A direct puncture of the cyst without CSF drainage is helpful for large cystic lesions. A two-piece dural opening is easy to suture and can reduce the chance of postoperative CSF leakage.
Collapse
|
Case Reports |
1 |
|
21
|
Jazdarehee A, Huget-Penner S, Pawlowska M. Pseudo-pheochromocytoma due to obstructive sleep apnea: a case report. Endocrinol Diabetes Metab Case Rep 2022; 2022:21-0100. [PMID: 35212265 PMCID: PMC8897593 DOI: 10.1530/edm-21-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022] Open
Abstract
SUMMARY Obstructive sleep apnea (OSA) is a condition of intermittent nocturnal upper airway obstruction. OSA increases sympathetic drive which may result in clinical and biochemical features suggestive of pheochromocytoma. We present the case of a 65-year-old male with a 2.9-cm left adrenal incidentaloma on CT, hypertension, symptoms of headache, anxiety and diaphoresis, and persistently elevated 24-h urine norepinephrine (initially 818 nmol/day (89-470)) and normetanephrine (initially 11.2 µmol/day (0.6-2.7)). He was started on prazosin and underwent left adrenalectomy. Pathology revealed an adrenal corticoadenoma with no evidence of pheochromocytoma. Over the next 2 years, urine norepinephrine and normetanephrine remained significantly elevated with no MIBG avid disease. Years later, he was diagnosed with severe OSA and treated with continuous positive airway pressure. Urine testing done once OSA was well controlled revealed complete normalization of urine norepinephrine and normetanephrine with substantial symptom improvement. It was concluded that the patient never had a pheochromocytoma but rather an adrenal adenoma with biochemistry and symptoms suggestive of pheochromocytoma due to untreated severe OSA. Pseudo-pheochromocytoma is a rare presentation of OSA and should be considered on the differential of elevated urine catecholamines and metanephrines in the right clinical setting. LEARNING POINTS Obstructive sleep apnea (OSA) is a common condition among adults. OSA may rarely present as pseudo-pheochromocytoma with symptoms of pallor, palpitations, perspiration, headache, or anxiety. OSA should be considered on the differential of elevated urine catecholamines and metanephrines, especially in patients with negative metaiodobenzylguanidine (MIBG) scan results.
Collapse
Key Words
- adolescent/young adult
- adult
- geriatric
- neonatal
- paediatric
- pregnant adult
- female
- male
- american indian or alaska native
- asian - bangladeshi
- asian - chinese
- asian - filipino
- asian - indian
- asian - japanese
- asian - korean
- asian - pakistani
- asian - vietnamese
- asian - other
- black - african
- black - caribbean
- black - other
- hispanic or latino - central american or south american
- hispanic or latino - cuban
- hispanic or latino - dominican
- hispanic or latino - mexican, mexican american, chicano
- hispanic or latino - puerto rican
- hispanic or latino - other
- native hawaiian/other pacific islander
- white
- other
- afghanistan
- aland islands
- albania
- algeria
- american samoa
- andorra
- angola
- anguilla
- antarctica
- antigua and barbuda
- argentina
- armenia
- aruba
- australia
- austria
- azerbaijan
- bahamas
- bahrain
- bangladesh
- barbados
- belarus
- belgium
- belize
- benin
- bermuda
- bhutan
- bolivia
- bosnia and herzegovina
- botswana
- bouvet island
- brazil
- british indian ocean territory
- brunei darussalam
- bulgaria
- burkina faso
- burundi
- cambodia
- cameroon
- canada
- cape verde
- cayman islands
- central african republic
- chad
- chile
- china
- christmas island
- cocos (keeling) islands
- colombia
- comoros
- congo
- congo, the democratic republic of the
- cook islands
- costa rica
- côte d'ivoire
- croatia
- cuba
- cyprus
- czech republic
- denmark
- djibouti
- dominica
- dominican republic
- ecuador
- egypt
- el salvador
- equatorial guinea
- eritrea
- estonia
- ethiopia
- falkland islands (malvinas)
- faroe islands
- fiji
- finland
- france
- french guiana
- french polynesia
- french southern territories
- gabon
- gambia
- georgia
- germany
- ghana
- gibraltar
- greece
- greenland
- grenada
- guadeloupe
- guam
- guatemala
- guernsey
- guinea
- guinea-bissau
- guyana
- haiti
- heard island and mcdonald islands
- holy see (vatican city state)
- honduras
- hong kong
- hungary
- iceland
- india
- indonesia
- iran, islamic republic of
- iraq
- ireland
- isle of man
- israel
- italy
- jamaica
- japan
- jersey
- jordan
- kazakhstan
- kenya
- kiribati
- korea, democratic people's republic of
- korea, republic of
- kuwait
- kyrgyzstan
- lao people's democratic republic
- latvia
- lebanon
- lesotho
- liberia
- libyan arab jamahiriya
- liechtenstein
- lithuania
- luxembourg
- macao
- macedonia, the former yugoslav republic of
- madagascar
- malawi
- malaysia
- maldives
- mali
- malta
- marshall islands
- martinique
- mauritania
- mauritius
- mayotte
- mexico
- micronesia, federated states of
- moldova, republic of
- monaco
- mongolia
- montenegro
- montserrat
- morocco
- mozambique
- myanmar
- namibia
- nauru
- nepal
- netherlands
- netherlands antilles
- new caledonia
- new zealand
- nicaragua
- niger
- nigeria
- niue
- norfolk island
- northern mariana islands
- norway
- oman
- pakistan
- palau
- palestinian territory, occupied
- panama
- papua new guinea
- paraguay
- peru
- philippines
- pitcairn
- poland
- portugal
- puerto rico
- qatar
- réunion
- romania
- russian federation
- rwanda
- saint barthélemy
- saint helena
- saint kitts and nevis
- saint lucia
- saint martin
- saint pierre and miquelon
- saint vincent and the grenadines
- samoa
- san marino
- sao tome and principe
- saudi arabia
- senegal
- serbia
- seychelles
- sierra leone
- singapore
- slovakia
- slovenia
- solomon islands
- somalia
- south africa
- south georgia and the south sandwich islands
- spain
- sri lanka
- sudan
- suriname
- svalbard and jan mayen
- swaziland
- sweden
- switzerland
- syrian arab republic
- taiwan, province of china
- tajikistan
- tanzania, united republic of
- thailand
- timor-leste
- togo
- tokelau
- tonga
- trinidad and tobago
- tunisia
- turkey
- turkmenistan
- turks and caicos islands
- tuvalu
- uganda
- ukraine
- united arab emirates
- united kingdom
- united states
- united states minor outlying islands
- uruguay
- uzbekistan
- vanuatu
- vatican city state
- venezuela
- viet nam
- virgin islands, british
- virgin islands, u.s.
- wallis and futuna
- western sahara
- yemen
- zambia
- zimbabwe
- maylaysia
- adipose tissue
- adrenal
- bone
- duodenum
- heart
- hypothalamus
- kidney
- liver
- ovaries
- pancreas
- parathyroid
- pineal
- pituitary
- placenta
- skin
- stomach
- testes
- thymus
- thyroid
- andrology
- autoimmunity
- cardiovascular endocrinology
- developmental endocrinology
- diabetes
- emergency
- endocrine disruptors
- endocrine-related cancer
- epigenetics
- genetics and mutation
- growth factors
- gynaecological endocrinology
- immunology
- infectious diseases
- late effects of cancer therapy
- mineral
- neuroendocrinology
- obesity
- ophthalmology
- paediatric endocrinology
- puberty
- tumours and neoplasia
- vitamin d
- 17ohp
- acth
- adiponectin
- adrenaline
- aldosterone
- amh
- androgens
- androstenedione
- androsterone
- angiotensin
- antidiuretic hormone
- atrial natriuretic hormone
- avp
- beta-endorphin
- big igf2
- brain natriuretic peptide
- calcitonin
- calcitriol
- cck
- corticosterone
- corticotrophin
- cortisol
- cortisone
- crh
- dehydroepiandrostenedione
- deoxycorticosterone
- deoxycortisol
- dhea
- dihydrotestosterone
- dopamine
- endothelin
- enkephalin
- epitestosterone
- epo
- fgf23
- fsh
- gastrin
- gh
- ghrelin
- ghrh
- gip
- glp1
- glp2
- glucagon
- glucocorticoids
- gnrh
- gonadotropins
- hcg
- hepcidin
- histamine
- human placental lactogen
- hydroxypregnenolone
- igf1
- igf2
- inhibin
- insulin
- kisspeptin
- leptin
- lh
- melanocyte-stimulating hormone
- melatonin
- metanephrines
- mineralocorticoids
- motilin
- nandrolone
- neuropeptide y
- noradrenaline
- normetanephrine
- oestetrol (e4)
- oestradiol (e2)
- oestriol (e3)
- oestrogens
- oestrone (e1)
- osteocalcin
- oxyntomodulin
- oxytocin
- pancreatic polypeptide
- peptide yy
- pregnenolone
- procalcitonin
- progesterone
- prolactin
- prostaglandins
- pth
- relaxin
- renin
- resistin
- secretin
- somatostatin
- testosterone
- thpo
- thymosin
- thymulin
- thyroxine (t4)
- trh
- triiodothyronine (t3)
- tsh
- vip
- 17-alpha hydroxylase/17,20 lyase deficiency
- 17-beta-hydroxysteroid dehydrogenase type 3 deficiency
- 3-m syndrome
- 22q11 deletion syndrome
- 49xxxxy syndrome
- abscess
- acanthosis nigricans
- acromegaly
- acute adrenocortical insufficiency
- addisonian crisis
- addison's disease
- adenocarcinoma
- aip gene mutation
- adrenal insufficiency
- adrenal salt-wasting crisis
- adrenarche
- adrenocortical adenoma
- adrenocortical carcinoma
- adrenoleukodystrophy
- aip gene variant
- amenorrhoea (primary)
- amenorrhoea (secondary)
- amyloid goitre
- amyloidosis
- anaplastic thyroid cancer
- anaemia
- aneuploidy
- androgen insensitivity syndrome
- anti-phospholipid antibody syndrome
- asthma
- autoimmune disorders
- autoimmune polyendocrine syndrome 1
- autoimmune polyendocrine syndrome 2
- autoimmune polyglandular syndrome
- autoimmune hypophysitis
- autosomal dominant hypophosphataemic rickets
- autosomal dominant osteopetrosis
- bardet-biedl syndrome
- bartter syndrome
- bilateral adrenal hyperplasia
- biliary calculi
- breast cancer
- brenner tumour
- brown tumour
- burkitt's lymphoma
- casr gene mutation
- catecholamine secreting carotid body paraganglionoma
- cancer-prone syndrome
- carcinoid syndrome
- carcinoid tumour
- carney complex
- carotid body paraganglioma
- c-cell hyperplasia
- cerebrospinal fluid leakage
- chronic fatigue syndrome
- circadian rhythm sleep disorders
- congenital adrenal hyperplasia
- congenital hypothyroidism
- congenital hyperinsulinism
- conn's syndrome
- corticotrophic adenoma
- craniopharyngioma
- cretinism
- crohn's disease
- cryptorchidism
- cushing's disease
- cushing's syndrome
- cystolithiasis
- de quervain's thyroiditis
- denys-drash syndrome
- desynchronosis
- developmental abnormalities
- diabetes - lipoatrophic
- diabetes - mitochondrial
- diabetes - steroid-induced
- diabetes insipidus - dipsogenic
- diabetes insipidus - gestational
- diabetes insipidus - nephrogenic
- diabetes insipidus - neurogenic/central
- diabetes mellitus type 1
- diabetes mellitus type 2
- diabetic foot syndrome
- diabetic hypoglycaemia
- diabetic ketoacidosis
- diabetic muscle infarction
- diabetic nephropathy
- diverticular disease
- donohue syndrome
- down syndrome
- eating disorders
- ectopic acth syndrome
- ectopic cushing's syndrome
- ectopic parathyroid adenoma
- empty sella syndrome
- endometrial cancer
- endometriosis
- eosinophilic myositis
- euthyroid sick syndrome
- familial hypocalciuric hypercalcaemia
- familial dysalbuminaemic hyperthyroxinaemia
- familial euthyroid hyperthyroxinaemia
- fat necrosis
- female athlete triad syndrome
- fetal demise
- fetal macrosomia
- follicular thyroid cancer
- fractures
- frasier syndrome
- friedreich's ataxia
- functional parathyroid cyst
- galactorrhoea
- gastrinoma
- gastritis
- gastrointestinal perforation
- gastrointestinal stromal tumour
- gck mutation
- gender identity disorder
- gestational diabetes mellitus
- giant ovarian cysts
- gigantism
- gitelman syndrome
- glucagonoma
- glucocorticoid remediable aldosteronism
- glycogen storage disease
- goitre
- goitre (multinodular)
- gonadal dysgenesis
- gonadoblastoma
- gonadotrophic adenoma
- gorham's disease
- granuloma
- granulosa cell tumour
- graves' disease
- graves' ophthalmopathy
- growth hormone deficiency (adult)
- growth hormone deficiency (childhood onset)
- gynaecomastia
- hamman's syndrome
- haemorrhage
- hajdu-cheney syndrome
- hashimoto's disease
- hemihypertrophy
- hepatitis c
- hereditary multiple osteochondroma
- hirsutism
- histiocytosis
- huntington's disease
- hürthle cell adenoma
- hyperaldosteronism
- hyperandrogenism
- hypercalcaemia
- hypercalcaemic crisis
- hyperglucogonaemia
- hyperglycaemia
- hypergonadotropic hypogonadism
- hypergonadotropism
- hyperinsulinaemia
- hyperinsulinaemic hypoglycaemia
- hyperkalaemia
- hyperlipidaemia
- hypernatraemia
- hyperosmolar hyperglycaemic state
- hyperparathyroidism (primary)
- hyperparathyroidism (secondary)
- hyperparathyroidism (tertiary)
- hyperpituitarism
- hyperprolactinaemia
- hypersexuality
- hypertension
- hyperthyroidism
- hypoaldosteronism
- hypocalcaemia
- hypoestrogenism
- hypoglycaemia
- hypoglycaemic coma
- hypogonadism
- hypogonadotrophic hypogonadism
- hypoinsulinaemia
- hypokalaemia
- hyponatraemia
- hypoparathyroidism
- hypophosphataemia
- hypophosphatasia
- hypophysitis
- hypopituitarism
- hypothyroidism
- iatrogenic disorder
- idiopathic bilateral adrenal hyperplasia
- idiopathic pituitary hyperplasia
- igg4-related systemic disease
- inappropriate tsh secretion
- incidentaloma
- infertility
- insulin autoimmune syndrome
- insulin resistance
- insulinoma
- intracranial vasospasm
- intrauterine growth retardation
- iodine allergy
- ischaemic heart disease
- kallmann syndrome
- ketoacidosis
- klinefelter syndrome
- kwashiorkor
- kwashiorkor (marasmic)
- leg ulcer
- laron syndrome
- latent autoimmune diabetes of adults (lada)
- laurence-moon syndrome
- left ventricular hypertrophy
- leukocytoclastic vasculitis
- leydig cell tumour
- lipodystrophy
- lipomatosis
- liver failure
- lung metastases
- luteoma
- lymphadenopathy
- macronodular adrenal hyperplasia
- macronodular hyperplasia
- macroprolactinoma
- marasmus
- maturity onset diabetes of young (mody)
- mccune-albright syndrome
- mckittrick-wheelock syndrome
- medullary thyroid cancer
- meigs syndrome
- membranous nephropathy
- men1
- men2a
- men2b
- men4
- menarche
- meningitis
- menopause
- metabolic acidosis
- metabolic syndrome
- metastatic carcinoma
- metastatic chromaffin cell tumour
- metastatic gastrinoma
- metastatic melanoma
- metastatic tumour
- microadenoma
- microprolactinoma
- motor neurone disease
- myasthenia gravis
- myelolipoma
- myocardial infarction
- myositis
- myotonic dystrophy type 1
- myotonic dystrophy type 2
- myxoedema
- myxoedema coma
- nelson's syndrome
- neonatal diabetes
- nephrolithiasis
- neuroblastoma
- neuroendocrine tumour
- neurofibromatosis
- nodular hyperplasia
- non-functioning pituitary adenoma
- non-hodgkin lymphoma
- non-islet-cell tumour hypoglycaemia
- noonan syndrome
- oculocerebrorenal syndrome
- osteogenesis imperfecta
- osteomalacia
- osteomyelitis
- osteoporosis
- osteoporosis (pregnancy/lactation-associated)
- osteosclerosis
- ovarian cancer
- ovarian dysgenesis
- ovarian hyperstimulation syndrome
- ovarian tumour
- paget's disease
- paget's disease (juvenille)
- pancreatic neuroendocrine tumour
- pancreatitis
- panhypopituitarism
- papillary thyroid cancer
- paraganglioma
- paranasal sinus lesion
- paraneoplastic syndromes
- parasitic thyroid nodules
- parathyroid adenoma
- parathyroid adenoma (ectopic)
- parathyroid carcinoma
- parathyroid cyst
- parathroid hyperplasia
- pcos
- periodontal disease
- phaeochromocytoma
- phaeochromocytoma crisis
- pickardt syndrome
- pituitary abscess
- pituitary adenoma
- pituitary apoplexy
- pituitary carcinoma
- pituitary cyst
- pituitary haemorrhage
- pituitary hyperplasia
- pituitary hypoplasia
- pituitary tumour (malignant)
- plurihormonal pituitary adenoma
- poems syndrome
- polycythaemia
- porphyria
- pneumonia
- posterior reversible encephalopathy syndrome
- post-prandial hypoglycaemia
- prader-willi syndrome
- prediabetes
- pre-eclampsia
- pregnancy
- premature ovarian failure
- premenstrual dysphoric disorder
- premenstrual syndrome
- primary hypertrophic osteoarthropathy
- prolactinoma
- prostate cancer
- pseudohypoaldosteronism type 1
- pseudohypoaldosteronism type 2
- pseudohypoparathyroidism
- psychosocial short stature
- puberty (delayed or absent)
- puberty (precocious)
- pulmonary oedema
- quadrantanopia
- rabson-mendenhall syndrome
- rhabdomyolysis
- rheumatoid arthritis
- rickets
- schwannoma
- sellar reossification
- sertoli cell tumour
- sertoli-leydig cell tumour
- sexual development disorders
- sheehan's syndrome
- short stature
- siadh
- small-cell carcinoma
- small intestine neuroendocrine tumour
- solitary fibrous tumour
- solitary sellar plasmacytoma
- somatostatinoma
- somatotrophic adenoma
- squamous cell thyroid carcinoma
- stiff person syndrome
- struma ovarii
- subcutaneous insulin resistance
- systemic lupus erythematosus
- takotsubo cardiomyopathy
- tarts
- testicular cancer
- thecoma
- thyroid adenoma
- thyroid carcinoma
- thyroid cyst
- thyroid dysgenesis
- thyroid fibromatosis
- thyroid hormone resistance syndrome
- thyroid lymphoma
- thyroid nodule
- thyroid storm
- thyroiditis
- thyrotoxicosis
- thyrotrophic adenoma
- traumatic brain injury
- tuberculosis
- tuberous sclerosis complex
- tumour-induced osteomalacia
- turner syndrome
- unilateral adrenal hyperplasia
- ureterolithiasis
- urolithiasis
- von hippel-lindau disease
- wagr syndrome
- waterhouse-friderichsen syndrome
- williams syndrome
- wolcott-rallison syndrome
- wolfram syndrome
- xanthogranulomatous hypophysitis
- xlaad/ipex
- zollinger-ellison syndrome
- abdominal adiposity
- abdominal distension
- abdominal cramp
- abdominal discomfort
- abdominal guarding
- abdominal lump
- abdominal pain
- abdominal tenderness
- abnormal posture
- abdominal wall defects
- abrasion
- acalculia
- accelerated growth
- acne
- acrochorda
- acroosteolysis
- acute stress reaction
- adverse breast development
- aggression
- agitation
- agnosia
- akathisia
- akinesia
- albuminuria
- alcohol intolerance
- alexia
- alopecia
- altered level of consciousness
- amaurosis
- amaurosis fugax
- ambiguous genitalia
- amblyopia
- amenorrhoea
- ameurosis
- amnesia
- amusia
- anasarca
- angiomyxoma
- anhedonia
- anisocoria
- ankle swelling
- anorchia
- anorectal malformations
- anorexia
- anosmia
- anosognosia
- anovulation
- antepartum haemorrhage
- anuria
- anxiety
- apathy
- aphasia
- aphonia
- apnoea
- appendicitis
- appetite increase
- appetite reduction/loss
- apraxia
- aqueductal stenosis
- arteriosclerosis
- arthralgia
- articulation impairment
- ascites
- asperger syndrome
- asphyxia
- asthenia
- astigmatism
- asymptomatic
- ataxia
- atrial fibrillation
- atrial myxoma
- atrophy
- adhd
- autism
- autonomic neuropathy
- avulsion
- babinski's sign
- back pain
- bacteraemia
- behavioural problems
- belching
- bifid scrotum
- biliary colic
- bitemporal hemianopsia
- blindness
- blistering
- bloating
- bloody show
- boil(s)
- bone cyst
- bone fracture(s)
- bone lesions
- bone pain
- bony metastases
- borborygmus
- bowel movements - bleeding
- bowel movements - increased frequency
- bowel movements - pain
- bowel obstruction
- bowel perforation
- brachycephaly
- brachydactyly
- bradycardia
- bradykinesia
- bradyphrenia
- bradypnea
- breast contour change
- breast enlargement
- breast lump
- breast reduction
- breast tenderness
- breastfeeding difficulties
- breathing difficulties
- bronchospasms
- brushfield spots
- bruxism
- buffalo hump
- cachexia
- calcification
- cardiac fibrosis
- cardiac malformations
- cardiac tamponade
- cardiogenic shock
- cardiomegaly
- cardiomyopathy
- cardiopulmonary arrest
- carpal tunnel syndrome
- caruncle - inflammation
- cataplexy
- cataract(s)
- catathrenia
- central obesity
- cerebrospinal fluid rhinorrhoea
- cervical pain
- cheeks - full
- cheiloschisis
- chemosis
- chest pain
- chest pain (pleuritic)
- chest pain (precordial)
- cheyne-stokes respiration
- chills
- cholecystitis
- cholestasis
- chondrocalcinosis
- chordee
- chorea
- choroidal atrophy
- chronic pain
- circulatory collapse
- cirrhosis
- citraturia
- claudication
- clitoromegaly
- cloacal exstrophy
- clonus
- club foot
- clumsiness
- coagulopathy
- coarctation
- coeliac disease
- cognitive problems
- cold intolerance
- collapse
- colour blindness
- coma
- concentration difficulties
- confusion
- congenital heart defect
- conjunctivitis
- constipation
- convulsions
- coordination difficulties
- coughing
- crackles
- cramps
- craniofacial abnormalities
- craniotabes
- cutaneous ischaemia
- cutaneous myxoma
- cutaneous pigmentation
- cyanosis
- dalrymple's sign
- deafness
- deep vein thrombosis
- dehydration
- delayed puberty
- delirium
- dementia
- dental abscess(es)
- dental problems
- depression
- diabetes insipidus
- diabetic neuropathy
- diabetic foot infection
- diabetic foot neuropathy
- diabetic foot ulceration
- diarrhoea
- diplopia
- dizziness
- duodenal atresia
- duplex kidney(s)
- dysarthria
- dysdiadochokinesia
- dysgraphia
- dyslexia
- dyslipidaemia
- dysmenorrhoea
- dyspareunia
- dyspepsia
- dysphagia
- dysphonia
- dysphoria
- dyspnoea
- dystonia
- dysuria
- ear, nose and/or throat infection
- early menarche
- ears - low set
- ears - pinna abnormalities
- ears - small
- ecchymoses
- ectopic ureter
- emotional immaturity
- encopresis
- endometrial hyperplasia
- enlarged bladder
- enlarged prostate
- eosinophilia
- epicanthic fold
- epilepsy
- epistaxis
- erectile dysfunction
- erythema
- euphoria
- eyebrows - bushy
- eyelid retraction
- eyelid swelling
- eyelids - redness
- eyes - almond-shaped
- eyes - dry
- eyes - feeling of grittiness
- eyes - inflammation
- eyes - irritation
- eyes - itching
- eyes - pain (gazing down)
- eyes - pain (gazing up)
- eyes - redness
- eyes - watering
- face - change in appearance
- face - coarse features
- face - numbness
- facial fullness
- facial palsy
- facial plethora
- facial weakness
- facies - abnormal
- facies - hippocratic
- facies - moon
- faecal incontinence
- failure to thrive
- fallopian tube hyperplasia
- fasciculation
- fatigue
- fatigue (post-exertional)
- feet - cold
- feet - increased size
- feet - large
- feet - pain
- feet - small
- fingers - thick
- flaccid paralysis
- flatulence
- flushing
- fontanelles - enlarged
- frontal bossing
- fungating lesion
- fungating mass
- funny turns
- gait abnormality
- gait unsteadiness
- gallbladder calculi
- gallstones
- gangrene
- gastro-oesophageal reflux
- genital oedema
- genu valgum
- genu varum
- gestational diabetes
- glaucoma
- glucose intolerance
- glucosuria
- growth hormone deficiency
- growth retardation
- haematemesis
- haematochezia
- haematoma
- haematuria
- haemoglobinuria
- haemoptysis
- hair - coarse
- hair - dry
- hair - temporal balding
- hairline - low
- hallucination
- hands - enlargement
- hands - large
- hands - single palmar crease
- hands - small
- head - large
- headache
- hearing loss
- heart failure
- heart murmur
- heat intolerance
- height loss
- hemiballismus
- hemianopia
- hemiparesis
- hemispatial neglect
- hepatic cysts
- hepatic metastases
- hepatomegaly
- hidradenitis suppurativa
- high-arched palate
- hip dislocation
- hippocampal dysgenesis
- hirschsprung's disease
- hot flushes
- hydronephrosis
- hypolipidaemia
- hyperactivity
- hyperacusis
- hyperandrogenaemia
- hypercalciuria
- hypercapnea
- hypercholesterolaemia
- hypercortisolaemia
- hyperflexibility
- hyperglucagonaemia
- hyperhidrosis
- hyperhomocysteinaemia
- hypernasal speech
- hyperopia
- hyperoxaluria
- hyperpigmentation
- hyperplasia
- hyperpnoea
- hypersalivation
- hyperseborrhea
- hypersomnia
- hyperthermia
- hypertrichosis
- hypertrophy
- hyperuricaemia
- hyperventilation
- hypoadrenalism
- hypoalbuminaemia
- hypocalciuria
- hypocitraturia
- hypomagnesaemia
- hypopigmentation
- hypoplastic scrotum
- hypopotassaemia
- hypoprolactinaemia
- hyporeflexia
- hyposmia
- hypospadias
- hypotension
- hypothermia
- hypotonia
- hypoventilation
- hypovitaminosis d
- hypovolaemia
- hypovolaemic shock
- hypoxia
- immunodeficiency
- impulsivity
- inattention
- infections
- inflexibility
- insomnia
- instability
- intussusception
- irritability
- ischaemia
- ischuria
- itching
- jaundice
- keratoconus
- ketonuria
- ketotic odour
- kidney dysplasia
- kidney stones
- kyphoscoliosis
- kyphosis
- labioscrotal fold abnormalities
- laceration
- late dentition
- learning difficulties
- leg pain
- legs - increased length
- leukaemia
- leukocytosis
- libido increase
- libido reduction/loss
- lichen sclerosus
- lips - dry
- lips - thin
- little finger - in-curved
- little finger - short
- liver masses
- lordosis
- lordosis (loss of)
- lymphadenectomy
- lymphadenitis
- lymphocytosis
- lymphoedema
- macroglossia
- malaise
- malaise (post-exertional)
- malodorous perspiration
- mania
- marcus gunn pupil
- mastalgia
- meckel's diverticulum
- melena
- menorrhagia
- menstrual disorder
- mesenteric ischaemia
- metabolic alkalosis
- microalbuminuria
- microcephaly
- micrognathia
- micropenis
- milk-alkali syndrome
- miscarriage
- mood changes/swings
- mouth - down-turned
- mouth - small
- movement - limited range of
- mucosal pigmentation
- muscle atrophy
- muscle freezing
- muscle hypertrophy
- muscle rigidity
- myalgia
- myasthaenia
- mydriasis
- myelodysplasia
- myeloma
- myoclonus
- myodesopsia
- myokymia
- myopathy
- myopia
- myosis
- nail clubbing
- nail dystrophy
- nasal obstruction
- nausea
- neck - loose skin (nape)
- neck - short
- neck mass
- neck pain/discomfort
- necrolytic migratory erythema
- necrosis
- nephrocalcinosis
- nephropathy
- neurofibromas
- night terrors
- nipple change
- nipple discharge
- nipple inversion
- nipple retraction
- nipples widely spaced
- nocturia
- normochromic normocytic anaemia
- nose - depressed bridge
- nose - flat bridge
- nose - thickening
- nystagmus
- obsessive-compulsive disorder
- obstetrical haemorrhage
- obstructive sleep apnoea
- odynophagia
- oedema
- oesophageal atresia
- oesophagitis
- oligomenorrhoea
- oliguria
- onychauxis
- oophoritis
- ophthalmoplegia
- optic atrophy
- orbital fat prolapse
- orbital hypertelorism
- orthostatic hypotension
- osteoarthritis
- osteopenia
- otitis media
- ovarian cysts
- ovarian hyperplasia
- palatoschisis
- pallor
- palmar erythema
- palpebral fissure (downslanted)
- palpebral fissure (extended)
- palpebral fissure (reduced)
- palpebral fissure (upslanted)
- palpitations
- pancreatic fibrosis
- pancytopaenia
- panic attacks
- papilloedema
- paraesthesia
- paralysis
- paranoia
- patellar dislocation
- patellar subluxation
- pedal ulceration
- pellagra
- pelvic mass
- pelvic pain
- penile agenesis
- peptic ulcer
- pericardial effusion
- periodontitis
- periosteal bone reactions
- peripheral oedema
- personality change
- pes cavus
- petechiae
- peyronie's disease
- pharyngitis
- philtrum - long
- philtrum - short
- phosphaturia
- photophobia
- photosensitivity
- pleurisy
- poikiloderma
- polydactyly
- polydipsia
- polyphagia
- polyuria
- poor wound healing
- postmenopausal bleeding
- post-nasal drip
- postprandial fullness
- postural instability
- prehypertension
- premature birth
- premature labour
- prenatal growth retardation
- presbyopia
- pretibial myxoedema
- proctalgia fugax
- prognathism
- proptosis
- prosopagnosia
- proteinuria
- pruritus
- pruritus scroti
- pruritus vulvae
- pseudarthrosis
- psoriatic arthritis
- psychiatric problems
- psychomotor retardation
- psychosis
- pterygium colli
- ptosis
- puberty (delayed/absent)
- puberty (early/precocious)
- puffiness
- pulmonary embolism
- purpura
- pyelonephritis
- pyloric stenosis
- pyrexia
- pyrosis
- pyuria
- rash
- rectal pain
- rectorrhagia
- refractory anemia
- reluctance to weight-bear
- renal agenesis
- renal clubbing
- renal colic
- renal cyst
- renal failure
- renal insufficiency
- renal phosphate wasting (isolated)
- renal tubular acidosis
- respiratory failure
- reticulocytosis
- retinitis pigmentosa
- retinopathy
- retrobulbar pain
- retrograde ejaculation
- retroperitoneal fibrosis
- salivary gland swelling
- salpingitis
- salt craving
- salt wasting
- sarcoidosis
- schizophrenia
- scoliosis
- scotoma
- seborrhoeic dermatitis
- seizures
- sensory loss
- sepsis
- septic arthritis
- septic shock
- shivering
- singultus
- sinusitis
- sixth nerve palsy
- skeletal deformity
- skeletal dysplasia
- skin - texture change
- skin infections
- skin necrosis
- skin pigmentation - spotty
- skin thickening
- skin thinning
- sleep apnoea
- sleep difficulties
- sleep disturbance
- sleep hyperhidrosis
- slow growth
- slurred speech
- social difficulties
- soft tissue swelling
- somnambulism
- somniloquy
- somnolence
- sore throat
- spasms
- spastic paraplegia
- spasticity
- speech delay
- spider naevi
- splenomegaly
- sputum production
- steatorrhoea
- stomatitis
- strabismus
- strangury
- striae
- stridor
- stroke
- subfertility
- suicidal ideation
- supraclavicular fat pads
- supranuclear gaze palsy
- sweating
- syncope
- syndactyly
- tachycardia
- tachypnoea
- teeth gapping
- telangiectasias
- telecanthus
- tetraparesis
- t-reflex (absent)
- t-reflex (depressed)
- tetany
- thermodysregulation
- thrombocytopenia
- thrombocytosis
- thrombophilia
- thrush
- tics
- tinnitus
- toe clubbing
- toe deformities
- toes - thick
- toes - widely spaced
- tongue - protruding
- tracheo-oesophageal compression
- tracheo-oesophageal fistula
- tremulousness
- tricuspid insufficiency
- umbilical hernia
- uraemia
- ureter duplex
- uricaemia
- urinary frequency
- urinary incontinence
- urogenital sinus
- urticaria
- uterine hyperplasia
- uterus duplex
- vagina duplex
- vaginal bleeding
- vaginal discharge
- vaginal dryness
- vaginal pain/tenderness
- vaginism
- ventricular fibrillation
- ventricular hypertrophy
- vertigo
- viraemia
- virilisation (abnormal)
- vision - acuity reduction
- vision - blurred
- visual disturbance
- visual field defect
- visual impairment
- visual loss
- vitiligo
- vocal cord paresis
- vomiting
- von graefe's sign
- weight gain
- weight loss
- wheezing
- widened joint space(s)
- xeroderma
- xerostomia
- 3-methoxy 4-hydroxy mandelic acid
- 17-hydroxypregnenolone (urine)
- 17-ketosteroids
- 25-hydroxyvitamin-d3
- 5hiaa
- aberrant adrenal receptors
- acid-base balance
- acth stimulation
- activated partial thromboplastin time
- acyl-ghrelin
- adrenal antibodies
- adrenal function
- adrenal scintigraphy
- adrenal venous sampling
- afp tumour marker
- alanine aminotransferase
- albumin
- albumin to creatinine ratio
- aldosterone (24-hour urine)
- aldosterone (blood)
- aldosterone (plasma)
- aldosterone (serum)
- aldosterone to renin ratio
- alkaline phosphatase
- alkaline phosphatase (bone-specific)
- alpha-fetoprotein
- ammonia
- amniocentesis
- amylase
- angiography
- anion gap
- anti-acetylcholine antibodies
- anticardiolipin antibody
- anti-insulin antibodies
- anti-islet cell antibody
- anti-gh antibodies
- antinuclear antibody
- anti-tyrosine phosphatase antibodies
- asvs
- barium studies
- basal insulin
- base excess
- apolipoprotein h
- beta-hydroxybutyrate
- bicarbonate
- bilirubin
- biopsy
- blood film
- blood pressure
- bmi
- body fat mass
- bone age
- bone biopsy
- bone mineral content
- bone mineral density
- bone mineral density test
- bone scintigraphy
- bone sialoprotein
- bound insulin
- brca1/brca2
- c1np
- c3 complement
- c4 complement
- ca125
- calcifediol
- calcium (serum)
- calcium (urine)
- calcium to creatinine clearance ratio
- carcinoembryonic antigen
- cardiac index
- catecholamines (24-hour urine)
- catecholamines (plasma)
- cd-56
- chemokines
- chest auscultation
- chloride
- chorionic villus sampling
- chromatography
- chromogranin a
- chromosomal analysis
- clomid challenge
- clonidine suppression
- collagen
- colonoscopy
- colposcopy
- continuous glucose monitoring
- core needle biopsy
- corticotropin-releasing hormone stimulation test
- cortisol (9am)
- cortisol (plasma)
- cortisol (midnight)
- cortisol (salivary)
- cortisol (serum)
- cortisol day curve
- cortisol, free (24-hour urine)
- c-peptide (24-hour urine)
- c-peptide (blood)
- c-reactive protein
- creatinine
- creatine kinase
- creatinine (24-hour urine)
- creatinine (serum)
- creatinine clearance
- crh stimulation
- ctpa scan
- ct scan
- c-telopeptide
- cytokines
- deoxypyridinoline
- dexa scan
- dexamethasone suppression
- dexamethasone suppression (high dose)
- dexamethasone suppression (low dose)
- dhea sulphate
- discectomy
- dldl cholesterol
- dmsa scan
- dna sequencing
- domperidone
- down syndrome screening
- ductal lavage
- echocardiogram
- eeg
- electrocardiogram
- electrolytes
- electromyography
- endoscopic ultrasound
- endoscopy
- endosonography
- enzyme immunoassay
- epinephrine (plasma)
- epinephrine (urine)
- erythrocyte sedimentation rate
- estimated glomerular filtration rate
- ethanol ablation
- ewing and clarke autonomic function
- exercise tolerance
- fbc
- ferritin
- fine needle aspiration biopsy
- flow cytometry
- fludrocortisone suppression
- fluticasone-propionate-17-beta carboxylic acid
- fmri
- folate
- ft3
- ft4
- gada
- gallium nitrate
- gallium scan
- gastric biopsy
- genetic analysis
- genitography
- gh day curve
- gh stimulation
- gh suppression
- glp-1
- glp-2
- glucose suppression test
- glucose (blood)
- glucose (blood, fasting)
- glucose (blood, postprandial)
- glucose (urine)
- glucose tolerance
- glucose tolerance (intravenous)
- glucose tolerance (oral)
- glucose tolerance (prolonged)
- gluten sensitivity
- gnrh stimulation
- gonadotrophins
- growth hormone-releasing peptide-2 test
- gut hormones (fasting)
- haematoxylin and eosin staining
- haemoglobin
- haemoglobin a1c
- hcg (serum)
- hcg (urine)
- hcg stimulation
- hdl cholesterol
- hearing test
- heart rate
- hepatic venous sampling with arterial stimulation
- high-sensitivity c-reactive protein
- histopathology
- hla genotyping
- holter monitoring
- homa
- homocysteine
- hyaluronic acid
- hydrocortisone day curve
- hydroxyproline
- hydroxyprogesterone
- hysteroscopy
- igfbp2
- igfbp3
- igg4/igg ratio
- immunocytochemistry
- immunohistochemistry
- immunoglobulins
- immunoglobulin g2
- immunoglobulin g4
- immunoglobulin a
- immunoglobulin m
- immunostaining
- inferior petrosal sinus sampling
- inhibin b
- insulin (fasting)
- insulin suppression
- insulin tissue resistance tests
- insulin tolerance
- intracranial pressure
- irm imaging
- ketones (plasma)
- ketones (urine)
- kidney function
- lactate
- lactate dehydrogenase
- laparoscopy
- laparoscopy and dye
- laparotomy
- ldl cholesterol
- leuprolide acetate stimulation
- leukocyte esterase (urine)
- levothyroxine absorption
- lipase (serum)
- lipid profile
- liquid-based cytology
- liquid chromatography-mass spectrometry
- liver biopsy
- liver function
- lumbar puncture
- lung function testing
- luteinising hormone releasing hormone test
- macroprolactin
- magnesium
- mag3 scan
- mammogram
- mantoux test
- metanephrines (plasma)
- metanephrines (urinary)
- methoxytyramine
- metoclopramide
- metyrapone cortisol day curve
- metyrapone suppression
- metyrapone test dose
- mibg scan
- microarray analysis
- molecular genetic analysis
- mri
- myocardial biopsy
- nerve conduction study
- neuroendocrine markers
- neuron-specific enolase
- norepinephrine
- ntx
- oct
- octreotide scan
- octreotide suppression test
- osmolality
- ovarian venous sampling
- p1np
- palpation
- pap test
- parathyroid scintigraphy
- pentagastrin
- perchlorate discharge
- percutaneous umbilical blood sampling
- peripheral blood film
- pet scan
- ph (blood)
- phosphate (serum)
- phosphate (urine)
- pituitary function
- plasma osmolality
- plasma viscosity
- platelet count
- pneumococcal antigen
- pneumococcal pcr
- polymerase chain reaction
- polysomnography
- porter-silber chromogens
- potassium
- pregnancy test
- proinsulin
- prostate-specific antigen
- protein electrophoresis
- protein fingerprinting
- protein folding analysis
- psychiatric assessment
- psychometric assessment
- pulse oximetry
- pyelography
- pyridinium crosslinks
- quicki
- plasma renin activity
- radioimmunoassay
- radionuclide imaging
- raiu test
- red blood cell count
- renal biopsy
- renin (24-hour urine)
- respiratory status
- renin (blood)
- renin plasma activity
- rheumatoid factor
- salt loading
- sdldl cholesterol
- secretin stimulation
- selective parathyroid venous sampling
- selective transhepatic portal venous sampling
- semen analysis
- serotonin
- serum osmolality
- serum free insulin
- sestamibi scan
- sex hormone binding globulin
- shbg
- skeletal muscle mass
- skin biopsy
- sleep diary
- sodium
- spect scan
- supervised 72-hour fast
- surgical biopsy
- sweat test
- synaptophysin
- systemic vascular resistance index
- tanner scale
- thoracocentesis
- thyroid transcription factor-1
- thyroglobulin
- thyroid antibodies
- thyroid function
- thyroid scintigraphy
- thyroid ultrasonography
- total cholesterol
- total ghrelin
- total t3
- total t4
- trabecular thickness
- transaminase
- transvaginal ultrasound
- trap 5b
- trh stimulation
- triglycerides
- triiodothyronine (t3) suppression
- troponin
- tsh receptor antibodies
- type 3 precollagen
- type 4 collagen
- ultrasound-guided biopsy
- ultrasound scan
- urea and electrolytes
- uric acid (blood)
- uric acid (urine)
- urinalysis
- urinary free cortisol
- urine 24-hour volume
- urine osmolality
- vaginal examination
- vanillylmandelic acid (24-hour urine)
- visual field assessment
- vitamin b12
- vitamin e
- waist circumference
- water deprivation
- water load
- weight
- western blotting
- white blood cell count
- white blood cell differential count
- x-ray
- zinc
- abscess drainage
- acetic acid injection
- adhesiolysis
- adrenalectomy
- amputation
- analgesics
- angioplasty
- arthrodesis
- assisted reproduction techniques
- bariatric surgery
- bilateral salpingo-oophorectomy
- blood transfusion
- bone grafting
- caesarean section
- cardiac transplantation
- cardiac pacemaker
- cataract extraction
- chemoembolisation
- chemotherapy
- chemoradiotherapy
- clitoroplasty
- continuous renal replacement therapy
- contraception
- cordotomy
- counselling
- craniotomy
- cryopreservation
- cryosurgical ablation
- debridement
- dialysis
- diazoxide
- diet
- duodenotomy
- endonasal endoscopic surgery
- exercise
- external fixation
- extracorporeal shock wave lithotripsy
- extraocular muscle surgery
- eye surgery
- eyelid surgery
- fasciotomy
- fluid repletion
- fluid restriction
- gamma knife radiosurgery
- gastrectomy
- gastrostomy
- gender reassignment surgery
- gonadectomy
- heart transplantation
- hormone replacement
- hormone suppression
- hypophysectomy
- hysterectomy
- inguinal orchiectomy
- internal fixation
- intra-cardiac defibrillator
- islet transplantation
- ivf
- kidney transplantation
- laparoscopic adrenalectomy
- laryngoplasty
- laryngoscopy
- laser lithotripsy
- light treatment
- liver transplantation
- lumpectomy
- lymph node dissection
- mastectomy
- molecularly targeted therapy
- neuroendoscopic surgery
- oophorectomy
- orbital decompression
- orbital radiation
- orchidectomy
- orthopaedic surgery
- osteotomy
- ovarian cystectomy
- ovarian diathermy
- oxygen therapy
- pancreas transplantation
- pancreatectomy
- pancreaticoduodenectomy
- parathyroidectomy
- percutaneous adrenal ablation
- percutaneous nephrolithotomy
- pericardiocentesis
- pericardiotomy
- physiotherapy
- pituitary adenomectomy
- plasma exchange
- plasmapheresis
- psychotherapy
- radiofrequency ablation
- radionuclide therapy
- radiotherapy
- reconstruction of genitalia
- resection of tumour
- right-sided hemicolectomy
- salpingo-oophorectomy
- small bowel resection
- speech and language therapy
- spinal surgery
- splenectomy
- stereotactic radiosurgery
- termination of pregnancy
- thymic transplantation
- thyroidectomy
- tracheostomy
- transcranial surgery
- transsphenoidal surgery
- transtentorial surgery
- vaginoplasty
- vagotomy
- 5-alpha-reductase inhibitors
- 17?-estradiol
- abiraterone
- acarbose
- acetazolamide
- acetohexamide
- adalimumab
- albiglutide
- alendronate
- alogliptin
- alpha-blockers
- alphacalcidol
- alpha-glucosidase inhibitors
- amiloride
- amlodipine
- amoxicillin
- anastrozole
- angiotensin-converting enzyme inhibitors
- angiotensin receptor antagonists
- anthracyclines
- antiandrogens
- antibiotics
- antiemetics
- antiepileptics
- antipsychotics
- antithyroid drugs
- antiseptic
- antivirals
- aripiprazole
- aromatase inhibitors
- aspirin
- astragalus membranaceus
- ativan
- atenolol
- atorvastatin
- avp receptor antagonists
- axitinib
- azathioprine
- bendroflumethiazide
- benzodiazepines
- beta-blockers
- betamethasone
- bexlosteride
- bicalutamide
- bisphosphonates
- bleomycin
- botulinum toxin
- bromocriptine
- cabergoline
- cabozantinib
- calcimimetics
- calcitonin (salmon)
- calcium
- calcium carbonate
- calcium chloride
- calcium dobesilate
- calcium edta
- calcium gluconate
- calcium-l-aspartate
- calcium polystyrene sulphonate
- canagliflozin
- capecitabine
- captopril
- carbimazole
- carboplatin
- carbutamide
- carvedilol
- ceftriaxone
- chlorothiazide
- chlorpropamide
- cholecalciferol
- cholinesterase inhibitors
- ciclosporin
- cinacalcet
- cisplatin
- clodronate
- clomifene
- clomiphene citrate
- clopidogrel
- co-cyprindiol
- codeine
- colonic polyps
- combined oral contraceptive pill
- conivaptan
- cortisone acetate
- continuous subcutaneous hydrocortisone infusion
- continuous subcutaneous insulin infusion
- coumadin
- corticosteroids
- cortisol
- cyproterone acetate
- dacarbazine
- danazol
- dapagliflozin
- daunorubicin
- deferiprone
- demeclocycline
- denosumab
- desmopressin
- dexamethasone
- diazepam
- diethylstilbestrol
- digoxin
- diltiazem
- diphenhydramine
- diuretics
- docetaxel
- dopamine agonists
- dopamine antagonists
- dopamine receptor agonists
- doxazosin
- doxepin
- doxorubicin
- dpp4 inhibitors
- dutasteride
- dutogliptin
- eflornithine
- enoxaparin
- empagliflozin
- epinephrine
- epirubicin
- eplerenone
- epristeride
- equilenin
- equilin
- erlotinib
- ethinylestradiol
- etidronate
- etomidate
- etoposide
- everolimus
- exenatide
- fenofibrate
- finasteride
- fluconazole
- fluticasone
- fludrocortisone
- fluorouracil
- fluoxetine
- flutamide
- furosemide
- gaba receptor antagonists
- gefitinib
- gemcitabine
- gemigliptin
- ginkgo biloba
- glibenclamide
- glibornuride
- gliclazide
- glimepiride
- glipizide
- gliquidone
- glisoxepide
- glp1 agonists
- glucose
- glyclopyramide
- gnrh analogue
- gnrh antagonists
- heparin
- hrt (menopause)
- hydrochlorothiazide
- hydrocortisone
- ibandronate
- ibuprofen
- idarubicin
- idebenone
- imatinib
- immunoglobulin therapy
- implanon
- indapamide
- infliximab
- iron supplements
- isoniazid
- insulin aspart
- insulin glargine
- insulin glulisine
- insulin lispro
- interferon
- intrauterine system
- iopanoic acid
- ipilimumab
- ipragliflozin
- irbesartan
- izonsteride
- ketoconazole
- labetalol
- lactulose
- lanreotide
- leuprolide acetate
- levatinib
- levodopa
- levonorgestrel
- levothyroxine
- linagliptin
- liothyronine
- liraglutide
- lithium
- lisinopril
- lixivaptan
- loperamide
- loprazolam
- lormetazepam
- losartan
- low calcium formula
- magnesium glycerophosphate
- magnesium sulphate
- mecasermin
- medronate
- medroxyprogesterone acetate
- meglitinides
- menotropin
- metformin
- methadone
- methimazole
- methylprednisolone
- metoprolol
- metyrapone
- miglitol
- mitotane
- mitoxantrone
- mozavaptan
- mtor inhibitors
- multivitamins
- naproxen
- natalizumab
- nateglinide
- nelivaptan
- neridronate
- nifedipine
- nilutamide
- nitrazepam
- nivolumab
- nsaid
- octreotide
- oestradiol valerate
- olanzapine
- olpadronate
- omeprazole
- opioids
- oral contraceptives
- orlistat
- ornipressin
- otelixizumab
- oxandrolone
- oxidronate
- oxybutynin
- paclitaxel
- pamidronate
- pancreatic enzymes
- pantoprazole
- paracetamol
- paroxetine
- pasireotide
- pegvisomant
- perindopril
- phenobarbital
- phenoxybenzamine
- phosphate binders
- phosphate supplements
- phytohaemagglutinin induced interferon gamma
- pioglitazone
- plicamycin
- potassium chloride
- potassium iodide
- pramlintide
- prazosin
- prednisolone
- prednisone
- premarin
- promethazine
- propranolol
- propylthiouracil
- protease inhibitors
- proton pump inhibitors
- pyridostigmine
- quetiapine
- quinagolide
- quinestrol
- radioactive mibg
- radioactive octreotide
- radioiodine
- raloxifene
- ramipril
- relcovaptan
- remogliflozin etabonate
- repaglinide
- risperidone
- risedronate
- rituximab
- romidepsin
- rosiglitazone
- salbutamol
- saline
- salmeterol
- salt supplements
- satavaptan
- saxagliptin
- selective progesterone receptor modulators
- selenium
- sglt2 inhibitors
- sildenafil
- simvastatin
- sirolimus
- sitagliptin
- sodium bicarbonate
- sodium chloride
- sodium polystyrene sulfonate (kayexalate)
- somatostatin analogues
- sorafenib
- spironolactone
- ssris
- statins
- streptozotocin
- steroids
- strontium ranelate
- sucralfate
- sulphonylureas
- sunitinib
- tamoxifen
- taspoglutide
- temazepam
- temozolomide
- teplizumab
- terazosin
- teriparatide
- testolactone
- testosterone enanthate esters
- tetrabenazine
- thalidomide
- thiazolidinediones
- thyrotropin alpha
- tibolone
- tiludronate
- tiratricol (triac)
- tofogliflozin
- tolazamide
- tolbutamide
- tolvaptan
- tramadol
- trastuzumab
- trazodone
- triamcinolone
- triamterene
- trimipramine
- troglitazone
- tryptophan
- turosteride
- tyrosine-kinase inhibitors
- valproic acid
- valrubicin
- vandetanib
- vaptans
- vildagliptin
- vinorelbine
- voglibose
- vorinostat
- warfarin
- zaleplon
- z-drugs
- zoledronic acid
- zolpidem
- zopiclone
- cardiology
- dermatology
- gastroenterology
- general practice
- genetics
- geriatrics
- gynaecology
- nephrology
- neurology
- nursing
- obstetrics
- oncology
- otolaryngology
- paediatrics
- pathology
- podiatry
- psychology/psychiatry
- radiology/rheumatology
- rehabilitation
- surgery
- urology
- insight into disease pathogenesis or mechanism of therapy
- novel diagnostic procedure
- novel treatment
- unique/unexpected symptoms or presentations of a disease
- new disease or syndrome: presentations/diagnosis/management
- unusual effects of medical treatment
- error in diagnosis/pitfalls and caveats
- february
- 2022
Collapse
|
research-article |
3 |
|
22
|
Ju JS, Cui T, Chen GW, Chen JL, Ju HB. Meta-analysis on the effect of pituitary adenoma resection on pituitary function. Neurol Neurochir Pol 2020; 55:24-32. [PMID: 33300116 DOI: 10.5603/pjnns.a2020.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A meta-analysis was conducted on the effect of pituitary adenoma resection on pituitary function. METHODS The Cochrane Library, Ovid, PubMed, the Excerpta Medica Database (EMBASE), and the Chinese Biomedical Literature Databases (CBM) were searched to find trials about the evaluation of pituitary target glands before and after pituitary adenoma resection. The databases were searched from the earliest available trials until the end of September 2019. Based on the inclusion and exclusion criteria, two researchers independently selected literature, extracted data, and evaluated the quality of the studies, and then used Revman 5.2 software to conduct a meta-analysis. RESULTS Eleven clinical trials were included, with a total of 3,237 subjects. Meta-analysis showed that the number of patients with hypofunction of the thyroid and gonadal axes substantially decreased after pituitary tumour resection, and that the difference was statistically significant: odds ratio (OR) = 1.72 [95% confidence interval (CI), 1.18-2.52; P = 0.005] and OR = 2.06 (95% CI, 1.42-3.00; P = 0.0002). The number of patients with a poor total suprarenal gland axis after pituitary tumour resection did not change significantly compared to the number found before the operation; the difference was not statistically significant: OR = 1.04 (95% CI, 0.72-1.48; P = 0.85). However, the number of patients who had adrenal axis dysfunction both before and after the operation was significantly reduced, and the difference was statistically significant: OR = 1.46 (95% CI, 1.21-1.78; P = 0.0001). CONCLUSION The function of the thyroid and gonadal axes of pituitary gland tumour patients can be improved, to some extent, after pituitary tumour resection. Patients with pituitary tumours who have hypofunction of the adrenal axis can recover effectively after tumour resection.
Collapse
|
Meta-Analysis |
5 |
|