1
|
Brown AD, Stecker GC, Tollin DJ. The precedence effect in sound localization. J Assoc Res Otolaryngol 2015; 16:1-28. [PMID: 25479823 PMCID: PMC4310855 DOI: 10.1007/s10162-014-0496-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/13/2014] [Indexed: 11/29/2022] Open
Abstract
In ordinary listening environments, acoustic signals reaching the ears directly from real sound sources are followed after a few milliseconds by early reflections arriving from nearby surfaces. Early reflections are spectrotemporally similar to their source signals but commonly carry spatial acoustic cues unrelated to the source location. Humans and many other animals, including nonmammalian and even invertebrate animals, are nonetheless able to effectively localize sound sources in such environments, even in the absence of disambiguating visual cues. Robust source localization despite concurrent or nearly concurrent spurious spatial acoustic information is commonly attributed to an assortment of perceptual phenomena collectively termed "the precedence effect," characterizing the perceptual dominance of spatial information carried by the first-arriving signal. Here, we highlight recent progress and changes in the understanding of the precedence effect and related phenomena.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
64 |
2
|
Abstract
The auditory system derives locations of sound sources from spatial cues provided by the interaction of sound with the head and external ears. Those cues are analyzed in specific brainstem pathways and then integrated as cortical representation of locations. The principal cues for horizontal localization are interaural time differences (ITDs) and interaural differences in sound level (ILDs). Vertical and front/back localization rely on spectral-shape cues derived from direction-dependent filtering properties of the external ears. The likely first sites of analysis of these cues are the medial superior olive (MSO) for ITDs, lateral superior olive (LSO) for ILDs, and dorsal cochlear nucleus (DCN) for spectral-shape cues. Localization in distance is much less accurate than that in horizontal and vertical dimensions, and interpretation of the basic cues is influenced by additional factors, including acoustics of the surroundings and familiarity of source spectra and levels. Listeners are quite sensitive to sound motion, but it remains unclear whether that reflects specific motion detection mechanisms or simply detection of changes in static location. Intact auditory cortex is essential for normal sound localization. Cortical representation of sound locations is highly distributed, with no evidence for point-to-point topography. Spatial representation is strictly contralateral in laboratory animals that have been studied, whereas humans show a prominent right-hemisphere dominance.
Collapse
|
Review |
10 |
53 |
3
|
Zheng Y, Wu C, Li J, Wu H, She S, Liu S, Mao L, Ning Y, Li L. Brain substrates of perceived spatial separation between speech sources under simulated reverberant listening conditions in schizophrenia. Psychol Med 2016; 46:477-491. [PMID: 26423774 DOI: 10.1017/s0033291715001828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND People with schizophrenia recognize speech poorly under multiple-people-talking (informational masking) conditions. In reverberant environments, direct-wave signals from a speech source are perceptually integrated with the source reflections (the precedence effect), forming perceived spatial separation (PSS) between different sources and consequently improving target-speech recognition against informational masking. However, the brain substrates underlying the schizophrenia-related vulnerability to informational masking and whether schizophrenia affects the unmasking effect of PSS are largely unknown. METHOD Using psychoacoustic testing and functional magnetic resonance imaging, respectively, the speech recognition under either the PSS or perceived spatial co-location (PSC) condition and the underlying brain substrates were examined in 20 patients with schizophrenia and 16 healthy controls. RESULTS Speech recognition was worse in patients than controls. Under the PSS (but not PSC) condition, speech recognition was correlated with activation of the superior parietal lobule (SPL), and target speech-induced activation of the SPL, precuneus, middle cingulate cortex and caudate significantly declined in patients. Moreover, the separation (PSS)-against-co-location (PSC) contrast revealed (1) activation of the SPL, precuneus and anterior cingulate cortex in controls, (2) suppression of the SPL and precuneus in patients, (3) activation of the pars triangularis of the inferior frontal gyrus and middle frontal gyrus in both controls and patients, (4) activation of the medial superior frontal gyrus in patients, and (5) impaired functional connectivity of the SPL in patients. CONCLUSIONS Introducing the PSS listening condition efficiently reveals both the brain substrates underlying schizophrenia-related speech-recognition deficits against informational masking and the schizophrenia-related neural compensatory strategy for impaired SPL functions.
Collapse
|
|
9 |
14 |
4
|
Brown AD, Jones HG, Kan A, Thakkar T, Stecker GC, Goupell MJ, Litovsky RY. Evidence for a neural source of the precedence effect in sound localization. J Neurophysiol 2015; 114:2991-3001. [PMID: 26400253 PMCID: PMC4737417 DOI: 10.1152/jn.00243.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022] Open
Abstract
Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attributed to central processes such as synaptic inhibition in the auditory midbrain, a more recent hypothesis holds that the PE may arise essentially as a by-product of normal cochlear function. Here we evaluated the PE in a unique human patient population with demonstrated sensitivity to binaural information but without functional cochleae. Users of bilateral cochlear implants (CIs) were tested in a psychophysical task that assessed the number and location(s) of auditory images perceived for simulated source-echo (lead-lag) stimuli. A parallel experiment was conducted in a group of normal-hearing (NH) listeners. Key findings were as follows: 1) Subjects in both groups exhibited lead-lag fusion. 2) Fusion was marginally weaker in CI users than in NH listeners but could be augmented by systematically attenuating the amplitude of the lag stimulus to coarsely simulate adaptation observed in acoustically stimulated auditory nerve fibers. 3) Dominance of the lead in localization varied substantially among both NH and CI subjects but was evident in both groups. Taken together, data suggest that aspects of the PE can be elicited in CI users, who lack functional cochleae, thus suggesting that neural mechanisms are sufficient to produce the PE.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
11 |
5
|
Li J, Wu C, Zheng Y, Li R, Li X, She S, Wu H, Peng H, Ning Y, Li L. Schizophrenia affects speech-induced functional connectivity of the superior temporal gyrus under cocktail-party listening conditions. Neuroscience 2017; 359:248-257. [PMID: 28673720 DOI: 10.1016/j.neuroscience.2017.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
The superior temporal gyrus (STG) is involved in speech recognition against informational masking under cocktail-party-listening conditions. Compared to healthy listeners, people with schizophrenia perform worse in speech recognition under informational speech-on-speech masking conditions. It is not clear whether the schizophrenia-related vulnerability to informational masking is associated with certain changes in FC of the STG with some critical brain regions. Using sparse-sampling fMRI design, this study investigated the differences between people with schizophrenia and healthy controls in FC of the STG for target-speech listening against informational speech-on-speech masking, when a listening condition with either perceived spatial separation (PSS, with a spatial release of informational masking) or perceived spatial co-location (PSC, without the spatial release) between target speech and masking speech was introduced. The results showed that in healthy participants, but not participants with schizophrenia, the contrast of either the PSS or PSC condition against the masker-only condition induced an enhancement of functional connectivity (FC) of the STG with the left superior parietal lobule and the right precuneus. Compared to healthy participants, participants with schizophrenia showed declined FC of the STG with the bilateral precuneus, right SPL, and right supplementary motor area. Thus, FC of the STG with the parietal areas is normally involved in speech listening against informational masking under either the PSS or PSC conditions, and declined FC of the STG in people with schizophrenia with the parietal areas may be associated with the increased vulnerability to informational masking.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
9 |
6
|
Bishop CW, London S, Miller LM. Neural time course of visually enhanced echo suppression. J Neurophysiol 2012; 108:1869-83. [PMID: 22786953 PMCID: PMC3545000 DOI: 10.1152/jn.00175.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/08/2012] [Indexed: 11/22/2022] Open
Abstract
Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls. Listeners' brains overcome this unique challenge by relying on acoustic timing and, quite surprisingly, visual spatial information to suppress short-latency (1-10 ms) echoes through a process known as "the precedence effect" or "echo suppression." In the present study, we employed electroencephalography (EEG) to investigate the neural time course of echo suppression both with and without the aid of coincident visual stimulation in human listeners. We find that echo suppression is a multistage process initialized during the auditory N1 (70-100 ms) and followed by space-specific suppression mechanisms from 150 to 250 ms. Additionally, we find a robust correlate of listeners' spatial perception (i.e., suppressing or not suppressing the echo) over central electrode sites from 300 to 500 ms. Contrary to our hypothesis, vision's powerful contribution to echo suppression occurs late in processing (250-400 ms), suggesting that vision contributes primarily during late sensory or decision making processes. Together, our findings support growing evidence that echo suppression is a slow, progressive mechanism modifiable by visual influences during late sensory and decision making stages. Furthermore, our findings suggest that audiovisual interactions are not limited to early, sensory-level modulations but extend well into late stages of cortical processing.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
9 |
7
|
Wu C, Ding Y, Chen B, Gao Y, Wang Q, Wu Z, Lu L, Luo L, Zhang C, Bao X, Yang P, Fan L, Lei M, Li L. Both Val158Met Polymorphism of Catechol-O-Methyltransferase Gene and Menstrual Cycle Affect Prepulse Inhibition but Not Attentional Modulation of Prepulse Inhibition in Younger-Adult Females. Neuroscience 2019; 404:396-406. [PMID: 30742958 DOI: 10.1016/j.neuroscience.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Prepulse inhibition (PPI) can be modulated by both the Val158Met (rs4680) polymorphism of the Catechol-O-Methyltransferase (COMT) gene and the menstrual-cycle-related hormone fluctuations, each of which affects the subcortical/cortical dopamine metabolism. PPI can also be modulated by attention. The attentional modulation of PPI (AMPPI) is sensitive to psychoses. Whether the Val158Met polymorphism affects the AMPPI in female adults at different menstrual-cycle phases is unknown. This study examined whether AMPPI and/or PPI are affected by the Val158Met polymorphism in 177 younger-adult females whose menstrual cycles were mutually different across the menstruation, proliferative, or secretory phases. The AMPPI was evaluated by comparing PPI under the condition of the auditory precedence-effect-induced perceptual spatial separation between the prepulse stimulus and a masking noise (PPIPSS) against that under the condition of the precedence-effect-induced perceptual spatial co-location (PPIPSC). The results showed that both the menstrual cycle and the COMT Val158Met polymorphism affected both PPIPSC and PPIPSS, but not the AMPPI (difference between PPIPSS and PPIPSC). Moreover, throughout the menstrual cycle, both PPIPSC and PPIPSS decreased monotonously in Val/Val-carrier participants. However, the decreasing pattern was not overserved in either Met/Met-carrier or Met/Val-carrier participants. Thus, in healthy younger-adult females, PPIPSC and PPIPSS, but not the AMPPI, is vulnerable to changes of ovarian hormones, and the COMT Val158Met polymorphism also has a modulating effect on this menstrual-cycle-dependent PPI variation. In contrast, the AMPPI seems to be more steadily trait-based, less vulnerable to ovarian hormone fluctuations, and may be useful in assisting the diagnosis of schizophrenia in female adults.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
8
|
Hartbauer M, Römer H. From microseconds to seconds and minutes-time computation in insect hearing. Front Physiol 2014; 5:138. [PMID: 24782783 PMCID: PMC3990047 DOI: 10.3389/fphys.2014.00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/20/2014] [Indexed: 11/30/2022] Open
Abstract
The computation of time in the auditory system of insects is of relevance at rather different time scales, covering a large range from microseconds to several minutes. At the one end of this range, only a few microseconds of interaural time differences are available for directional hearing, due to the small distance between the ears, usually considered too small to be processed reliably by simple nervous systems. Synapses of interneurons in the afferent auditory pathway are, however, very sensitive to a time difference of only 1–2 ms provided by the latency shift of afferent activity with changing sound direction. At a much larger time scale of several tens of milliseconds to seconds, time processing is important in the context species recognition, but also for those insects where males produce acoustic signals within choruses, and the temporal relationship between song elements strongly deviates from a random distribution. In these situations, some species exhibit a more or less strict phase relationship of song elements, based on phase response properties of their song oscillator. Here we review evidence on how this may influence mate choice decisions. In the same dimension of some tens of milliseconds we find species of katydids with a duetting communication scheme, where one sex only performs phonotaxis to the other sex if the acoustic response falls within a very short time window after its own call. Such time windows show some features unique to insects, and although its neuronal implementation is unknown so far, the similarity with time processing for target range detection in bat echolocation will be discussed. Finally, the time scale being processed must be extended into the range of many minutes, since some acoustic insects produce singing bouts lasting quite long, and female preferences may be based on total signaling time.
Collapse
|
Review |
11 |
8 |
9
|
Wang Y, Wang N, Wang D, Jia J, Liu J, Xie Y, Wen X, Li X. Local inhibition of GABA affects precedence effect in the inferior colliculus. Neural Regen Res 2014; 9:420-9. [PMID: 25206830 PMCID: PMC4146189 DOI: 10.4103/1673-5374.128250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/25/2022] Open
Abstract
The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-aminobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect.
Collapse
|
|
11 |
3 |
10
|
Li XT, Wang NY, Wang YJ, Xu ZQ, Liu JF, Bai YF, Dai JS, Zhao JY. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus. Neural Regen Res 2016; 11:787-94. [PMID: 27335563 PMCID: PMC4904470 DOI: 10.4103/1673-5374.182706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The γ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4) and sustained-adapting firing patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies.
Collapse
|
|
9 |
2 |
11
|
van Bentum GC, van Wanrooij MM, van Opstal AJ. Spatiotemporal factors influence sound-source segregation in localization behavior. J Neurophysiol 2021; 125:556-567. [PMID: 33378250 PMCID: PMC7617251 DOI: 10.1152/jn.00184.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022] Open
Abstract
To program a goal-directed response in the presence of acoustic reflections, the audio-motor system should suppress the detection of time-delayed sources. We examined the effects of spatial separation and interstimulus delay on the ability of human listeners to localize a pair of broadband sounds in the horizontal plane. Participants indicated how many sounds were heard and where these were perceived by making one or two head-orienting localization responses. Results suggest that perceptual fusion of the two sounds depends on delay and spatial separation. Leading and lagging stimuli in close spatial proximity required longer stimulus delays to be perceptually separated than those further apart. Whenever participants heard one sound, their localization responses for synchronous sounds were oriented to a weighted average of both source locations. For short delays, responses were directed toward the leading stimulus location. Increasing spatial separation enhanced this effect. For longer delays, responses were again directed toward a weighted average. When participants perceived two sounds, the first and the second response were directed to either of the leading and lagging source locations. Perceived locations were interchanged often in their temporal order (in ∼40% of trials). We show that the percept of two sounds occurring requires sufficient spatiotemporal separation, after which localization can be performed with high accuracy. We propose that the percept of temporal order of two concurrent sounds results from a different process than localization and discuss how dynamic lateral excitatory-inhibitory interactions within a spatial sensorimotor map could explain the findings.NEW & NOTEWORTHY Sound localization requires spectral and temporal processing of implicit acoustic cues, and is seriously challenged when multiple sources coincide closely in space and time. We systematically varied spatial-temporal disparities for two sounds and instructed listeners to generate goal-directed head movements. We found that even when the auditory system has accurate representations of both sources, it still has trouble to decide whether the scene contained one or two sounds, and in which order they appeared.
Collapse
|
research-article |
4 |
1 |
12
|
Zobel BH, Freyman RL, Sanders LD. Spatial release from informational masking enhances the early cortical representation of speech sounds. AUDITORY PERCEPTION & COGNITION 2022; 5:211-237. [PMID: 36160272 PMCID: PMC9494573 DOI: 10.1080/25742442.2022.2088329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/04/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Spatial separation between competing speech streams reduces their confusion (informational masking), improving speech processing under challenging listening conditions. The precise stages of auditory processing involved in this benefit are not fully understood. This study used event-related potentials to examine the processing of target speech under conditions of informational masking and its spatial release. METHODS Participants detected noise-vocoded target speech presented with two-talker noise-vocoded masking speech. In separate conditions, the same set of targets were spatially co-located with maskers to produce informational masking and spatially separated from maskers using a perceptual manipulation to release the informational masking. RESULTS An increase in N1 and P2 amplitude, consistent with cortical auditory evoked potentials, and a later sustained positivity (P300) were observed in response to target onsets only under conditions supporting release from informational masking. At target intensities above masking threshold in both spatial conditions, N1 and P2 latencies were shorter when targets and maskers were perceptually separated. DISCUSSION These results indicate that spatial release from informational masking benefits speech representation beginning in the early stages of auditory perception. Additionally, these results suggest that the auditory evoked potential itself may be heavily dependent upon how information is perceptually organized rather than physically organized.
Collapse
|
research-article |
3 |
|
13
|
Dai JS, Ge XY, Zhou M, Xu ZQD, Zhao ZH, Zhang J, Wang NY. Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect. Med Sci Monit 2025; 31:e945605. [PMID: 39800980 PMCID: PMC11737276 DOI: 10.12659/msm.945605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear. Therefore, this study aimed to understand the role, if any, of the DCIC on PE formation in male Sprague Dawley rats. MATERIAL AND METHODS In vivo, 16-channel electrophysiological recordings were performed in anesthetized rats to investigate neuronal responses in the CNIC, after inducing electrolytic lesions in the DCIC. In vitro, the expression of inhibitory gamma-aminobutyric acid (GABA)ergic receptors in the CNIC was analyzed by Western blot. RESULTS After inducing electrolytic lesions in the DCIC, normalized neural responses of the CNIC to lagging stimuli were significantly increased (P<0.05), half-maximal inter-stimuli delays were shortened (P<0.05), and the expression of GABA A receptor a1 and GABA B receptor 2 decreased (P<0.05). Furthermore, neurons in the CNIC showed a contralateral preference when paired sounds in the free field were presented. CONCLUSIONS Our study suggests that the DCIC could modulate PE formation in the CNIC, potentially involving inhibitory GABAergic mechanisms. This study showed the role of the DCIC on PE formation and proposed a potential structure for identifying likely mechanisms of the PE in the IC.
Collapse
|
research-article |
1 |
|
14
|
Kidd SA, Kelly JB. Contribution of the dorsal nucleus of the lateral lemniscus to binaural responses in the inferior colliculus of the rat: interaural time delays. J Neurosci 1996; 16:7390-7. [PMID: 8929445 PMCID: PMC6578946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The contribution of the dorsal nucleus of the lateral lemniscus (DNLL) to binaural responses in the inferior colliculus of the rat was determined for a wide range of interaural time differences (ITDs). Single-unit action potentials were recorded from the inferior colliculus before and after local injection of the excitatory amino acid antagonist kynurenic acid into the DNLL. Binaural properties were determined by manipulating the time difference between paired clicks delivered to the ears ipsilateral and contralateral to the recording site. The probability of an action potential decreased as contralateral stimulation was delayed, relative to ipsilateral stimulation. These data generated a sigmoidal ITD curve for delays between -1.0 and + 1.0 msec. By extending the time intervals beyond 1 msec, it was possible to determine the trailing edge of the inhibition produced by ipsilateral stimulation. The duration of the inhibitory effect varied from cell to cell but lasted as long as 20 msec in some cases. Injection of kynurenic acid into the DNLL contralateral to the recording site reduced the extent of both short (0-1 msec) and long-lasting (1-20 msec) inhibition in the inferior colliculus. No effect was seen after injections ipsilateral to the recording site. The data demonstrate that the DNLL plays an important role in shaping ITD responses in the inferior colliculus and contributes to both the short and long-lasting inhibition produced by stimulation of the ipsilateral ear.
Collapse
|
other |
29 |
|
15
|
Keller CH, Takahashi TT. Binaural cross-correlation predicts the responses of neurons in the owl's auditory space map under conditions simulating summing localization. J Neurosci 1996; 16:4300-9. [PMID: 8753891 PMCID: PMC6579003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Summing localization describes the perceptions of human listeners to two identical sounds from different locations presented with delays of 0-1 msec. Usually a single source is perceived to be located between the two actual source locations, biased toward the earlier source. We studied neuronal responses within the space map of the barn owl to sounds presented with this same paradigm. The owl's primary cue for localization along the azimuth, interaural time difference (ITD), is based on a cross-correlation-like treatment of the signals arriving at each ear. The output of this cross-correlation is displayed as neural activity across the auditory space map in the external nucleus of the owl's inferior colliculus. Because the ear input signals reflect the physical summing of the signals generated by each speaker, we first recorded the sounds at each ear and computed their cross-correlations at various interstimulus delays. The resulting binaural cross-correlation surface strongly resembles the pattern of activity across the space map inferred from recordings of single space-specific neurons. Four peaks are observed in the cross-correlation surface for any nonzero delay. One peak occurs at the correlation delay equal to the ITD of each speaker. Two additional peaks reflect "phantom sources" occurring at correlation delays that match the signal of the left speaker in one ear with the signal of the right speaker in the other ear. At zero delay, the two phantom peaks coincide. The surface features are complicated further by the interactions of the various correlation peaks.
Collapse
|
other |
29 |
|
16
|
Burger RM, Pollak GD. Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 2001; 21:4830-43. [PMID: 11425910 PMCID: PMC6762372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Neurons in the inferior colliculus (IC) that are excited by one ear and inhibited by the other [excitatory-inhibitory (EI) neurons] can code interaural intensity disparities (IIDs), the cues animals use to localize high frequencies. Although EI properties are first formed in a lower nucleus and imposed on some IC cells via an excitatory projection, many other EI neurons are formed de novo in the IC. By reversibly inactivating the dorsal nucleus of the lateral lemniscus (DNLL) in Mexican free-tailed bats with kynurenic acid, we show that the EI properties of many IC cells are formed de novo via an inhibitory projection from the DNLL on the opposite side. We also show that signals excitatory to the IC evoke an inhibition in the opposite DNLL that persists for tens of milliseconds after the signal has ended. During that period, strongly suppressed EI cells in the IC are deprived of inhibition from the DNLL and respond to binaural signals as weakly inhibited or monaural cells. By relieving inhibition at the IC, we show that an initial binaural signal essentially reconfigures the circuit and thereby allows IC cells to respond to trailing binaural signals that were inhibitory when presented alone. Thus, DNLL innervation creates a property in the IC that is not possessed by lower neurons or by collicular EI neurons that are not innervated by the DNLL. That property is a change in responsiveness to binaural signals, a change dependent on the reception of an earlier sound. These features suggest that the circuitry linking the DNLL with the opposite central nucleus of the IC is important for the processing of IIDs that change over time, such as the IIDs generated by moving stimuli or by multiple sound sources that emanate from different regions of space.
Collapse
|
research-article |
24 |
|