Pines A, Keller AS, Larsen B, Bertolero M, Ashourvan A, Bassett DS, Cieslak M, Covitz S, Fan Y, Feczko E, Houghton A, Rueter AR, Saggar M, Shafiei G, Tapera TM, Vogel J, Weinstein SM, Shinohara RT, Williams LM, Fair DA, Satterthwaite TD. Development of top-down cortical
propagations in youth.
Neuron 2023;
111:1316-1330.e5. [PMID:
36803653 PMCID:
PMC10121821 DOI:
10.1016/j.neuron.2023.01.014]
[Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023]
Abstract
Hierarchical processing requires activity propagating between higher- and lower-order cortical areas. However, functional neuroimaging studies have chiefly quantified fluctuations within regions over time rather than propagations occurring over space. Here, we leverage advances in neuroimaging and computer vision to track cortical activity propagations in a large sample of youth (n = 388). We delineate cortical propagations that systematically ascend and descend a cortical hierarchy in all individuals in our developmental cohort, as well as in an independent dataset of densely sampled adults. Further, we demonstrate that top-down, descending hierarchical propagations become more prevalent with greater demands for cognitive control as well as with development in youth. These findings emphasize that hierarchical processing is reflected in the directionality of propagating cortical activity and suggest top-down propagations as a potential mechanism of neurocognitive maturation in youth.
Collapse