1
|
Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66:2873-96. [PMID: 19499185 PMCID: PMC11115599 DOI: 10.1007/s00018-009-0053-z] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 11/28/2022]
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
|
Review |
16 |
1060 |
2
|
Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 2013; 110:17047-52. [PMID: 24062440 DOI: 10.1073/pnas.1304987110] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting, insufficient tumor cell internalization/bioavailability, and side effects, we developed a unique tumor-targeted micellar drug-delivery platform. Using paclitaxel as a model therapeutic, a nanopreparation composed of a matrix metalloproteinase 2 (MMP2)-sensitive self-assembly PEG 2000-paclitaxel conjugate (as a prodrug and MMP 2-sensitive moiety), transactivating transcriptional activator peptide-PEG1000-phosphoethanolamine (PE) (a cell-penetrating enhancer), and PEG1000-PE (a nanocarrier building block) was prepared. Several major drug delivery strategies, including self-assembly, PEGylation, the enhanced permeability and retention effect, stimulus sensitivity, a cell-penetrating moiety, and the concept of prodrug, were used in design of this nanoparticle in a collaborative manner. The nanopreparation allowed superior cell internalization, cytotoxicity, tumor targeting, and antitumor efficacy in vitro and in vivo over its nonsensitive counterpart, free paclitaxel and conventional micelles. This uniquely engineered nanoparticle has potential for effective intracellular delivery of drug into cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
273 |
3
|
Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS NANO 2015; 9:2390-404. [PMID: 25661192 PMCID: PMC4395463 DOI: 10.1021/nn507170s] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free farnesol had no effect. Nanoparticle carriers have great potential to enhance the efficacy of antibiofilm agents through multitargeted binding and pH-responsive drug release due to microenvironmental triggers.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
226 |
4
|
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13:2921-2942. [PMID: 29849457 PMCID: PMC5965378 DOI: 10.2147/ijn.s158696] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polymeric micelles (PMs) have been widely investigated as nanocarriers for drug delivery and cancer treatments due to their excellent physicochemical properties, drug loading and release capacities, facile preparation methods, biocompatibility, and tumor targetability. They can be easily engineered with various functional moieties to further improve their performance in terms of bioavailability, circulation time, tumor specificity, and anticancer activity. The stimuli-sensitive PMs capable of responding to various extra- and intracellular biological stimuli (eg, acidic pH, altered redox potential, and upregulated enzyme), as well as external artificial stimuli (eg, magnetic field, light, temperature, and ultrasound), are considered as “smart” nanocarriers for delivery of anticancer drugs and/or imaging agents for various therapeutic and diagnostic applications. In this article, the recent advances in the development of stimuli-responsive PMs for drug delivery, imaging, and cancer therapy are reviewed. The article covers the generalities of stimuli-responsive PMs with a focus on their major delivery strategies and newly emerging technologies/nanomaterials, discusses their drawbacks and limitations, and provides their future perspectives.
Collapse
|
Review |
7 |
220 |
5
|
Yu H, Zou Y, Wang Y, Huang X, Huang G, Sumer BD, Boothman DA, Gao J. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS NANO 2011; 5:9246-55. [PMID: 22011045 PMCID: PMC4797624 DOI: 10.1021/nn203503h] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers. At pH 7.4, AmB was loaded into the hydrophobic PDPA core, and siRNA was complexed with a positively charged PDMA shell to form the micelleplexes. After cellular uptake, the PDMA-b-PDPA/siRNA micelleplexes dissociated in early endosomes to release AmB. Live cell imaging studies demonstrated that released AmB significantly increased the ability of siRNA to overcome the endosomal barrier. Transfection studies showed that AmB-loaded micelleplexes resulted in significant increase in luciferase (Luc) knockdown efficiency over the AmB-free control. The enhanced Luc knockdown efficiency was abolished by bafilomycin A1, a vacuolar ATPase inhibitor that inhibits the acidification of the endocytic organelles. These data support the central hypothesis that membrane poration by AmB and increased endosomal swelling and membrane tension by a "proton sponge" polymer provided a synergistic strategy to disrupt endosomes for improved intracellular delivery of siRNA.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
177 |
6
|
Shi Y, van der Meel R, Theek B, Blenke EO, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. ACS NANO 2015; 9:3740-52. [PMID: 25831471 PMCID: PMC4523313 DOI: 10.1021/acsnano.5b00929] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.
Collapse
|
research-article |
10 |
171 |
7
|
Gothwal A, Khan I, Gupta U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm Res 2015; 33:18-39. [PMID: 26381278 DOI: 10.1007/s11095-015-1784-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022]
Abstract
Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.
Collapse
|
Review |
10 |
141 |
8
|
Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. NANOSCALE RESEARCH LETTERS 2014; 9:2406. [PMID: 26088982 PMCID: PMC4493852 DOI: 10.1186/1556-276x-9-684] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 05/04/2023]
Abstract
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.
Collapse
|
brief-report |
11 |
134 |
9
|
Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci 2016; 107:867-74. [PMID: 27116635 PMCID: PMC4946707 DOI: 10.1111/cas.12960] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
In relation to recent advances in nanobiotechnologies, cancer-targeted therapy using nano-scaled drug carriers (nanocarriers) has been attracting enormous attention with success in clinical studies. Polymeric micelles, core-shell-type nanoparticles formed through the self-assembly of block copolymers, are one of the most promising nanocarrier, because their critical features such as size, stability, and drug incorporation efficiency and release rate can be modulated by designing the constituent block copolymers. The utilities of polymeric micelles have been reported not only in experimental tumor models in mice but also in clinical studies. In this article, we aim to explain the rationale of designing polymeric micelles for targeting intractable cancers such as pancreatic cancer, glioblastoma, and metastases. Also, we review recent progress in clinical studies on polymeric micelles incorporating anticancer drugs. In addition, we introduce the next generation of polymeric micelles as the platform integrated with smart functionalities such as targetability, environmental sensitivity, and imaging properties. Thus, polymeric micelles can realize safe and effective cancer therapy, and offer tailor-made medicines for individual patients.
Collapse
|
Review |
9 |
124 |
10
|
Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4421-4456. [PMID: 28793448 PMCID: PMC5455656 DOI: 10.3390/ma8074421] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (¹O₂) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of ¹O₂ production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase ¹O₂ production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes.
Collapse
|
Review |
10 |
120 |
11
|
Hussein YHA, Youssry M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. MATERIALS 2018; 11:ma11050688. [PMID: 29702593 PMCID: PMC5978065 DOI: 10.3390/ma11050688] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
Polymeric micelles are potentially efficient in encapsulating and performing the controlled release of various hydrophobic drug molecules. Understanding the fundamental physicochemical properties behind drug⁻polymer systems in terms of interaction strength and compatibility, drug partition coefficient (preferential solubilization), micelle size, morphology, etc., encourages the formulation of polymeric nanocarriers with enhanced drug encapsulating capacity, prolonged circulation time, and stability in the human body. In this review, we systematically address some open issues which are considered to be obstacles inhibiting the commercial availability of polymer-based therapeutics, such as the enhancement of encapsulation capacity by finding better drug⁻polymer compatibility, the drug-release kinetics and mechanisms under chemical and mechanical conditions simulating to physiological conditions, and the role of preparation methods and solvents on the overall performance of micelles.
Collapse
|
Review |
7 |
116 |
12
|
Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh K, Yamada N, Higuchi Y, Konishi S, Kano MR, Nishihara H, Miura Y, Nishiyama N, Kataoka K. Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers. ACS NANO 2015; 9:4957-67. [PMID: 25880444 DOI: 10.1021/nn5070259] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Occult nodal metastases increase the risk of cancer recurrence, demoting prognosis and quality of life of patients. While targeted drug delivery by using systemically administered nanocarriers can potentially control metastatic disease, lymph node metastases have been mainly dealt by locally injecting nanocarriers, which may not always be applicable. Herein, we demonstrated that sub-50 nm polymeric micelles incorporating platinum anticancer drugs could target lymph node metastases in a syngeneic melanoma model after systemic injection, even after removing the primary tumors, limiting the growth of the metastases. By comparing these micelles with clinically used doxorubicin-loaded liposomes (Doxil) having 80 nm, as well as a 70 nm version of the micelles, we found that the targeting efficiency of the nanocarriers against lymph node metastases was associated with their size-regulated abilities to extravasate from the blood vasculature in metastases and to penetrate within the metastatic mass. These findings indicate the potential of sub-50 nm polymeric micelles for developing effective conservative treatments against lymph node metastasis capable of reducing relapse and improving survival.
Collapse
|
|
10 |
112 |
13
|
Shi Y, Lammers T, Storm G, Hennink WE. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery. Macromol Biosci 2017; 17:10.1002/mabi.201600160. [PMID: 27413999 PMCID: PMC5410994 DOI: 10.1002/mabi.201600160] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/11/2016] [Indexed: 11/06/2022]
Abstract
Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on PM have resulted in tremendous numbers of PM-forming amphiphilic polymers, and approximately a dozen micellar nanomedicines have entered the clinic. The first generation of PM can be considered solubilizers of hydrophobic drugs, with short circulation times resulting from poor micelle stability and unstable drug entrapment. To more optimally exploit the potential of PM for targeted drug delivery, several physical (e.g., π-π stacking, stereocomplexation, hydrogen bonding, host-guest complexation, and coordination interaction) and chemical (e.g., free radical polymerization, click chemistry, disulfide and hydrazone bonding) strategies have been developed to improve micelle stability and drug retention. In this review, the most promising physico-chemical approaches to enhance micelle stability and drug retention are described, and how these strategies have resulted in systems with promising therapeutic efficacy in animal models, paving the way for clinical translation, is summarized.
Collapse
|
Review |
8 |
111 |
14
|
Wan X, Min Y, Bludau H, Keith A, Sheiko SS, Jordan R, Wang AZ, Sokolsky-Papkov M, Kabanov AV. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS NANO 2018; 12:2426-2439. [PMID: 29533606 PMCID: PMC5960350 DOI: 10.1021/acsnano.7b07878] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticle-based systems for concurrent delivery of multiple drugs can improve outcomes of cancer treatments, but face challenges because of differential solubility and fairly low threshold for incorporation of many drugs. Here we demonstrate that this approach can be used to greatly improve the treatment outcomes of etoposide (ETO) and platinum drug combination ("EP/PE") therapy that is the backbone for treatment of prevalent and deadly small cell lung cancer (SCLC). A polymeric micelle system based on amphiphilic block copolymer poly(2-oxazoline)s (POx) poly(2-methyl-2-oxazoline- block-2-butyl-2-oxazoline- block-2-methyl-2-oxazoline) (P(MeOx- b-BuOx- b-MeOx) is used along with an alkylated cisplatin prodrug to enable co-formulation of EP/PE in a single high-capacity vehicle. A broad range of drug mixing ratios and exceptionally high two-drug loading of over 50% wt. drug in dispersed phase is demonstrated. The highly loaded POx micelles have worm-like morphology, unprecedented for drug loaded polymeric micelles reported so far, which usually form spheres upon drug loading. The drugs co-loading in the micelles result in a slowed-down release, improved pharmacokinetics, and increased tumor distribution of both drugs. A superior antitumor activity of co-loaded EP/PE drug micelles compared to single drug micelles or their combination as well as free drug combination was demonstrated using several animal models of SCLC and non-small cell lung cancer.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
109 |
15
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
Journal Article |
5 |
100 |
16
|
Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 2012; 13:239-52. [PMID: 22148549 PMCID: PMC4911219 DOI: 10.1021/bm201538j] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Impairments of mitochondrial functions have been associated with failure of cellular functions in different tissues, leading to various pathologies. We report here a mitochondria-targeted nanodelivery system for coenzyme Q10 (CoQ10) that can reach mitochondria and deliver CoQ10 in adequate quantities. Multifunctional nanocarriers based on ABC miktoarm polymers (A = poly(ethylene glycol (PEG), B = polycaprolactone (PCL), and C = triphenylphosphonium bromide (TPPBr)) were synthesized using a combination of click chemistry with ring-opening polymerization, self-assembled into nanosized micelles, and were employed for CoQ10 loading. Drug loading capacity (60 wt %), micelle size (25-60 nm), and stability were determined using a variety of techniques. The micelles had a small critical association concentration and were colloidally stable in solution for more than 3 months. The extraordinarily high CoQ10 loading capacity in the micelles is attributed to good compatibility between CoQ10 and PCL, as indicated by the low Flory-Huggins interaction parameter. Confocal microscopy studies of the fluorescently labeled polymer analog together with the mitochondria-specific vital dye label indicated that the carrier did indeed reach mitochondria. The high CoQ10 loading efficiency allowed testing of micelles within a broad concentration range and provided evidence for CoQ10 effectiveness in two different experimental paradigms: oxidative stress and inflammation. Combined results from chemical, analytical, and biological experiments suggest that the new miktoarm-based carrier provides a suitable means of CoQ10 delivery to mitochondria without loss of drug effectiveness. The versatility of the click chemistry used to prepare this new mitochondria-targeting nanocarrier offers a widely applicable, simple, and easily reproducible procedure to deliver drugs to mitochondria or other intracellular organelles.
Collapse
|
research-article |
13 |
80 |
17
|
Lu Y, Guo Z, Zhang Y, Li C, Zhang Y, Guo Q, Chen Q, Chen X, He X, Liu L, Ruan C, Sun T, Ji B, Lu W, Jiang C. Microenvironment Remodeling Micelles for Alzheimer's Disease Therapy by Early Modulation of Activated Microglia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801586. [PMID: 30828531 PMCID: PMC6382295 DOI: 10.1002/advs.201801586] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/03/2018] [Indexed: 05/20/2023]
Abstract
Current strategies for Alzheimer's disease (AD) treatments focus on pathologies in the late stage of the disease progression. Poor clinical outcomes are displayed due to the irreversible damages caused by early microglia abnormality which triggers disease development before identical symptoms emerge. Based on the crosstalk between microglia and brain microenvironment, a reactive oxygen species (ROS)-responsive polymeric micelle system (Ab-PEG-LysB/curcumin (APLB/CUR)) is reported to normalize the oxidative and inflammatory microenvironment and reeducate microglia from an early phase of AD. Through an β-amyloid (Aβ) transportation-mimicked pathway, the micelles can accumulate into the diseased regions and exert synergistic effects of polymer-based ROS scavenging and cargo-based Aβ inhibition upon microenvironment stimuli. This multitarget strategy exhibits gradual correction of the brain microenvironment, efficient neuroprotection, and microglia modulation, leading to decreased Aβ plaque burdens and consequently enhanced cognitive functions in APPswe/PSEN1dE9 model mice. The results indicate that microglia can be exploited as an early target for AD treatment and their states can be controlled via microenvironment modulation.
Collapse
|
research-article |
6 |
78 |
18
|
Zhao X, Poon Z, Engler AC, Bonner DK, Hammond PT. Enhanced stability of polymeric micelles based on postfunctionalized poly(ethylene glycol)-b-poly(γ-propargyl L-glutamate): the substituent effect. Biomacromolecules 2012; 13:1315-22. [PMID: 22376183 PMCID: PMC3387562 DOI: 10.1021/bm201873u] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the major obstacles that delay the clinical translation of polymeric micelle drug delivery systems is whether these self-assembled micelles can retain their integrity in blood following intravenous (IV) injection. The objective of this study was to evaluate the impact of core functionalization on the thermodynamic and kinetic stability of polymeric micelles. The combination of ring-opening polymerization of N-carboxyanhydride (NCA) with highly efficient "click" coupling has enabled easy and quick access to a family of poly(ethylene glycol)-block-poly(γ-R-glutamate)s with exactly the same block lengths, for which the substituent "R" is tuned. The structures of these copolymers were carefully characterized by (1)H NMR, FT-IR, and GPC. When pyrene is used as the fluorescence probe, the critical micelle concentrations (CMCs) of these polymers were found to be in the range of 10(-7)-10(-6) M, which indicates good thermodynamic stability for the self-assembled micelles. The incorporation of polar side groups in the micelle core leads to high CMC values; however, micelles prepared from these copolymers are kinetically more stable in the presence of serum and upon SDS disturbance. It was also observed that these polymers could effectively encapsulate paclitaxel (PTX) as a model anticancer drug, and the micelles possessing better kinetic stability showed better suppression of the initial "burst" release and exhibited more sustained release of PTX. These PTX-loaded micelles exerted comparable cytotoxicity against HeLa cells as the clinically approved Cremophor PTX formulation, while the block copolymers showed much lower toxicity compared to the cremophor-ethanol mixture. The present work demonstrated that the PEG-b-PPLG can be a uniform block copolymer platform toward development of polymeric micelle delivery systems for different drugs through the facile modification of the PPLG block.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
75 |
19
|
Yen HC, Cabral H, Mi P, Toh K, Matsumoto Y, Liu X, Koori H, Kim A, Miyazaki K, Miura Y, Nishiyama N, Kataoka K. Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS NANO 2014; 8:11591-11602. [PMID: 25333568 DOI: 10.1021/nn504836s] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomedicines capable of smart operation at the targeted site have the potential to achieve the utmost therapeutic benefits. Providing nanomedicines that respond to endogenous stimuli with an additional external trigger may improve the spatiotemporal control of their functions, while avoiding drawbacks from their inherent tissue distribution. Herein, by exploiting the permeabilization of endosomes induced by photosensitizer agents upon light irradiation, we complemented the intracellular action of polymeric micelles incorporating camptothecin (CPT), which can sharply release the loaded drug in response to the reductive conditions of the cytosol, as an effective strategy for precisely controlling the function of these nanomedicines in vivo, while advancing toward a light-activated chemotherapy. These camptothecin-loaded micelles (CPT/m) were stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in xenografts of rat urothelial carcinoma. With the induction of endosomal permeabilization with the clinically approved photosensitizer, Photofrin, the CPT/m escaped from the endocytic vesicles of cancer cells into the cytosol, as confirmed both in vitro and in vivo by real-time confocal laser microscopies, accelerating the drug release from the micelles only in the irradiated tissues. This spatiotemporal switch significantly enhanced the in vivo antitumor efficacy of CPT/m without eliciting any toxicity, even at a dose 10-fold higher than the maximum tolerated dose of free CPT. Our results indicate the potential of reduction-sensitive drug-loaded polymeric micelles for developing safe chemotherapies after activation by remote triggers, such as light, which are capable of permeabilizing endosomal compartments.
Collapse
|
|
11 |
73 |
20
|
Simões SMN, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 2014; 12:297-318. [PMID: 25227130 DOI: 10.1517/17425247.2015.960841] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Amphiphilic block copolymers are recognized components of parenteral drug nanocarriers. However, their performance in oral administration has barely been evaluated to any great extent. AREAS COVERED This review provides an overview of the methods used to prepare drug-loaded polymeric micelles and to evaluate their stability in gastrointestinal (GI) fluids, and then analyzes in detail recent in vitro and in vivo results about their performance in oral drug delivery. Oral administration of polymeric micelles has been tested for a variety of therapeutic purposes, namely, to increase apparent drug solubility in the GI fluids and facilitate absorption, to penetrate in pathological regions of the GI tract for locoregional treatment, to carry the drug directly toward the blood stream minimizing presystemic loses, and to target the drug after oral absorption to specific tissue or cells in the body. EXPERT OPINION Each therapeutic purpose demands micelles with different performance regarding stability in the GI tract, ability to overcome physiological barriers and drug release patterns. Depending on the block copolymer composition and structure, a wealth of self-assembled micelles with different morphologies and stability can be prepared. Moreover, copolymer unimers can play a role in improving drug absorption through the GI mucosa, either by increasing membrane permeability to the drug and/or the carrier or by inhibiting drug efflux transporters or first-pass metabolism. Therefore, polymeric micelles can be pointed out as versatile vehicles to increase oral bioavailability of drugs that exhibit poor solubility or permeability and may even be an alternative to parenteral carriers when targeting is pursued.
Collapse
|
Review |
11 |
70 |
21
|
Mizumura Y, Matsumura Y, Hamaguchi T, Nishiyama N, Kataoka K, Kawaguchi T, Hrushesky WJ, Moriyasu F, Kakizoe T. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn J Cancer Res 2001; 92:328-36. [PMID: 11267944 PMCID: PMC5926709 DOI: 10.1111/j.1349-7006.2001.tb01099.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin, CDDP), a potent anticancer agent, was bound to the aspartic acid residues of poly(ethylene glycol)-poly(aspartic acid) (PEG-P(ASP)) block copolymer by ligand substitution reaction at the platinum atom of CDDP. The polymeric drug thus obtained was observed to form a micelle structure in aqueous medium, showing excellent water solubility. In the present study, in vitro and in vivo antitumor activity against several human tumor cell lines, toxicity and pharmacokinetic characteristics in rodents of CDDP-incorporated polymeric micelles (CDDP / m) were evaluated in comparison with those of CDDP. In vitro, CDDP / m exhibited 10 - 17% of the cytotoxicity of CDDP against human tumor cell lines. CDDP / m given by intravenous (i.v.) injection yielded higher and more sustained serum levels than CDDP. In vivo CDDP / m treatment resulted in higher and more sustained levels in tumor tissue than CDDP, and showed similar antitumor activity to CDDP against MKN 45 human gastric cancer xenograft. CDDP / m treatment caused much less renal damage than CDDP. These results indicate that CDDP / m treatment can reduce CDDP-induced nephrotoxicity without compromising the anticancer cytotoxicity of CDDP.
Collapse
|
research-article |
24 |
70 |
22
|
Nelemans LC, Gurevich L. Drug Delivery with Polymeric Nanocarriers-Cellular Uptake Mechanisms. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E366. [PMID: 31941006 PMCID: PMC7013754 DOI: 10.3390/ma13020366] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Nanocarrier-based systems hold a promise to become "Dr. Ehrlich's Magic Bullet" capable of delivering drugs, proteins and genetic materials intact to a specific location in an organism down to subcellular level. The key question, however, how a nanocarrier is internalized by cells and how its intracellular trafficking and the fate in the cell can be controlled remains yet to be answered. In this review we survey drug delivery systems based on various polymeric nanocarriers, their uptake mechanisms, as well as the experimental techniques and common pathway inhibitors applied for internalization studies. While energy-dependent endocytosis is observed as the main uptake pathway, the integrity of a drug-loaded nanocarrier upon its internalization appears to be a seldomly addressed problem that can drastically affect the uptake kinetics and toxicity of the system in vitro and in vivo.
Collapse
|
Review |
5 |
70 |
23
|
Butt AM, Amin MCIM, Katas H, Abdul Murad NA, Jamal R, Kesharwani P. Doxorubicin and siRNA Codelivery via Chitosan-Coated pH-Responsive Mixed Micellar Polyplexes for Enhanced Cancer Therapy in Multidrug-Resistant Tumors. Mol Pharm 2016; 13:4179-4190. [PMID: 27934479 DOI: 10.1021/acs.molpharmaceut.6b00776] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study investigated the potential of chitosan-coated mixed micellar nanocarriers (polyplexes) for codelivery of siRNA and doxorubicin (DOX). DOX-loaded mixed micelles (serving as cores) were prepared by thin film hydration method and coated with chitosan (CS, serving as outer shell), and complexed with multidrug resistance (MDR) inhibiting siRNA. Selective targeting was achieved by folic acid conjugation. The polyplexes showed pH-responsive enhanced DOX release in acidic tumor pH, resulting in higher intracellular accumulation, which was further augmented by downregulation of mdr-1 gene after treatment with siRNA-complexed polyplexes. In vitro cytotoxicity assay demonstrated an enhanced cytotoxicity in native 4T1 and multidrug-resistant 4T1-mdr cell lines, compared to free DOX. Furthermore, in vivo, polyplexes codelivery resulted in highest DOX accumulation and significantly reduced the tumor volume in mice with 4T1 and 4T1-mdr tumors as compared to the free DOX groups, leading to improved survival times in mice. In conclusion, codelivery of siRNA and DOX via polyplexes has excellent potential as targeted drug nanocarriers for treatment of MDR cancers.
Collapse
|
Journal Article |
9 |
69 |
24
|
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 2018; 9:2-8. [PMID: 29441317 PMCID: PMC5801582 DOI: 10.4103/japtr.japtr_314_17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The easy accessibility of skin made dermal application, one of the approaches for local drug therapy. Effectiveness of topical drug application is depended on different parameters such as skin barrier properties, physicochemical properties of drug and vehicle, and interaction between drug and its vehicle with the skin layers. In this review, an overview of skin structure and feature of polymeric micelles as topical nanocarriers is provided. We also summarized the research studies dealing with the application of polymeric micelles for cutaneous delivery. In the past decades, numerous types of nanocarriers have been widely investigated as a novel delivery approach to improve skin penetration and localization of drugs in normal skin and dermatological diseases. Polymeric micelles are one of them, with their specific ability to encapsulate hydrophilic drugs. These carriers can enhance the therapeutic efficacy and minimize the systemic side effects of the drugs. Polymeric micelles could enhance the deposition of drugs in targeted sites of the skin in the normal and dermatological diseases such as psoriasis and acne. Nevertheless, still there is a need to investigate the mechanism of action of these carriers and the fate of polymeric micelles in skin.
Collapse
|
Review |
7 |
69 |
25
|
Zhuang W, Xu Y, Li G, Hu J, Ma B, Yu T, Su X, Wang Y. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18489-18498. [PMID: 29737837 DOI: 10.1021/acsami.8b02890] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.
Collapse
|
|
7 |
69 |