1
|
Abstract
Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein–RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP–lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein–lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations.
Collapse
|
Review |
10 |
504 |
2
|
Chen F, Sun H, Wang J, Zhu F, Liu H, Wang Z, Lei T, Li Y, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA (NEW YORK, N.Y.) 2018; 24:1183-1194. [PMID: 29930024 PMCID: PMC6097651 DOI: 10.1261/rna.065896.118] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/13/2018] [Indexed: 05/10/2023]
Abstract
Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (εin). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GBGBn1 model with εin = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GBGBn1 model distinguished the near-native binding structures within the top 10 decoys for 117 out of the 148 protein-RNA systems (79.1%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
84 |
3
|
Afroz T, Skrisovska L, Belloc E, Guillén-Boixet J, Méndez R, Allain FHT. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev 2014; 28:1498-514. [PMID: 24990967 PMCID: PMC4083092 DOI: 10.1101/gad.241133.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
How CPEB RNA-binding proteins regulate cytoplasmic polyadenylation and translation is poorly understood. Allain and colleagues report the structures of the tandem RNA recognition motifs (RRMs) of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. Structural and functional studies reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and zinc-binding domains at the 3′ UTR, which favors the nucleation of ribonucleoprotein complexes for translation regulation. This study provides the molecular basis for the translational regulatory circuit established by CPEB proteins. Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3′ untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein–protein and protein–RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3′ UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
66 |
4
|
Blice-Baum AC, Mihailescu MR. Biophysical characterization of G-quadruplex forming FMR1 mRNA and of its interactions with different fragile X mental retardation protein isoforms. RNA (NEW YORK, N.Y.) 2014; 20:103-114. [PMID: 24249225 PMCID: PMC3866639 DOI: 10.1261/rna.041442.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5'-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
43 |
5
|
Gonzalez GM, Hardwick SW, Maslen SL, Skehel JM, Holmqvist E, Vogel J, Bateman A, Luisi BF, Broadhurst RW. Structure of the Escherichia coli ProQ RNA-binding protein. RNA (NEW YORK, N.Y.) 2017; 23:696-711. [PMID: 28193673 PMCID: PMC5393179 DOI: 10.1261/rna.060343.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/03/2017] [Indexed: 05/20/2023]
Abstract
The protein ProQ has recently been identified as a global small noncoding RNA-binding protein in Salmonella, and a similar role is anticipated for its numerous homologs in divergent bacterial species. We report the solution structure of Escherichia coli ProQ, revealing an N-terminal FinO-like domain, a C-terminal domain that unexpectedly has a Tudor domain fold commonly found in eukaryotes, and an elongated bridging intradomain linker that is flexible but nonetheless incompressible. Structure-based sequence analysis suggests that the Tudor domain was acquired through horizontal gene transfer and gene fusion to the ancestral FinO-like domain. Through a combination of biochemical and biophysical approaches, we have mapped putative RNA-binding surfaces on all three domains of ProQ and modeled the protein's conformation in the apo and RNA-bound forms. Taken together, these data suggest how the FinO, Tudor, and linker domains of ProQ cooperate to recognize complex RNA structures and serve to promote RNA-mediated regulation.
Collapse
|
research-article |
8 |
41 |
6
|
Computer-Aided Discovery of Small Molecules Targeting the RNA Splicing Activity of hnRNP A1 in Castration-Resistant Prostate Cancer. Molecules 2019; 24:molecules24040763. [PMID: 30791548 PMCID: PMC6413181 DOI: 10.3390/molecules24040763] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 12/28/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a versatile RNA-binding protein playing a critical role in alternative pre-mRNA splicing regulation in cancer. Emerging data have implicated hnRNP A1 as a central player in a splicing regulatory circuit involving its direct transcriptional control by c-Myc oncoprotein and the production of the constitutively active ligand-independent alternative splice variant of androgen receptor, AR-V7, which promotes castration-resistant prostate cancer (CRPC). As there is an urgent need for effective CRPC drugs, targeting hnRNP A1 could, therefore, serve a dual purpose of preventing AR-V7 generation as well as reducing c-Myc transcriptional output. Herein, we report compound VPC-80051 as the first small molecule inhibitor of hnRNP A1 splicing activity discovered to date by using a computer-aided drug discovery approach. The inhibitor was developed to target the RNA-binding domain (RBD) of hnRNP A1. Further experimental evaluation demonstrated that VPC-80051 interacts directly with hnRNP A1 RBD and reduces AR-V7 messenger levels in 22Rv1 CRPC cell line. This study lays the groundwork for future structure-based development of more potent and selective small molecule inhibitors of hnRNP A1–RNA interactions aimed at altering the production of cancer-specific alternative splice isoforms.
Collapse
|
Journal Article |
6 |
25 |
7
|
Lapointe CP, Preston MA, Wilinski D, Saunders HAJ, Campbell ZT, Wickens M. Architecture and dynamics of overlapped RNA regulatory networks. RNA (NEW YORK, N.Y.) 2017; 23:1636-1647. [PMID: 28768715 PMCID: PMC5648032 DOI: 10.1261/rna.062687.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.
Collapse
|
research-article |
8 |
24 |
8
|
Faustino AF, Martins AS, Karguth N, Artilheiro V, Enguita FJ, Ricardo JC, Santos NC, Martins IC. Structural and Functional Properties of the Capsid Protein of Dengue and Related Flavivirus. Int J Mol Sci 2019; 20:E3870. [PMID: 31398956 PMCID: PMC6720645 DOI: 10.3390/ijms20163870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Collapse
|
research-article |
6 |
21 |
9
|
An autoinhibitory intramolecular interaction proof-reads RNA recognition by the essential splicing factor U2AF2. Proc Natl Acad Sci U S A 2020; 117:7140-7149. [PMID: 32188783 DOI: 10.1073/pnas.1913483117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
18 |
10
|
Karakostis K, Ponnuswamy A, Fusée LTS, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fåhraeus R. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2. Mol Biol Evol 2016; 33:1280-92. [PMID: 26823446 DOI: 10.1093/molbev/msw012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
11
|
Abstract
During translation, a plethora of protein factors bind to the ribosome and regulate protein synthesis. Many of those factors are guanosine triphosphatases (GTPases), proteins that catalyze the hydrolysis of guanosine 5'-triphosphate (GTP) to promote conformational changes. Despite numerous studies, the function of elongation factor 4 (EF-4/LepA), a highly conserved translational GTPase, has remained elusive. Here, we present the crystal structure at 2.6-Å resolution of the Thermus thermophilus 70S ribosome bound to EF-4 with a nonhydrolyzable GTP analog and A-, P-, and E-site tRNAs. The structure reveals the interactions of EF-4 with the A-site tRNA, including contacts between the C-terminal domain (CTD) of EF-4 and the acceptor helical stem of the tRNA. Remarkably, EF-4 induces a distortion of the A-site tRNA, allowing it to interact simultaneously with EF-4 and the decoding center of the ribosome. The structure provides insights into the tRNA-remodeling function of EF-4 on the ribosome and suggests that the displacement of the CCA-end of the A-site tRNA away from the peptidyl transferase center (PTC) is functionally significant.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
17 |
12
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
13
|
Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int J Mol Sci 2018; 19:ijms19061595. [PMID: 29843482 PMCID: PMC6032373 DOI: 10.3390/ijms19061595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Intrinsically disordered regions (IDRs) and protein (IDPs) are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT) upon binding. We found that DOT regions are generally small in size (less than 3 residues) for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.
Collapse
|
Journal Article |
7 |
15 |
14
|
Gronland GR, Ramos A. The devil is in the domain: understanding protein recognition of multiple RNA targets. Biochem Soc Trans 2017; 45:1305-1311. [PMID: 29150526 DOI: 10.1042/bst20160362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2024]
Abstract
RNA regulation provides a finely tuned and highly co-ordinated control of gene expression. Regulation is mediated by hundreds to thousands of multi-functional RNA-binding proteins which often interact with large sets of RNAs. In this brief review, we focus on a recent work that highlights how the proteins use multiple RNA-binding domains to interact selectively with the different RNA targets. Deconvoluting the molecular complexity of the RNA regulatory network is essential to understanding cell differentiation and function, and requires accurate models for protein-RNA recognition and protein target selectivity. We discuss that the structural and molecular understanding of the key determinant of recognition, together with the availability of methods to examine protein-RNA interactions at the transcriptome level, may provide an avenue to establish these models.
Collapse
|
Review |
8 |
14 |
15
|
Chu LY, Agrawal S, Chen YP, Yang WZ, Yuan HS. Structural insights into nanoRNA degradation by human Rexo2. RNA (NEW YORK, N.Y.) 2019; 25:737-746. [PMID: 30926754 PMCID: PMC6521605 DOI: 10.1261/rna.070557.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Human RNA exoribonuclease 2 (Rexo2) is an evolutionarily conserved 3'-to-5' DEDDh-family exonuclease located primarily in mitochondria. Rexo2 degrades small RNA oligonucleotides of <5 nucleotides (nanoRNA) in a way similar to Escherichia coli Oligoribonuclease (ORN), suggesting that it plays a role in RNA turnover in mitochondria. However, how Rexo2 preferentially binds and degrades nanoRNA remains elusive. Here, we show that Rexo2 binds small RNA and DNA oligonucleotides with the highest affinity, and it is most robust in degrading small nanoRNA into mononucleotides in the presence of magnesium ions. We further determined three crystal structures of Rexo2 in complex with single-stranded RNA or DNA at resolutions of 1.8-2.2 Å. Rexo2 forms a homodimer and interacts mainly with the last two 3'-end nucleobases of substrates by hydrophobic and π-π stacking interactions via Leu53, Trp96, and Tyr164, signifying its preference in binding and degrading short oligonucleotides without sequence specificity. Crystal structure of Rexo2 is highly similar to that of the RNA-degrading enzyme ORN, revealing a two-magnesium-ion-dependent hydrolysis mechanism. This study thus provides the molecular basis for human Rexo2, showing how it binds and degrades nanoRNA into nucleoside monophosphates and plays a crucial role in RNA salvage pathways in mammalian mitochondria.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- Binding Sites
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exoribonucleases/chemistry
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrolysis
- Hydrophobic and Hydrophilic Interactions
- Magnesium/chemistry
- Magnesium/metabolism
- Mitochondria/chemistry
- Mitochondria/metabolism
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
|
research-article |
6 |
13 |
16
|
Tishchenko S, Kostareva O, Gabdulkhakov A, Mikhaylina A, Nikonova E, Nevskaya N, Sarskikh A, Piendl W, Garber M, Nikonov S. Protein-RNA affinity of ribosomal protein L1 mutants does not correlate with the number of intermolecular interactions. ACTA ACUST UNITED AC 2015; 71:376-86. [PMID: 25664749 DOI: 10.1107/s1399004714026248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/29/2014] [Indexed: 11/10/2022]
Abstract
Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 from Thermus thermophilus (TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein-RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA-protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
11 |
17
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
|
Review |
4 |
8 |
18
|
Zooming in on protein-RNA interactions: a multi-level workflow to identify interaction partners. Biochem Soc Trans 2021; 48:1529-1543. [PMID: 32820806 PMCID: PMC7458403 DOI: 10.1042/bst20191059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
Abstract
Interactions between proteins and RNA are at the base of numerous cellular regulatory and functional phenomena. The investigation of the biological relevance of non-coding RNAs has led to the identification of numerous novel RNA-binding proteins (RBPs). However, defining the RNA sequences and structures that are selectively recognised by an RBP remains challenging, since these interactions can be transient and highly dynamic, and may be mediated by unstructured regions in the protein, as in the case of many non-canonical RBPs. Numerous experimental and computational methodologies have been developed to predict, identify and verify the binding between a given RBP and potential RNA partners, but navigating across the vast ocean of data can be frustrating and misleading. In this mini-review, we propose a workflow for the identification of the RNA binding partners of putative, newly identified RBPs. The large pool of potential binders selected by in-cell experiments can be enriched by in silico tools such as catRAPID, which is able to predict the RNA sequences more likely to interact with specific RBP regions with high accuracy. The RNA candidates with the highest potential can then be analysed in vitro to determine the binding strength and to precisely identify the binding sites. The results thus obtained can furthermore validate the computational predictions, offering an all-round solution to the issue of finding the most likely RNA binding partners for a newly identified potential RBP.
Collapse
|
Review |
4 |
8 |
19
|
Milione RR, Schell BB, Douglas CJ, Seath CP. Creative approaches using proximity labeling to gain new biological insights. Trends Biochem Sci 2024; 49:224-235. [PMID: 38160064 PMCID: PMC10939868 DOI: 10.1016/j.tibs.2023.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
At its most fundamental level, life is a collection of synchronized cellular processes driven by interactions among biomolecules. Proximity labeling has emerged as a powerful technique to capture these interactions in native settings, revealing previously unexplored elements of biology. This review highlights recent developments in proximity labeling, focusing on methods that push the fundamental technologies beyond the classic bait-prey paradigm, such as RNA-protein interactions, ligand/small-molecule-protein interactions, cell surface protein interactions, and subcellular protein trafficking. The advancement of proximity labeling methods to address different biological problems will accelerate our understanding of the complex biological systems that make up life.
Collapse
|
Review |
1 |
8 |
20
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
|
Review |
8 |
5 |
21
|
Abstract
Protein–RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein–RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein–RNA interfaces. We represented known protein–RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein–RNA interface. That scoring function was able to discriminate near-native protein–RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.
Collapse
|
|
9 |
3 |
22
|
Sun X, Li W, Li G, Yang H, Jiang Z, Shen L, Shen Y, Liu Y, Wang G. A novel long non-coding RNA LINC00524 facilitates invasion and metastasis through interaction with TDP43 in breast cancer. J Cell Mol Med 2024; 28:e18275. [PMID: 38568058 PMCID: PMC10989564 DOI: 10.1111/jcmm.18275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Breast cancer (BC) remains a significant health concern worldwide, with metastasis being a primary contributor to patient mortality. While advances in understanding the disease's progression continue, the underlying mechanisms, particularly the roles of long non-coding RNAs (lncRNAs), are not fully deciphered. In this study, we examined the influence of the lncRNA LINC00524 on BC invasion and metastasis. Through meticulous analyses of TCGA and GEO data sets, we observed a conspicuous elevation of LINC00524 expression in BC tissues. This increased expression correlated strongly with a poorer prognosis for BC patients. A detailed Gene Ontology analysis suggested that LINC00524 likely exerts its effects through RNA-binding proteins (RBPs) mechanisms. Experimentally, LINC00524 was demonstrated to amplify BC cell migration, invasion and proliferation in vitro. Additionally, in vivo tests showed its potent role in promoting BC cell growth and metastasis. A pivotal discovery was LINC00524's interaction with TDP43, which leads to the stabilization of TDP43 protein expression, an element associated with unfavourable BC outcomes. In essence, our comprehensive study illuminates how LINC00524 accelerates BC invasion and metastasis by binding to TDP43, presenting potential avenues for therapeutic interventions.
Collapse
|
research-article |
1 |
2 |
23
|
Panei FP, Di Rienzo L, Zacco E, Armaos A, Tartaglia GG, Ruocco G, Milanetti E. Synchronized motion of interface residues for evaluating protein-RNA complex binding affinity: Application to aptamer-mediated inhibition of TDP-43 aggregates. Protein Sci 2024; 33:e5201. [PMID: 39548508 PMCID: PMC11567837 DOI: 10.1002/pro.5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/18/2024]
Abstract
Investigating the binding between proteins and aptamers, such as peptides or RNA molecules, is of crucial importance both for understanding the molecular mechanisms that regulate cellular activities and for therapeutic applications in several pathologies. Here, a new computational procedure, employing mainly docking, clustering analysis, and molecular dynamics simulations, was designed to estimate the binding affinities between a protein and some RNA aptamers, through the investigation of the dynamical behavior of the predicted molecular complex. Using the state-of-the-art software catRAPID, we computationally designed a set of RNA aptamers interacting with the TAR DNA-binding protein 43 (TDP-43), a protein associated with several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We thus devised a computational protocol to predict the RNA-protein molecular complex, so that the structural and dynamical behavior of such a complex can be investigated through extensive molecular dynamics simulation. We hypothesized that the coordinated and synchronized motion of the protein-binding residues, when in contact with RNA molecule, is a critical requisite in order to have a stable binding. Indeed, we calculated the motion covariance exhibited by the interface residues during molecular dynamics simulation: we tested the results against experimental measurements of binding affinity (in this case, the dissociation constant) for six RNA molecules, resulting in a linear correlation of about 0.9. Our findings suggest that the synchronized movement of interface residues plays a pivotal role in ensuring the stability within RNA-protein complexes, moreover providing insights into the contribution of each interface residue. This promising pipeline could thus contribute to the design of RNA aptamers interacting with proteins.
Collapse
|
research-article |
1 |
|
24
|
Gor K, Duss O. Emerging Quantitative Biochemical, Structural, and Biophysical Methods for Studying Ribosome and Protein-RNA Complex Assembly. Biomolecules 2023; 13:866. [PMID: 37238735 PMCID: PMC10216711 DOI: 10.3390/biom13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosome assembly is one of the most fundamental processes of gene expression and has served as a playground for investigating the molecular mechanisms of how protein-RNA complexes (RNPs) assemble. A bacterial ribosome is composed of around 50 ribosomal proteins, several of which are co-transcriptionally assembled on a ~4500-nucleotide-long pre-rRNA transcript that is further processed and modified during transcription, the entire process taking around 2 min in vivo and being assisted by dozens of assembly factors. How this complex molecular process works so efficiently to produce an active ribosome has been investigated over decades, resulting in the development of a plethora of novel approaches that can also be used to study the assembly of other RNPs in prokaryotes and eukaryotes. Here, we review biochemical, structural, and biophysical methods that have been developed and integrated to provide a detailed and quantitative understanding of the complex and intricate molecular process of bacterial ribosome assembly. We also discuss emerging, cutting-edge approaches that could be used in the future to study how transcription, rRNA processing, cellular factors, and the native cellular environment shape ribosome assembly and RNP assembly at large.
Collapse
|
Review |
2 |
|
25
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
|
research-article |
1 |
|