1
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
|
Review |
8 |
115 |
2
|
Kovtunov KV, Truong ML, Barskiy DA, Koptyug IV, Coffey AM, Waddell KW, Chekmenev EY. Long-lived spin States for low-field hyperpolarized gas MRI. Chemistry 2014; 20:14629-32. [PMID: 25263795 PMCID: PMC4287377 DOI: 10.1002/chem.201405063] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 11/07/2022]
Abstract
Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS =(4.7±0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
61 |
3
|
Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. THE ISME JOURNAL 2013; 7:885-95. [PMID: 23254512 PMCID: PMC3635235 DOI: 10.1038/ismej.2012.159] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 10/17/2012] [Accepted: 10/28/2012] [Indexed: 11/09/2022]
Abstract
The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.
Collapse
|
research-article |
12 |
56 |
4
|
Hong AN, Yang H, Li T, Wang Y, Wang Y, Jia X, Zhou A, Kusumoputro E, Li J, Bu X, Feng P. Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52160-52166. [PMID: 34236170 DOI: 10.1021/acsami.1c10391] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of effective propane (C3H8)-selective adsorbents for the purification of propylene (C3H6) from C3H8/C3H6 mixture is a promising alternative to replace the energy-intensive cryogenic distillation. However, few materials possess the dual desirable features of propane selectivity and high uptake capacity. Here, we report a family of pore-space-partitioned crystalline porous materials (CPM) with remarkable C3H8 uptake capacity (up to 10.9 mmol/g) and the highly desirable yet uncommon C3H8 selectivity (up to 1.54 at 0.1 bar and 1.44 at 1 bar). The selectivity-capacity synergy endows them with record-performing C3H8/C3H6 separation potential (i.e., C3H6 recovered from the mixture). Moreover, these CPMs exhibit outstanding properties including high stability, low regeneration energy, and multimodular chemical and geometrical tunability within the same isoreticular framework. The high C3H8/C3H6 separation performance was further confirmed by the breakthrough experiments.
Collapse
|
Review |
4 |
33 |
5
|
Yang L, Cui X, Ding Q, Wang Q, Jin A, Ge L, Xing H. Polycatenated Molecular Cage-Based Propane Trap for Propylene Purification with Recorded Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2525-2530. [PMID: 31816225 DOI: 10.1021/acsami.9b19438] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The propane (C3H8)-selective adsorption technology is recognized as a promising energy-efficient way to directly afford high-purity propylene (C3H6). Here, a novel strategy via cage construction, combining with multiple interaction and shape selectivity, was raised to achieve preferential C3H8 adsorption. We revealed that the polycatenated molecular cage within a microporous framework of [Ni(bpe)2(WO4)] (bpe = 1,2-bis(4-pyridyl)ethylene) showed preferential C3H8 adsorption behavior with recorded C3H8/C3H6 selectivity (1.62-2.75), as well as the high adsorption enthalpy around 42 kJ mol-1. The cage afforded dense electronegative binding sites, enabling the multiple Cδ--Hδ+. . .Cδ- interaction with C3H8 molecule and thus the higher affinity for C3H8 than C3H6. Additionally, the cage exhibited shape selectivity to oblate C3H8, and was unfavorable to C3H6 with relatively planar configuration as indicated by modeling studies. The high purity propylene (99.6%) was directly obtained without the extra adsorption-desorption cycles through the column breakthrough experiment.
Collapse
|
|
5 |
30 |
6
|
Bose A, Rogers DR, Adams MM, Joye SB, Girguis PR. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments. Front Microbiol 2013; 4:386. [PMID: 24376442 PMCID: PMC3860272 DOI: 10.3389/fmicb.2013.00386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community composition and density.
Collapse
|
Journal Article |
12 |
27 |
7
|
Kan L, Li G, Liu Y. Highly Selective Separation of C 3H 8 and C 2H 2 from CH 4 within Two Water-Stable Zn 5 Cluster-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18642-18649. [PMID: 32227837 DOI: 10.1021/acsami.0c04538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Adopting the mixed ligands approach, two water-stable Zn5 cluster-based MOFs, [Zn10(TZ)12(TADIPA)2(DMF)4]·DMF·6H2O (JLU-MOF66) and [Zn10(TZ)12(TPTA)2(DMA)2]·2DMA·4H2O (JLU-MOF67), have been constructed (H4TADIPA = 5,5'-(1H-1,2,4-triazole-3,5-diyl)diisophthalic acid, H4TPTA = [1,1':3',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid, and HTZ = 1H-[1,2,3]triazole). Both compounds with [Zn5(TZ)6] clusters exhibit extraordinary stability (pH = 2-11) and selectivity of C3H8/CH4 (308 for JLU-MOF66, and 287 for JLU-MOF67). Compared to JLU-MOF67, JLU-MOF66 with functional groups exhibits higher CO2 and C2H2 uptake capacity and excellent selective separation for C2H2/CH4 (86, 1:1). Such high separation and chemical stability render them as promising materials for industrial applications.
Collapse
|
|
5 |
26 |
8
|
Guillén-Bonilla H, Flores-Martínez M, Rodríguez-Betancourtt VM, Guillen-Bonilla A, Reyes-Gómez J, Gildo-Ortiz L, de la Luz Olvera Amador M, Santoyo-Salazar J. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations. SENSORS 2016; 16:177. [PMID: 26840318 PMCID: PMC4801554 DOI: 10.3390/s16020177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
25 |
9
|
Straty GC, Palavra AMF. Automated High-Temperature PVT Apparatus With Data for Propane. J Res Natl Bur Stand (1977) 1984; 89:375-383. [PMID: 34566134 DOI: 10.6028/jres.089.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An apparatus is described which can be used for PVT and compressibility measurements on supercritical fluids from near room temperature to 600 °C and pressures to 35 MPa. Two separate experimental techniques are employed to obtain PVT data over a broad range of the state surface. Burnett expansions are performed to generate compressibility factor (or equivalently density) data along a well-behaved supercritical isotherm. A series of isochoric measurements is then made to extend the temperature range. Densities assigned to the isochores are determined from their intersection with the previously measured Burnett isotherm or gravimetrically. A computer is used for experimental control and for data logging. Isochoric measurements lasting several days can be performed routinely and without operator attention. The apparatus has been tested on propane to a temperature of 325 °C. The density data, estimated accurate to ±0.1 percent, are in excellent agreement with other existing data.
Collapse
|
|
41 |
24 |
10
|
Zichittella G, Ebrahim AM, Zhu J, Brenner AE, Drake G, Beckham GT, Bare SR, Rorrer JE, Román-Leshkov Y. Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts. JACS AU 2022; 2:2259-2268. [PMID: 36311830 PMCID: PMC9597591 DOI: 10.1021/jacsau.2c00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/22/2023]
Abstract
The development of technologies to recycle polyethylene (PE) and polypropylene (PP), globally the two most produced polymers, is critical to increase plastic circularity. Here, we show that 5 wt % cobalt supported on ZSM-5 zeolite catalyzes the solvent-free hydrogenolysis of PE and PP into propane with weight-based selectivity in the gas phase over 80 wt % after 20 h at 523 K and 40 bar H2. This catalyst significantly reduces the formation of undesired CH4 (≤5 wt %), a product which is favored when using bulk cobalt oxide or cobalt nanoparticles supported on other carriers (selectivity ≤95 wt %). The superior performance of Co/ZSM-5 is attributed to the stabilization of dispersed oxidic cobalt nanoparticles by the zeolite support, preventing further reduction to metallic species that appear to catalyze CH4 generation. While ZSM-5 is also active for propane formation at 523 K, the presence of Co promotes stability and selectivity. After optimizing the metal loading, it was demonstrated that 10 wt % Co/ZSM-5 can selectively catalyze the hydrogenolysis of low-density PE (LDPE), mixtures of LDPE and PP, as well as postconsumer PE, showcasing the effectiveness of this technology to upcycle realistic plastic waste. Cobalt supported on zeolites FAU, MOR, and BEA were also effective catalysts for C2-C4 hydrocarbon formation and revealed that the framework topology provides a handle to tune gas-phase selectivity.
Collapse
|
Retracted Publication |
3 |
18 |
11
|
Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, Op den Camp HJM. More Than a Methanotroph: A Broader Substrate Spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol 2020; 11:604485. [PMID: 33381099 PMCID: PMC7768010 DOI: 10.3389/fmicb.2020.604485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
Volcanic areas emit a number of gases including methane and other short chain alkanes, that may serve as energy source for the prevailing microorganisms. The verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was isolated from a volcanic mud pot, and is able to grow under thermoacidophilic conditions on different gaseous substrates. Its genome contains three operons encoding a particulate methane monooxygenase (pMMO), the enzyme that converts methane to methanol. The expression of two of these pmo operons is subjected to oxygen-dependent regulation, whereas the expression of the third copy (pmoCAB3) has, so far, never been reported. In this study we investigated the ability of strain SolV to utilize short-chain alkanes and monitored the expression of the pmo operons under different conditions. In batch cultures and in carbon-limited continuous cultures, strain SolV was able to oxidize and grow on C1–C3 compounds. Oxidation of ethane did occur simultaneously with methane, while propane consumption only started once methane and ethane became limited. Butane oxidation was not observed. Transcriptome data showed that pmoCAB1 and pmoCAB3 were induced in the absence of methane and the expression of pmoCAB3 increased upon propane addition. Together the results of our study unprecedently show that a pMMO-containing methanotroph is able to co-metabolize other gaseous hydrocarbons, beside methane. Moreover, it expands the substrate spectrum of verrucomicrobial methanotrophs, supporting their high metabolic flexibility and adaptation to the harsh and dynamic conditions in volcanic ecosystems.
Collapse
|
Journal Article |
5 |
17 |
12
|
Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry. MATERIALS (BASEL, SWITZERLAND) 2012; 5:699-720. [PMID: 28817004 PMCID: PMC5448955 DOI: 10.3390/ma5040699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/02/2012] [Accepted: 04/15/2012] [Indexed: 11/16/2022]
Abstract
With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR) for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.
Collapse
|
Review |
13 |
17 |
13
|
Ramirez A, Ticali P, Salusso D, Cordero-Lanzac T, Ould-Chikh S, Ahoba-Sam C, Bugaev AL, Borfecchia E, Morandi S, Signorile M, Bordiga S, Gascon J, Olsbye U. Multifunctional Catalyst Combination for the Direct Conversion of CO 2 to Propane. JACS AU 2021; 1:1719-1732. [PMID: 34723275 PMCID: PMC8549042 DOI: 10.1021/jacsau.1c00302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g-1 h-1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.
Collapse
|
research-article |
4 |
16 |
14
|
Rydosz A, Szkudlarek A. Gas-Sensing Performance of M-Doped CuO-Based Thin Films Working at Different Temperatures upon Exposure to Propane. SENSORS 2015; 15:20069-85. [PMID: 26287204 PMCID: PMC4570410 DOI: 10.3390/s150820069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
Abstract
Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
15
|
Goodwin RD. Specific Heats of Saturated and Compressed Liquid Propane. J Res Natl Bur Stand (1977) 1978; 83:449-458. [PMID: 34565999 PMCID: PMC6764504 DOI: 10.6028/jres.083.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Experimental specific heats for saturated liquid propane, along the coexistence path, have been determined from the triple-point temperature (~ 85 K) to 289 K. Specific heats for the compressed liquid at constant molal volume have been determined along isochores at nine different densities ranging from near the triple-point liquid density to about twice the critical-point density (at pressures up to 300 bar). Comparisons with previous experimental- and/or derived-data show agreement within combined uncertainties of about three percent.
Collapse
|
research-article |
47 |
14 |
16
|
Salnikov OG, Barskiy DA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. Efficient Batch-Mode Parahydrogen-Induced Polarization of Propane. Chemphyschem 2016; 17:3395-3398. [PMID: 27459542 PMCID: PMC5433086 DOI: 10.1002/cphc.201600564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/10/2022]
Abstract
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen-induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous-flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch-mode method is applied: propene is first loaded into the catalyst-containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous-flow homogeneous catalytic hydrogenation, and a factor of 3-10 more efficient compared to the typical results of heterogeneous continuous-flow hydrogenations.
Collapse
|
research-article |
9 |
13 |
17
|
Li FM, Yang HQ, Ju TY, Li XY, Hu CW. Activation of propane C-H and C-C bonds by gas-phase Pt atom: a theoretical study. Int J Mol Sci 2012; 13:9278-9297. [PMID: 22942766 PMCID: PMC3430297 DOI: 10.3390/ijms13079278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/20/2012] [Accepted: 07/16/2012] [Indexed: 11/16/2022] Open
Abstract
The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE≠int, which is the actual interaction energy between the deformed reactants in the transition state.
Collapse
|
|
13 |
13 |
18
|
Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs. Proc Natl Acad Sci U S A 2019; 116:6653-6658. [PMID: 30886103 PMCID: PMC6452727 DOI: 10.1073/pnas.1817784116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified 13C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process. This distinctive signature allows the detection and quantification of anaerobic oxidation of hydrocarbons in diverse natural gas reservoirs and suggests that this process may be more widespread than previously thought. Position-specific isotope analysis can elucidate the fate of natural gas hydrocarbons and provide insight into a major but previously cryptic process controlling the biogeochemical cycling of globally significant greenhouse gases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
12 |
19
|
Bukowski BC, Snurr RQ. Topology-Dependent Alkane Diffusion in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56049-56059. [PMID: 33269907 DOI: 10.1021/acsami.0c17797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) can be designed for chemical applications by modulating the size and shape of intracrystalline pores through selection of their nodes and linkers. Zirconium nodes with variable connectivity to organic linkers allow for a broad range of topological nets that have diverse pore structures even for a consistent set of linkers. Identifying an optimal pore structure for a given application, however, is complicated by the large material space of possible MOFs. In this work, molecular dynamics simulations were used to determine how a MOF's topology affects the diffusion of propane and isobutane over the full range of loadings and to understand how MOFs can be tuned to reduce transport limitations for applications in separations and catalysis. High-throughput simulation techniques were employed to efficiently calculate loading-dependent diffusivities in 38 MOFs. The results show that topologies with higher node connectivity have reduced alkane diffusivities compared to topologies with lower node connectivity. Molecular siting techniques were used to elucidate how the pore structures in different topologies affect adsorbate diffusivities.
Collapse
|
|
5 |
11 |
20
|
Kim SY, Yoon TU, Kang JH, Kim AR, Kim TH, Kim SI, Park W, Kim KC, Bae YS. Observation of Olefin/Paraffin Selectivity in Azo Compound and Its Application into a Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27521-27530. [PMID: 30040880 DOI: 10.1021/acsami.8b09739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Olefin/paraffin separation is an important and challenging issue because the two molecules have similar physicochemical properties. Although a couple of olefin adsorbents have been developed by introducing inorganic nanoparticles into metal-organic frameworks (MOFs), there has been no study on the development of an olefin adsorbent by introducing a certain organic functional group into a MOF. In this study, we posited that azo compounds could offer olefin/paraffin selectivity. We have revealed using first-principles calculations that the simplest aromatic azo compound (azobenzene, Azob) has an unusual propylene/propane selectivity due to special electrostatic interactions between Azob and propylene molecules. On the basis of this interesting discovery, we have synthesized a novel propylene adsorbent, MIL-101(Cr)_DAA, by grafting 4,4'-diaminoazobenzene (DAA) into open metal sites in a mesoporous MIL-101(Cr). Remarkably, MIL-101(Cr)_DAA exhibited enhanced propylene/propane selectivity as well as considerably higher propylene heat of adsorption compared to pristine MIL-101(Cr) while maintaining the high working capacity of MIL-101(Cr). This clearly indicates that azo compounds when introduced into MOFs can provide propylene selectivity. Moreover, MIL-101(Cr)_DAA showed good C3H6/C3H8 separation and easy regeneration performances from packed-bed breakthrough experiments and retained its propylene adsorption capacity even after exposure to air for 12 h. As far as we know, this is the first study that improves the olefin selectivity of MOF by postsynthetically introducing an organic functional group.
Collapse
|
|
7 |
10 |
21
|
Chen F, Huang X, Guo K, Yang L, Sun H, Xia W, Zhang Z, Yang Q, Yang Y, Zhao D, Ren Q, Bao Z. Molecular Sieving of Propylene from Propane in Metal-Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30443-30453. [PMID: 35749684 DOI: 10.1021/acsami.2c09189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of adsorption-based separation processes alternative to the energy-intensive cryogenic distillation for a mixture of propylene and propane remains essential but challenging in gas industries. Molecular sieving separation of C3H6/C3H8 on stable carbon adsorbents appeals to be promising, while it is quite challenging to realize due to the random distributions and arrangements of the internal pores in common carbons. Herein, a series of polysaccharide-based CD-MOF-derived ultramicroporous carbon adsorbents with their pore size tuned at a subangstrom level were prepared. Molecular sieving separation of C3H6/C3H8 was realized on the optimal C-CDMOF-2-700 owing to the delicate structure with an appropriate pore size (5.0 Å). Besides, C-CDMOF-2-700 exhibited a high C3H6 uptake of 1.97 mmol g-1 under ambient conditions. An ultrahigh uptake ratio of C3H6/C3H8 at 1.0 kPa (403) was also achieved, outperforming all reported adsorbents. Kinetic adsorption tests and breakthrough experiments further demonstrate this well-designed carbon adsorbent to be promising in industrial C3H6/C3H8 separation.
Collapse
|
|
3 |
10 |
22
|
Rashid MH, Koel A, Rang T. Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E98. [PMID: 31947803 PMCID: PMC7022693 DOI: 10.3390/nano10010098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023]
Abstract
During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low intrinsic electronic noise and it can detect even a single gas molecule in its proximity. This property of graphene makes is a suitable and promising candidate to detect a large variety of organic/inorganic chemicals and gases. Typical solid state gas sensors usually requires high operating temperature and they cannot detect very low concentrations of gases efficiently due to intrinsic noise caused by thermal motion of charge carriers at high temperatures. They also have low resolution and stability issues of their constituent materials (such as electrolytes, electrodes, and sensing material itself) in harsh environments. It accelerates the need of development of robust, highly sensitive and efficient gas sensor with low operating temperature. Graphene and its derivatives could be a prospective replacement of these solid-state sensors due to their better electronic attributes for moderate temperature applications. The presence of extremely low intrinsic noise in graphene makes it highly suitable to detect a very low concentration of organic/inorganic compounds (even a single molecule ca be detected with graphene). In this article, we simulated a novel graphene nanoribbon based field effect transistor (FET) and used it to detect propane and butane gases. These are flammable household/industrial gases that must be detected to avoid serious accidents. The effects of atmospheric oxygen and humidity have also been studied by mixing oxygen and water molecules with desired target gases (propane and butane). The change in source-to-drain current of FET in the proximity of the target gases has been used as a detection signal. Our simulated FET device showed a noticeable change in density of states and IV-characteristics in the presence of target gas molecules. Nanoscale simulations of FET based gas sensor have been done in Quantumwise Atomistix Toolkit (ATK). ATK is a commercially available nanoscale semiconductor device simulator that is used to model a large variety of nanoscale devices. Our proposed device can be converted into a physical device to get a low cost and small sized integrated gas sensor.
Collapse
|
research-article |
5 |
9 |
23
|
Uchida T, Miyoshi H, Sugibuchi R, Suzuta A, Yamazaki K, Gohara K. Contribution of Ultra-Fine Bubbles to Promoting Effect on Propane Hydrate Formation. Front Chem 2020; 8:480. [PMID: 32582645 PMCID: PMC7291872 DOI: 10.3389/fchem.2020.00480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022] Open
Abstract
To investigate experimentally how ultra-fine bubbles (UFBs) may promote hydrate formation, we examined the formation of propane (C3H8) hydrate from UFB-infused water solution using two preparation methods. In one method, we used C3H8-hydrate dissociated water, and in the other, C3H8-UFB-included water prepared with a generator. In both solutions, the initial conditions had a UFB number density of up to 109 mL−1. This number density decreased by only about a half when stored at room temperature for 2 days, indicating that enough amount of UFBs were stably present at least during the formation experiments. Compared to the case without UFBs, the nucleation probabilities within 50 h were ~1.3 times higher with the UFBs, and the induction times, the time period required for the bulk hydrate formation, were significantly shortened. These results confirmed that UFB-containing water promotes C3H8-hydrate formation. Combined with the UFB-stability experiments, we conclude that a high number density of UFBs in water contributes to the hydrate promoting effect. Also, consistent with previous research, the present study on C3H8 hydrates showed that the promoting effect would occur even in water that had not experienced any hydrate structures. Applying these findings to the debate over the promoting (or “memory”) effect of gas hydrates, we argue that the gas dissolution hypothesis is the more likely explanation for the effect.
Collapse
|
|
5 |
9 |
24
|
Sub- and Supercritical Extraction of Slovenian Hops ( Humulus lupulus L.) Aurora Variety Using Different Solvents. PLANTS 2021; 10:plants10061137. [PMID: 34205132 PMCID: PMC8229442 DOI: 10.3390/plants10061137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
This work investigates the efficiency of supercritical fluid extraction of hops with a variety of solvents including carbon dioxide (CO2), propane, sulfur hexafluoride (SF6), and dimethyl ether (DME) at various densities (low-density and high-density). Operating parameters were 50 bar, 100 bar and 150 bar and 20 °C, 40 °C, 60 °C and 80 °C for all solvents, respectively. The influence of process parameters on the total yield of extraction and content of bitter acids in the extracts has been investigated. The mathematical model based on Fick's second law well described the experimental extraction results. Furthermore, HPLC analysis has been used to determine α- and β-acids in extracts. The yield of bitter compounds in hop extracts was largely influenced by the type of solvent, the temperature and pressure applied during extraction. The results show that CO2 and propane were roughly equivalent to DME in solvating power, while SF6 was a poor solvent at the same conditions. The highest yield as well as the highest concentration of bitter acids in extracts were obtained by using DME, where the optimal operating conditions were 40 °C and 100 bar for the extraction of α-acids (max. concentration 9.6%), 60 °C and 50 bar for the extraction of β-acids (4.5%) and 60 °C and 150 bar for the maximum extraction yield (25.6%).
Collapse
|
Journal Article |
4 |
9 |
25
|
Oxidative Dehydrogenation of Propane over Vanadium-Containing Faujasite Zeolite. Molecules 2020; 25:molecules25081961. [PMID: 32340139 PMCID: PMC7221564 DOI: 10.3390/molecules25081961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative dehydrogenation (ODH) of light alkanes to olefins—in particular, using vanadium-based catalysts—is a promising alternative to the dehydrogenation process. Here, we investigate how the activity of the vanadium phase in ODH is related to its dispersion in porous matrices. An attempt was made to synthesize catalysts in which vanadium was deposited on a microporous faujasite zeolite (FAU) with the hierarchical (desilicated) FAU as supports. These yielded different catalysts with varying amounts and types of vanadium phase and the porosity of the support. The phase composition of the catalysts was confirmed by X-ray diffraction (XRD); low temperature nitrogen sorption experiments resulted in their surface area and pore volumes, and reducibility was measured with a temperature-programmed reduction with a hydrogen (H2-TPR) method. The character of vanadium was studied by UV-VIS spectroscopy. The obtained samples were subjected to catalytic tests in the oxidative dehydrogenation of propane in a fixed-bed gas flow reactor with a gas chromatograph to detect subtract and reaction products at a temperature range from 400–500 °C, with varying contact times. The sample containing 6 wt% of vanadium deposited on the desilicated FAU appeared the most active. The activity was ascribed to the presence of the dispersed vanadium ions in the tetragonal coordination environment and support mesoporosity.
Collapse
|
Journal Article |
5 |
8 |