1
|
Pralle A, Keller P, Florin EL, Simons K, Hörber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997-1008. [PMID: 10704449 PMCID: PMC2174552 DOI: 10.1083/jcb.148.5.997] [Citation(s) in RCA: 740] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.
Collapse
|
research-article |
25 |
740 |
2
|
Kaur T, Alshareedah I, Wang W, Ngo J, Moosa MM, Banerjee PR. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules 2019; 9:biom9020071. [PMID: 30791483 PMCID: PMC6406554 DOI: 10.3390/biom9020071] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless liquid condensates that dynamically form, dissolve, and mature into a gel-like state in response to a changing cellular environment. RNP condensation is largely governed by promiscuous attractive inter-chain interactions mediated by low-complexity domains (LCDs). Using an archetypal disordered RNP, fused in sarcoma (FUS), here we study how molecular crowding impacts the RNP liquid condensation. We observe that the liquid–liquid coexistence boundary of FUS is lowered by polymer crowders, consistent with an excluded volume model. With increasing bulk crowder concentration, the RNP partition increases and the diffusion rate decreases in the condensed phase. Furthermore, we show that RNP condensates undergo substantial hardening wherein protein-dense droplets transition from viscous fluid to viscoelastic gel-like states in a crowder concentration-dependent manner. Utilizing two distinct LCDs that broadly represent commonly occurring sequence motifs driving RNP phase transitions, we reveal that the impact of crowding is largely independent of LCD charge and sequence patterns. These results are consistent with a thermodynamic model of crowder-mediated depletion interaction, which suggests that inter-RNP attraction is enhanced by molecular crowding. The depletion force is likely to play a key role in tuning the physical properties of RNP condensates within the crowded cellular space.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
88 |
3
|
Schneider H, Lemasters JJ, Höchli M, Hackenbrock CR. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A 1980; 77:442-6. [PMID: 6928637 PMCID: PMC348287 DOI: 10.1073/pnas.77.1.442] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A procedure is outlined for the fusion of mixed phospholipid liposomes (small unilamellar vesicles) with the mitochondrial inner membrane, which enriches the membrane lipid bilayer 30-700% in a controlled fashion. Fusion was initiated by manipulation of the pH of a mixture of freshly sonicated liposomes and the functional inner membrane/matrix fraction of rat liver mitochondria. During the pH fusion procedure, liposomes became closely apposed with and sequestered by the inner membranes as revealed by freeze-fracture electron microscopy. After the pH fusion procedure, a number of ultrastructural, compositional, and functional characteristics were found to be proportionally related: the membrane surface area increased; the lateral density distribution of intramembrane particles (integral proteins) in the plane of the membrane decreased whereas the particles remained random; the membrane became more buoyant; the ratio of membrane lipid phosphorus to total membrane protein increased; the ratio of membrane lipid phosphorus to heme a of cytochrome c oxidase increased; and the rate of electron transfer between some interacting membrane oxidoreduction proteins decreased. These data reveal that liposomal phospholipid was incorporated into the membrane bilayer (not simply adsorbed to the membrane surface) and that integral membrane proteins diffused freely into the laterally expanding bilayer. Furthermore, the data suggest that the rate of electron transfer may be limited by the rate of lateral diffusion of oxidoreduction components in the bilayer of the mitochondrial inner membrane.
Collapse
|
research-article |
45 |
73 |
4
|
Bucciarelli S, Myung JS, Farago B, Das S, Vliegenthart GA, Holderer O, Winkler RG, Schurtenberger P, Gompper G, Stradner A. Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. SCIENCE ADVANCES 2016; 2:e1601432. [PMID: 27957539 PMCID: PMC5142800 DOI: 10.1126/sciadv.1601432] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/03/2016] [Indexed: 05/06/2023]
Abstract
In the dense and crowded environment of the cell cytoplasm, an individual protein feels the presence of and interacts with all surrounding proteins. While we expect this to strongly influence the short-time diffusion coefficient Ds of proteins on length scales comparable to the nearest-neighbor distance, this quantity is difficult to assess experimentally. We demonstrate that quantitative information about Ds can be obtained from quasi-elastic neutron scattering experiments using the neutron spin echo technique. We choose two well-characterized and highly stable eye lens proteins, bovine α-crystallin and γB-crystallin, and measure their diffusion at concentrations comparable to those present in the eye lens. While diffusion slows down with increasing concentration for both proteins, we find marked variations that are directly linked to subtle differences in their interaction potentials. A comparison with computer simulations shows that anisotropic and patchy interactions play an essential role in determining the local short-time dynamics. Hence, our study clearly demonstrates the enormous effect that weak attractions can have on the short-time diffusion of proteins at concentrations comparable to those in the cellular cytosol.
Collapse
|
research-article |
9 |
57 |
5
|
Schavemaker PE, Boersma AJ, Poolman B. How Important Is Protein Diffusion in Prokaryotes? Front Mol Biosci 2018; 5:93. [PMID: 30483513 PMCID: PMC6243074 DOI: 10.3389/fmolb.2018.00093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
That diffusion is important for the proper functioning of cells is without question. The extent to which the diffusion coefficient is important is explored here for prokaryotic cells. We discuss the principles of diffusion focusing on diffusion-limited reactions, summarize the known values for diffusion coefficients in prokaryotes and in in vitro model systems, and explain a number of cases where diffusion coefficients are either limiting for reaction rates or necessary for the existence of phenomena. We suggest a number of areas that need further study including expanding the range of organism growth temperatures, direct measurements of diffusion limitation, expanding the range of cell sizes, diffusion limitation for membrane proteins, and taking into account cellular context when assessing the possibility of diffusion limitation.
Collapse
|
Review |
7 |
56 |
6
|
Höchli M, Hackenbrock CR. Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc Natl Acad Sci U S A 1979; 76:1236-40. [PMID: 220611 PMCID: PMC383225 DOI: 10.1073/pnas.76.3.1236] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The degree of freedom for lateral translational diffusion by cytochrome c oxidase and other integral proteins in the energy-transducing membrane of the mitochondrion was determined by combining the use of an immunoglobulin probe monospecific for the oxidase with thermotropic lipid phase transitions. Lateral mobility of the oxidase was monitored by observing the distribution of the immunoglobulin probe on the membrane surface by deep-etch electron microscopy and by observing the distribution of intramembrane particles (integral proteins) in the hydrophobic interior of the membrane by freeze-fracture electron microscopy. Incubation of the membrane with the immunoglobulin resulted in a time-dependent clustering of predominantly large intramembrane particles. Low temperature-induced lipid phase transitions resulted in the close packing of all intramembrane particles and cytochrome c oxidase by lateral exclusion from domains of gel-state bilayer lipid and was completely reversible. However, when cytochrome c oxidase was crosslinked through an immunoglobulin lattice prior to returning the membrane to above the lipid phase transition temperature, small intramembrane particles rerandomized while the large oxidase-related particles remained clustered. These observations reveal that cytochrome c oxidase can diffuse laterally in the energy-transducing membrane, either independently of all other integral proteins or in physical union with one or more other integral proteins. In addition, many other as yet unidentified smaller integral proteins can diffuse independently of the oxidase.
Collapse
|
research-article |
46 |
53 |
7
|
Kapanidis AN, Uphoff S, Stracy M. Understanding Protein Mobility in Bacteria by Tracking Single Molecules. J Mol Biol 2018; 430:4443-4455. [PMID: 29753778 PMCID: PMC6198114 DOI: 10.1016/j.jmb.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
Protein diffusion is crucial for understanding the formation of protein complexes in vivo and has been the subject of many fluorescence microscopy studies in cells; however, such microscopy efforts are often limited by low sensitivity and resolution. During the past decade, these limitations have been addressed by new super-resolution imaging methods, most of which rely on single-particle tracking and single-molecule detection; these methods are revolutionizing our understanding of molecular diffusion inside bacterial cells by directly visualizing the motion of proteins and the effects of the local and global environment on diffusion. Here we review key methods that made such experiments possible, with particular emphasis on versions of single-molecule tracking based on photo-activated fluorescent proteins. We also discuss studies that provide estimates of the time a diffusing protein takes to locate a target site, as well as studies that examined the stoichiometries of diffusing species, the effect of stable and weak interactions on diffusion, and the constraints of large macromolecular structures on the ability of proteins and their complexes to access the entire cytoplasm.
Collapse
|
Review |
7 |
32 |
8
|
Zhao C, Pan B, Wang M, Si Y, Taha AY, Liu G, Pan T, Sun G. Improving the Sensitivity of Nanofibrous Membrane-Based ELISA for On-Site Antibiotics Detection. ACS Sens 2022; 7:1458-1466. [PMID: 35426310 DOI: 10.1021/acssensors.2c00208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrasensitive and portable colorimetric enzyme-linked immunosorbent assay (ELISA) sensor for antibiotics was fabricated by immobilizing antibodies inside the largely porous and highly hydrophilic nanofibrous membranes. Different from regular electrospun nanofibrous membranes where antibodies may frequently be blocked by the heterogeneous porous structure and sterically crowded loaded on the surface, the controlled microporous structure and increased hydrophilicity of nanofibrous membranes could improve the diffusion properties of antibodies, reduce the sterically crowding effect, and dramatically improve the sensitivity of the membrane-based ELISA. The limitation of detection (LOD) for chloramphenicol (CAP) reached 0.005 ng/mL, around 200 times lower than the conventional paper-based ELISA, making quantitative analysis and portable on-site detection achievable via the use of smartphones. The successful design and fabrication of the nanofibrous membrane-based ELISA with novel features overcome the structural drawbacks of regular electrospun nanofibrous membranes and provide new paths to develop highly sensitive on-site detection of hazardous chemical agents.
Collapse
|
|
3 |
27 |
9
|
Liu HY, Grant H, Hsu HL, Sorkin R, Bošković F, Wuite G, Daniel S. Supported Planar Mammalian Membranes as Models of in Vivo Cell Surface Architectures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35526-35538. [PMID: 28930438 DOI: 10.1021/acsami.7b07500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Emerging technologies use cell plasma membrane vesicles or "blebs" as an intermediate to form molecularly complete, planar cell surface mimetics that are compatible with a variety of characterization tools and microscopy methods. This approach enables direct incorporation of membrane proteins into supported lipid bilayers without using detergents and reconstitution and preserves native lipids and membrane species. Such a system can be advantageous as in vitro models of in vivo cell surfaces for study of the roles of membrane proteins as drug targets in drug delivery, host-pathogen interactions, tissue engineering, and many other bioanalytical and sensing applications. However, the impact of methods used to induce cell blebbing (vesiculation) on protein and membrane properties is still unknown. This study focuses on characterization of cell blebs created under various bleb-inducing conditions and the result on protein properties (orientation, mobility, activity, etc.) and lipid scrambling in this platform. The orientation of proteins in the cell blebs and planar bilayers is revealed using a protease cleavage assay. Lipid scrambling in both cell blebs and planar bilayers is indicated through an annexin V binding assay. To quantify protein confinement, immobility, etc., incorporation of GPI-linked yellow fluorescent protein (GPI-YFP) was used in conjunction with single-molecule tracking (SMT) microscopy. Finally, to investigate the impact of the bleb induction method on protein activity and expression level, cell blebs expressing human aminopeptidase N (hAPN) were analyzed by an enzyme activity assay and immunoblotting. This work enriches our understanding of cell plasma membrane bleb bilayers as a biomimetic platform, reveals conditions under which specific properties are met, and represents one of the few ways to make molecularly complete supported bilayers directly from cell plasma membranes.
Collapse
|
|
8 |
26 |
10
|
Line-FRAP, A Versatile Method to Measure Diffusion Rates In Vitro and In Vivo. J Mol Biol 2021; 433:166898. [PMID: 33647289 DOI: 10.1016/j.jmb.2021.166898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The crowded cellular milieu affect molecular diffusion through hard (occluded space) and soft (weak, non-specific) interactions. Multiple methods have been developed to measure diffusion coefficients at physiological protein concentrations within cells, each with its limitations. Here, we show that Line-FRAP, combined with rigours data analysis, is able to determine diffusion coefficients in a variety of environments, from in vitro to in vivo. The use of Line mode greatly improves time resolution of FRAP data acquisition, from 20-100 Hz in the classical mode to 800 Hz in the line mode. This improves data analysis, as intensity and radius of the bleach at the first post-bleach frame is critical. We evaluated the method on different proteins labelled chemically or fused to YFP in a wide range of environments. The diffusion coefficients measured in HeLa and in E. coli were ~2.5-fold and 15-fold slower than in buffer, and were comparable to previously published data. Increasing the osmotic pressure on E. coli further decreases diffusion, to the point at which proteins virtually stop moving. The method presented here, which requires a confocal microscope equipped with dual scanners, can be applied to study a large range of molecules with different sizes, and provides robust results in a wide range of environments and protein concentrations for fast diffusing molecules.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
11 |
11
|
Hill RJ, Wang CY. Diffusion in phospholipid bilayer membranes: dual-leaflet dynamics and the roles of tracer-leaflet and inter-leaflet coupling. Proc Math Phys Eng Sci 2014; 470:20130843. [PMID: 25002822 DOI: 10.1098/rspa.2013.0843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/09/2014] [Indexed: 11/12/2022] Open
Abstract
A variety of observations-sometimes controversial-have been made in recent decades when attempting to elucidate the roles of interfacial slip on tracer diffusion in phospholipid membranes. Evans-Sackmann theory (1988) has furnished membrane viscosities and lubrication-film thicknesses for supported membranes from experimentally measured lateral diffusion coefficients. Similar to the Saffman and Delbrück model, which is the well-known counterpart for freely supported membranes, the bilayer is modelled as a single two-dimensional fluid. However, the Evans-Sackman model cannot interpret the mobilities of monotopic tracers, such as individual lipids or rigidly bound lipid assemblies; neither does it account for tracer-leaflet and inter-leaflet slip. To address these limitations, we solve the model of Wang and Hill, in which two leaflets of a bilayer membrane, a circular tracer and supports are coupled by interfacial friction, using phenomenological friction/slip coefficients. This furnishes an exact solution that can be readily adopted to interpret the mobilities of a variety of mosaic elements-including lipids, integral monotopic and polytopic proteins, and lipid rafts-in supported bilayer membranes.
Collapse
|
Journal Article |
11 |
7 |
12
|
Kasoju N, George J, Ye H, Cui Z. Sacrificial Core-Based Electrospinning: a Facile and Versatile Approach to Fabricate Devices for Potential Cell and Tissue Encapsulation Applications. NANOMATERIALS 2018; 8:nano8100863. [PMID: 30347891 PMCID: PMC6215104 DOI: 10.3390/nano8100863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Electrospinning uses an electric field to produce fine fibers of nano and micron scale diameters from polymer solutions. Despite innovation in jet initiation, jet path control and fiber collection, it is common to only fabricate planar and tubular-shaped electrospun products. For applications that encapsulate cells and tissues inside a porous container, it is useful to develop biocompatible hollow core-containing devices. To this end, by introducing a 3D-printed framework containing a sodium chloride pellet (sacrificial core) as the collector and through post-electrospinning dissolution of the sacrificial core, we demonstrate that hollow core containing polyamide 66 (nylon 66) devices can be easily fabricated for use as cell encapsulation systems. ATR-FTIR and TG/DTA studies were used to verify that the bulk properties of the electrospun device were not altered by contact with the salt pellet during fiber collection. Protein diffusion investigations demonstrated that the capsule allowed free diffusion of model biomolecules (insulin, albumin and Ig G). Cell encapsulation studies with model cell types (fibroblasts and lymphocytes) revealed that the capsule supports the viability of encapsulated cells inside the capsule whilst compartmentalizing immune cells outside of the capsule. Taken together, the use of a salt pellet as a sacrificial core within a 3D printed framework to support fiber collection, as well as the ability to easily remove this core using aqueous dissolution, results in a biocompatible device that can be tailored for use in cell and tissue encapsulation applications.
Collapse
|
Journal Article |
7 |
7 |
13
|
Metzger F, Mischek D, Stoffers F. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics. Front Neurosci 2017; 11:241. [PMID: 28579938 PMCID: PMC5437178 DOI: 10.3389/fnins.2017.00241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Abstract
Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.
Collapse
|
Journal Article |
8 |
6 |
14
|
Shou K, Sarter M, de Souza NR, de Campo L, Whitten AE, Kuchel PW, Garvey CJ, Stadler AM. Effect of red blood cell shape changes on haemoglobin interactions and dynamics: a neutron scattering study. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201507. [PMID: 33204483 PMCID: PMC7657910 DOI: 10.1098/rsos.201507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
By using a combination of experimental neutron scattering techniques, it is possible to obtain a statistical perspective on red blood cell (RBC) shape in suspensions, and the inter-relationship with protein interactions and dynamics inside the confinement of the cell membrane. In this study, we examined the ultrastructure of RBC and protein-protein interactions of haemoglobin (Hb) in them using ultra-small-angle neutron scattering and small-angle neutron scattering (SANS). In addition, we used the neutron backscattering method to access Hb motion on the ns time scale and Å length scale. Quasi-elastic neutron scattering (QENS) experiments were performed to measure diffusive motion of Hb in RBCs and in an RBC lysate. By using QENS, we probed both internal Hb dynamics and global protein diffusion, on the accessible time scale and length scale by QENS. Shape changes of RBCs and variation of intracellular Hb concentration were induced by addition of the Na+-selective ionophore monensin and the K+-selective one, valinomycin. The experimental SANS and QENS results are discussed within the framework of crowded protein solutions, where free motion of Hb is obstructed by mutual interactions.
Collapse
|
research-article |
5 |
4 |
15
|
Palacio-Castañeda V, Dumas S, Albrecht P, Wijgers TJ, Descroix S, Verdurmen WPR. A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments. Cancers (Basel) 2021; 13:cancers13102461. [PMID: 34070171 PMCID: PMC8158470 DOI: 10.3390/cancers13102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Engineered proteins possess a great therapeutic potential, but the development of such therapies is impeded during preclinical studies by the lack of in vitro models that accurately simulate the human physiology. Animal models, on the other hand, also have difficulties predicting human responses, and are ethically concerning. In this study, we employed a hybrid approach where we combined mathematical modeling with 3D in vitro models that mimic aspects of the tumor microenvironment, in order to simulate the delivery of therapeutic proteins targeting cancer cells and to predict the biological activity. By cross-comparing simulated and experimental data from 3D models, we were able to correctly predict the best dose needed to deliver toxic proteins specifically to tumor cells, while leaving the surrounding non-tumor cells untouched. This study shows the potential of combining computational approaches with novel in vitro models to advance the development of protein therapeutics. Abstract To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s−1 and 2 µm2 ·s−1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.
Collapse
|
Journal Article |
4 |
3 |
16
|
Lurio LB, Thurston GM, Zhang Q, Narayanan S, Dufresne EM. Use of continuous sample translation to reduce radiation damage for XPCS studies of protein diffusion. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:490-498. [PMID: 33650561 DOI: 10.1107/s1600577521000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.
Collapse
|
|
4 |
2 |
17
|
Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy. Int J Mol Sci 2022; 23:ijms23020778. [PMID: 35054961 PMCID: PMC8775774 DOI: 10.3390/ijms23020778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.
Collapse
|
|
3 |
1 |
18
|
Liu D, Qiu Y, Li Q, Zhang H. Atomistic Simulation of Lysozyme in Solutions Crowded by Tetraethylene Glycol: Force Field Dependence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072110. [PMID: 35408509 PMCID: PMC9000840 DOI: 10.3390/molecules27072110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
The behavior of biomolecules in crowded environments remains largely unknown due to the accuracy of simulation models and the limited experimental data for comparison. Here we chose a small crowder of tetraethylene glycol (PEG-4) to investigate the self-crowding of PEG-4 solutions and molecular crowding effects on the structure and diffusion of lysozyme at varied concentrations from dilute water to pure PEG-4 liquid. Two Amber-like force fields of Amber14SB and a99SB-disp were examined with TIP3P (fast diffusivity and low viscosity) and a99SB-disp (slow diffusivity and high viscosity) water models, respectively. Compared to the Amber14SB protein simulations, the a99SB-disp model yields more coordinated water and less PEG-4 molecules, less intramolecular hydrogen bonds (HBs), more protein-water HBs, and less protein-PEG HBs as well as stronger interactions and more hydrophilic and less hydrophobic contacts with solvent molecules. The a99SB-disp model offers comparable protein-solvent interactions in concentrated PEG-4 solutions to that in pure water. The PEG-4 crowding leads to a slow-down in the diffusivity of water, PEG-4, and protein, and the decline in the diffusion from atomistic simulations is close to or faster than the hard sphere model that neglects attractive interactions. Despite these differences, the overall structure of lysozyme appears to be maintained well at different PEG-4 concentrations for both force fields, except a slightly large deviation at 370 K at low concentrations with the a99SB-disp model. This is mainly attributed to the strong intramolecular interactions of the protein in the Amber14SB force field and to the large viscosity of the a99SB-disp water model. The results indicate that the protein force fields and the viscosity of crowder solutions affect the simulation of biomolecules under crowding conditions.
Collapse
|
|
3 |
|
19
|
Ford CT. PD-1 Targeted Antibody Discovery Using AI Protein Diffusion. Technol Cancer Res Treat 2024; 23:15330338241275947. [PMID: 39228166 PMCID: PMC11375674 DOI: 10.1177/15330338241275947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
The programmed cell death protein 1 (PD-1, CD279) is an important therapeutic target in many oncological diseases. This checkpoint protein inhibits T lymphocytes from attacking other cells in the body and thus blocking it improves the clearance of tumor cells by the immune system. While there are already multiple FDA-approved anti-PD-1 antibodies, including nivolumab (Opdivo® from Bristol-Myers Squibb) and pembrolizumab (Keytruda® from Merck), there are ongoing efforts to discover new and improved checkpoint inhibitor therapeutics. In this study, we present multiple anti-PD-1 antibody fragments that were derived computationally using protein diffusion and evaluated through our scalable, in silico pipeline. Here we present nine synthetic Fv structures that are suitable for further empirical testing of their anti-PD-1 activity due to desirable predicted binding performance.
Collapse
|
research-article |
1 |
|
20
|
Kalyana Sundaram RV, Bera M, Coleman J, Weerakkody JS, Krishnakumar SS, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single-Molecule Investigations: Plasma Membrane on a Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205567. [PMID: 36328714 DOI: 10.1002/smll.202205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.
Collapse
|
|
3 |
|
21
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
|
Review |
4 |
|