Song H, He M, Gu C, Wei D, Liang Y, Yan J, Wang C. Extraction Optimization, Purification, Antioxidant Activity, and
Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp.
Polymers (Basel) 2018;
10:E292. [PMID:
30966327 PMCID:
PMC6414885 DOI:
10.3390/polym10030292]
[Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/13/2022] Open
Abstract
The arctic strain of Chlorella sp. (Chlorella-Arc) exists in the coldest and driest arctic ecosystems, and it is a new resource of active polysaccharides. The extraction of crude polysaccharide from Chlorella-Arc was optimized using the response surface methodology. A crude polysaccharide yield of approximately 9.62 ± 0.11% dry weight was obtained under these optimized conditions. Three fractions (P-I, P-II, and P-III) were present after purification by 2-diethylaminoethanol Sepharose Fast Flow and Sephadex G-100 chromatography. The P-IIa fraction demonstrated significant antioxidant activities. Moreover, P-IIa was an α- and β-type heteropolysaccharide with a pyran group and contained variable amounts of rhamnose, arabinose, glucose, and galactose based on fourier-transform infrared spectroscopy, high-performance liquid chromatography, and ¹H and 13C nuclear magnetic resonance imaging. Production of high amounts of polysaccharide may allow further exploration of the microalgae Chlorella-Arc as a natural antioxidant.
Collapse