1
|
Tu S, Guo SJ, Chen CS, Liu CX, Jiang HW, Ge F, Deng JY, Zhou YM, Czajkowsky DM, Li Y, Qi BR, Ahn YH, Cole PA, Zhu H, Tao SC. YcgC represents a new protein deacetylase family in prokaryotes. eLife 2015; 4. [PMID: 26716769 PMCID: PMC4709262 DOI: 10.7554/elife.05322] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2015] [Indexed: 01/08/2023] Open
Abstract
Reversible lysine acetylation is one of the most important protein posttranslational modifications that plays essential roles in both prokaryotes and eukaryotes. However, only a few lysine deacetylases (KDACs) have been identified in prokaryotes, perhaps in part due to their limited sequence homology. Herein, we developed a ‘clip-chip’ strategy to enable unbiased, activity-based discovery of novel KDACs in the Escherichia coli proteome. In-depth biochemical characterization confirmed that YcgC is a serine hydrolase involving Ser200 as the catalytic nucleophile for lysine deacetylation and does not use NAD+ or Zn2+ like other established KDACs. Further, in vivo characterization demonstrated that YcgC regulates transcription by catalyzing deacetylation of Lys52 and Lys62 of a transcriptional repressor RutR. Importantly, YcgC targets a distinct set of substrates from the only known E. coli KDAC CobB. Analysis of YcgC’s bacterial homologs confirmed that they also exhibit KDAC activity. YcgC thus represents a novel family of prokaryotic KDACs. DOI:http://dx.doi.org/10.7554/eLife.05322.001 After proteins have been made, they can be modified in several ways. For example, chemical tags called acetyl groups may be added to (and later removed from) the protein to regulate cell activities such as aging and metabolism. Enzymes are proteins that help catalyze the reactions that add or remove the acetyl tags on certain “substrate” proteins. In the bacteria species Escherichia coli, many enzymes that help to add acetyl groups to proteins have been discovered. However, only a single E. coli “deacetylase” enzyme that removes the acetyl group has been identified. Now, Tu, Guo, Chen et al. have devised a technique to identify new deacetylases, called the “clip-chip” approach. In this method, thousands of proteins that are potential deacetylases are arrayed on a glass slide, and substrate proteins are immobilized on another slide. The two slides are then clipped together face-to-face, allowing the potential enzymes to transfer to the substrate slide and interact with the substrates. Using this approach, Tu, Guo, Chen et al. identified a protein called YcgC as a deacetylase in bacteria. Further characterization experiments revealed that YcgC works in a different way to other known deacetylases, and that it targets different substrates to the previously known E. coli deacetylase. Tu, Guo, Chen et al. found that the equivalents of YcgC in other bacteria species are also deacetylases; these enzymes therefore represent a new deacetylase family. In the future, the clip-chip approach could be used to discover new members of other enzyme families. DOI:http://dx.doi.org/10.7554/eLife.05322.002
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
40 |
2
|
Antibody landscape against SARS-CoV-2 reveals significant differences between non-structural/accessory and structural proteins. Cell Rep 2021; 36:109391. [PMID: 34242574 PMCID: PMC8233850 DOI: 10.1016/j.celrep.2021.109391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023] Open
Abstract
The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
31 |
3
|
Ndungo E, Randall A, Hazen TH, Kania DA, Trappl-Kimmons K, Liang X, Barry EM, Kotloff KL, Chakraborty S, Mani S, Rasko DA, Pasetti MF. A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 2018; 3:e00260-18. [PMID: 30068560 PMCID: PMC6070737 DOI: 10.1128/msphere.00260-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shigella spp. are a major cause of diarrhea and dysentery in children under 5 years old in the developing world. The development of an effective vaccine remains a public health priority, necessitating improved understanding of immune responses to Shigella and identification of protective antigens. We report the development of a core Shigella proteome microarray consisting of 2,133 antigen targets common to all Shigella species. We evaluated the microarray with serum samples from volunteers immunized with either an inactivated whole-cell S. flexneri serotype 2a (Sf2aWC) vaccine or a live attenuated S. flexneri 2a vaccine strain (CVD 1204) or challenged with wild-type S. flexneri 2a (Sf2a challenge). Baseline reactivities to most antigens were detected postintervention in all three groups. Similar immune profiles were observed after CVD 1204 vaccination and Sf2a challenge. Antigens with the largest increases in mean reactivity postintervention were members of the type three secretion system (T3SS), some of which are regarded as promising vaccine targets: these are the invasion plasmid antigens (Ipas) IpaB, IpaC, and IpaD. In addition, new immunogenic targets (IpaA, IpaH, and SepA) were identified. Importantly, immunoreactivities to antigens in the microarray correlated well with antibody titers determined by enzyme-linked immunosorbent assay (ELISA), validating the use of the microarray platform. Finally, our analysis uncovered an immune signature consisting of three conserved proteins (IpaA, IpaB, and IpaC) that was predictive of protection against shigellosis. In conclusion, the Shigella proteome microarray is a robust platform for interrogating serological reactivity to multiple antigens at once and identifying novel targets for the development of broadly protective vaccines.IMPORTANCE Each year, more than 180 million cases of severe diarrhea caused by Shigella occur globally. Those affected (mostly children in poor regions) experience long-term sequelae that severely impair quality of life. Without a licensed vaccine, the burden of disease represents a daunting challenge. An improved understanding of immune responses to Shigella is necessary to support ongoing efforts to identify a safe and effective vaccine. We developed a microarray containing >2,000 proteins common to all Shigella species. Using sera from human adults who received a killed whole-cell or live attenuated vaccine or were experimentally challenged with virulent organisms, we identified new immune-reactive antigens and defined a T3SS protein signature associated with clinical protection.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
29 |
4
|
Aggarwal S, Acharjee A, Mukherjee A, Baker MS, Srivastava S. Role of Multiomics Data to Understand Host-Pathogen Interactions in COVID-19 Pathogenesis. J Proteome Res 2021; 20:1107-1132. [PMID: 33426872 PMCID: PMC7805606 DOI: 10.1021/acs.jproteome.0c00771] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Human infectious diseases are contributed equally by the host immune system's efficiency and any pathogens' infectivity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the coronavirus strain causing the respiratory pandemic coronavirus disease 2019 (COVID-19). To understand the pathobiology of SARS-CoV-2, one needs to unravel the intricacies of host immune response to the virus, the viral pathogen's mode of transmission, and alterations in specific biological pathways in the host allowing viral survival. This review critically analyzes recent research using high-throughput "omics" technologies (including proteomics and metabolomics) on various biospecimens that allow an increased understanding of the pathobiology of SARS-CoV-2 in humans. The altered biomolecule profile facilitates an understanding of altered biological pathways. Further, we have performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients using bioinformatics tools. Our analysis deciphered alterations in the immune response, fatty acid, and amino acid metabolism and other pathways that cumulatively result in COVID-19 disease, including symptoms such as hyperglycemic and hypoxic sequelae.
Collapse
|
review-article |
4 |
22 |
5
|
Proteomic identification of the oncoprotein STAT3 as a target of a novel Skp1 inhibitor. Oncotarget 2018; 8:2681-2693. [PMID: 27835873 PMCID: PMC5356833 DOI: 10.18632/oncotarget.13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The S phase kinase-associated protein 1 (Skp1), an adaptor protein of the Skp1-Cul1-F-box protein complex, binds the ubiquitin E3 ligase Skp2 and is critical to its biological functions. Targeting of Skp1 by a small compound 6-O-angeloylplenolin (6-OAP) results in dissociation and degradation of Skp2 and mitotic arrest of lung cancer cells. Here, by using a proteome microarray containing 16,368 proteins and a biotinylated 6-OAP, we identified 99 proteins that could bind 6-OAP, with Skp1 and STAT3 sitting at the central position of the 6-OAP interactome. 6-OAP formed hydrogen bonds with Ser611/Ser613/Arg609 at the SH2 domain of STAT3 and inhibited the constitutive and interleukin-6-induced phosphorylated STAT3 (pSTAT3), leading to inhibitory effects on lung cancer cells and suppression of Skp2 transcription. STAT3 was overexpressed in tumor samples compared to counterpart normal lung tissues and was inversely associated with prognosis of the patients. 6-OAP inhibited tumor growth in SCID mice intravenously injected with lung cancer cells, and downregulated both STAT3 and Skp2 in tumor samples. Given that 6-OAP is a Skp1 inhibitor, our data suggest that this compound may target Skp1 and STAT3 to suppress Skp2, augmenting its anti-lung cancer activity.
Collapse
|
Journal Article |
7 |
19 |
6
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
14 |
7
|
Kilmury SLN, Twine SM. The francisella tularensis proteome and its recognition by antibodies. Front Microbiol 2011; 1:143. [PMID: 21687770 PMCID: PMC3109489 DOI: 10.3389/fmicb.2010.00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/18/2010] [Indexed: 01/31/2023] Open
Abstract
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
Collapse
|
review-article |
14 |
13 |
8
|
Liu CX, Wu FL, Jiang HW, He X, Guo SJ, Tao SC. Global identification of CobB interactors by an Escherichia coli proteome microarray. Acta Biochim Biophys Sin (Shanghai) 2014; 46:548-55. [PMID: 24907045 DOI: 10.1093/abbs/gmu038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein acetylation is one of the most abundant post-translational modifications and plays critical roles in many important biological processes. Based on the recent advances in mass spectrometry technology, in bacteria, such as Escherichia coli, tremendous acetylated proteins and acetylation sites have been identified. However, only one protein deacetylase, i.e. CobB, has been identified in E. coli so far. How CobB is regulated is still elusive. One right strategy to study the regulation of CobB is to globally identify its interacting proteins. In this study, we used a proteome microarray containing ∼4000 affinity-purified E. coli proteins to globally identify CobB interactors, and finally identified 183 binding proteins of high stringency. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in carboxylic acid metabolic process and hexose catabolic process, and also enriched in transferase and hydrolase. We further used bio-layer interferometry to analyze the interaction and quantify the kinetic parameters of putative CobB interactors, and clearly showed that CobB could strongly interact with TopA and AccC. The novel CobB interactors that we identified could serve as a start point for further functional analysis.
Collapse
|
Validation Study |
11 |
13 |
9
|
Laudański P, Rogalska G, Warzecha D, Lipa M, Mańka G, Kiecka M, Spaczyński R, Piekarski P, Banaszewska B, Jakimiuk A, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Neuman T, Adler P, Peterson H, Salumets A, Wielgos M. Autoantibody screening of plasma and peritoneal fluid of patients with endometriosis. Hum Reprod 2023; 38:629-643. [PMID: 36749097 DOI: 10.1093/humrep/dead011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/26/2022] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Are there specific autoantibody profiles in patients with endometriosis that are different from those in controls? SUMMARY ANSWER This study did not reveal a significantly higher prevalence of autoantibodies in the studied groups of patients. WHAT IS KNOWN ALREADY Various inflammatory factors are postulated to be involved in the pathomechanisms of endometriosis, and a potential link exists with autoimmune diseases, which may also play an important role. As the diagnosis of endometriosis remains invasive, it can only be confirmed using laparoscopy with histopathological examination of tissues. Numerous studies have focused on identifying useful biomarkers to confirm the disease, but without unequivocal effects. Autoantibodies are promising molecules that serve as potential prognostic factors. STUDY DESIGN, SIZE, DURATION A multicentre, cross-sectional study was conducted over 18 months (between 2018 and 2019), at eight Departments of Obstetrics and Gynaecology in several cities across Poland on 137 patients undergoing laparoscopic examination for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTINGS, METHODS During laparoscopy, we obtained plasma samples from 137 patients and peritoneal fluid (PF) samples from 98 patients. Patients with autoimmune diseases were excluded from the study. Autoantibody profiling was performed using HuProt v3.1 human proteome microarrays. MAIN RESULTS AND THE ROLE OF CHANCE We observed no significant differences in the expression of autoantibodies in the plasma or PF between the endometriosis and control groups. The study revealed that in the PF of women with Stage II endometriosis, compared with other stages, there were significantly higher reactivity signals for ANAPC15 and GABPB1 (adj. P < 0.016 and adj. P < 0.026, respectively; logFC > 1 in both cases). Comparison of the luteal and follicular phases in endometriosis patients revealed that levels of NEIL1 (adj. P < 0.029), MAGEB4 (adj. P < 0.029), and TNIP2 (adj. P < 0.042) autoantibody signals were significantly higher in the luteal phase than in the follicular phase in PF samples of patients with endometriosis. No differences were observed between the two phases of the cycle in plasma or between women with endometriosis and controls. Clustering of PF and plasma samples did not reveal unique autoantibody profiles for endometriosis; however, comparison of PF and plasma in the same patient showed a high degree of concordance. LIMITATIONS, REASONS FOR CAUTION Although this study was performed using the highest-throughput protein array available, it does not cover the entire human proteome and cannot be used to study potentially promising post-translational modifications. Autoantibody levels depend on numerous factors, such as infections; therefore the autoantibody tests should be repeated for more objective results. WIDER IMPLICATIONS OF THE FINDINGS Although endometriosis has been linked to different autoimmune diseases, it is unlikely that autoimmune responses mediated by specific autoantibodies play a pivotal role in the pathogenesis of this inflammatory disease. Our study shows that in searching for biomarkers of endometriosis, it may be more efficient to use higher-throughput proteomic microarrays, which may allow the detection of potentially new biomarkers. Only research on such a scale, and possibly with different technologies, can help discover biomarkers that will change the method of endometriosis diagnosis. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by a grant from the Polish Ministry of Health (grant no. 6/6/4/1/NPZ/2017/1210/1352). It was also funded by the Estonian Research Council (grant PRG1076) and the Horizon 2020 Innovation Grant (ERIN; grant no. EU952516), Enterprise Estonia (grant no. EU48695), and MSCA-RISE-2020 project TRENDO (grant no. 101008193). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
|
|
2 |
8 |
10
|
Shah P, Wu WS, Chen CS. Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays. Int J Mol Sci 2019; 20:ijms20174218. [PMID: 31466342 PMCID: PMC6747642 DOI: 10.3390/ijms20174218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have potential antifungal activities; however, their intracellular protein targets are poorly reported. Proteome microarray is an effective tool with high-throughput and rapid platform that systematically identifies the protein targets. In this study, we have used yeast proteome microarrays for systematical identification of the yeast protein targets of Lactoferricin B (Lfcin B) and Histatin-5. A total of 140 and 137 protein targets were identified from the triplicate yeast proteome microarray assays for Lfcin B and Histatin-5, respectively. The Gene Ontology (GO) enrichment analysis showed that Lfcin B targeted more enrichment categories than Histatin-5 did in all GO biological processes, molecular functions, and cellular components. This might be one of the reasons that Lfcin B has a lower minimum inhibitory concentration (MIC) than Histatin-5. Moreover, pairwise essential proteins that have lethal effects on yeast were analyzed through synthetic lethality. A total of 11 synthetic lethal pairs were identified within the protein targets of Lfcin B. However, only three synthetic lethal pairs were identified within the protein targets of Histatin-5. The higher number of synthetic lethal pairs identified within the protein targets of Lfcin B might also be the reason for Lfcin B to have lower MIC than Histatin-5. Furthermore, two synthetic lethal pairs were identified between the unique protein targets of Lfcin B and Histatin-5. Both the identified synthetic lethal pairs proteins are part of the Spt-Ada-Gcn5 acetyltransferase (SAGA) protein complex that regulates gene expression via histone modification. Identification of synthetic lethal pairs between Lfcin B and Histatin-5 and their involvement in the same protein complex indicated synergistic combination between Lfcin B and Histatin-5. This hypothesis was experimentally confirmed by growth inhibition assay.
Collapse
|
Journal Article |
6 |
8 |
11
|
Pearson MS, Tedla BA, Becker L, Nakajima R, Jasinskas A, Mduluza T, Mutapi F, Oeuvray C, Greco B, Sotillo J, Felgner PL, Loukas A. Immunomics-Guided Antigen Discovery for Praziquantel-Induced Vaccination in Urogenital Human Schistosomiasis. Front Immunol 2021; 12:663041. [PMID: 34113343 PMCID: PMC8186320 DOI: 10.3389/fimmu.2021.663041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
6 |
12
|
Zhuang L, Huang C, Ning Z, Yang L, Zou W, Wang P, Cheng CS, Meng Z. Circulating tumor-associated autoantibodies as novel diagnostic biomarkers in pancreatic adenocarcinoma. Int J Cancer 2023; 152:1013-1024. [PMID: 36274627 DOI: 10.1002/ijc.34334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023]
Abstract
To develop a superior diagnostic approach for pancreatic adenocarcinoma (PAAC), the present study prospectively included 338 PAAC patients, 294 normal healthy volunteers (NHV), 122 chronic pancreatitis (CP) patients and 100 patients with non-PAAC malignancies. In the identification phase, HuProt Human Proteome Microarray, comprising 21 065 proteins, was used to identify serum tumor-associated autoantibodies (TAAbs) candidates differentiating PAAC (n = 30) from NHV (n = 30). A PAAC-focused array containing 165 differentially expressed TAAbs identified was subsequently adopted in the validation phase (n = 712) for specificity and sensitivities. The multivariate TAAbs signature for differentiation PAAC from controls (NHV + CP) identified five candidates, namely the IgG-type TAAbs against CLDN17, KCNN3, SLAMF7, SLC22A11 and OR51F2. Multivariate logistic performance model of y = (22.893 × CA19-9 + 0.68 × CLDN17 - 4.012) showed a significant better diagnostic accuracy than that of CA19-9 and CLDN17 in differentiating PAAC from controls (NHV + CP) (AUC = 0.97, 0.92 and 0.82, respectively, P-value < .0001). We further tested the autoantigen level of CLDN17 by ELISA in 82 sera samples from PAAC (n = 42), CP (n = 24) and NHV (n = 16). Similarly, the model showed superior diagnostic performance than that of CA19-9 and CLDN17 (AUC = 0.93, 0.83 and 0.81, respectively, P-value < .0001) in differentiating PAAC from controls. In conclusion, our study is the first to characterize the circulating TAAbs signatures in PAAC. The results showed that CLDN17 combined with CA19-9 provided potentially clinical value and may serve as noninvasive novel biomarkers for PAAC diagnosis.
Collapse
|
|
2 |
6 |
13
|
Qi H, Xue JB, Lai DY, Li A, Tao SC. Current advances in antibody-based serum biomarker studies: From protein microarray to phage display. Proteomics Clin Appl 2022; 16:e2100098. [PMID: 36071670 DOI: 10.1002/prca.202100098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aims to summarize the technological advances in the field of antibody-based biomarker studies by proteome microarray and phage display. In addition, the possible development directions of this field are also discussed. EXPERIMENTAL DESIGN We have focused on the antibody profiling by proteome microarray and phage display, including the technological advances, the tools/resources constructed, and the characteristics of both platforms. RESULTS With the help of tools/resources and technological advances in proteome microarray and phage display, the efficiency of profiling antibody-based biomarkers in serum samples has been greatly improved. CONCLUSIONS In the past few years, proteome microarray and phage display, especially the latter one, have already demonstrated their capacity and efficiency for biomarker identification. In the near future, we believe that more antibody-based biomarkers could be identified, and some of them could eventually be developed into real clinical applications.
Collapse
|
Review |
3 |
5 |
14
|
Peng Z, Chen L, Zhang H. Serum proteomic analysis of Mycobacterium tuberculosis antigens for discriminating active tuberculosis from latent infection. J Int Med Res 2020; 48:300060520910042. [PMID: 32216499 PMCID: PMC7133403 DOI: 10.1177/0300060520910042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
Research Support, Non-U.S. Gov't |
5 |
5 |
15
|
Systematic Screening of Penetratin's Protein Targets by Yeast Proteome Microarrays. Int J Mol Sci 2022; 23:ijms23020712. [PMID: 35054898 PMCID: PMC8775591 DOI: 10.3390/ijms23020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have distinct properties to translocate across cell envelope. The key property of CPPs to translocation with attached molecules has been utilized as vehicles for the delivery of several potential drug candidates that illustrate the significant effect in in-vitro experiment but fail in in-vivo experiment due to selectively permeable nature of cell envelop. Penetratin, a well-known CPP identified from the third α-helix of Antennapedia homeodomain of Drosophila, has been widely used and studied for the delivery of bioactive molecules to treat cancers, stroke, and infections caused by pathogenic organisms. Few studies have demonstrated that penetratin directly possesses antimicrobial activities against bacterial and fungal pathogens; however, the mechanism is unknown. In this study, we have utilized the power of high-throughput Saccharomyces cerevisiae proteome microarrays to screen all the potential protein targets of penetratin. Saccharomyces cerevisiae proteome microarrays assays of penetratin followed by statistical analysis depicted 123 Saccharomyces cerevisiae proteins as the protein targets of penetratin out of ~5800 Saccharomyces cerevisiae proteins. To understand the target patterns of penetratin, enrichment analyses were conducted using 123 protein targets. In biological process: ribonucleoprotein complex biogenesis, nucleic acid metabolic process, actin filament-based process, transcription, DNA-templated, and negative regulation of gene expression are a few significantly enriched terms. Cytoplasm, nucleus, and cell-organelles are enriched terms for cellular component. Protein-protein interactions network depicted ribonucleoprotein complex biogenesis, cortical cytoskeleton, and histone binding, which represent the major enriched terms for the 123 protein targets of penetratin. We also compared the protein targets of penetratin and intracellular protein targets of antifungal AMPs (Lfcin B, Histatin-5, and Sub-5). The comparison results showed few unique proteins between penetratin and AMPs. Nucleic acid metabolic process and cellular component disassembly were the common enrichment terms for penetratin and three AMPs. Penetratin shows unique enrichment items that are related to DNA biological process. Moreover, motif enrichment analysis depicted different enriched motifs in the protein targets of penetratin, LfcinB, Histatin-5, and Sub-5.
Collapse
|
|
3 |
3 |
16
|
Systematic Identification of Protein Targets of Sub5 Using Saccharomyces cerevisiae Proteome Microarrays. Int J Mol Sci 2021; 22:ijms22020760. [PMID: 33451135 PMCID: PMC7828587 DOI: 10.3390/ijms22020760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are intensively studied in terms of alternative drugs. Sub5 is a synthetic 12-mer AMP with substitutions of five amino acids of bactenecin 2A (Bac2A), a linear-ized bactenecin variant of bovine. Sub5 is highly effective against fungi with an ability to trans-locate cell membrane, but its targets are unknown. Systematic analysis of Sub5 targets will facil-itate our understanding on its mechanism of action. In this study, we used high-throughput Saccharomyces cerevisiae proteome microarrays to explore the potential protein targets of Sub5. The screening results showed 128 potential protein targets of Sub5. Bioinformatics analysis of protein targets of Sub5 revealed significant gene ontology (GO) enrichment in actin related pro-cess of “actin filament-based process”, “actin filament organization”, “actin cortical patch or-ganization”, regulation of “actin filament bundle assembly”. Moreover, the other enriched cat-egories in GO enrichment mostly contained actin associate proteins. In total, 11 actin-associated proteins were identified in the protein targets of Sub5. Protein family (PFAM) enrichment anal-ysis shows protein domain enriched in actin binding, i.e., “Cytoskeletal-regulatory complex EF hand (helix E-loop-helix F motif)”. Being consistent with GO analysis, Search Tool for the Re-trieval of Interacting Genes/Proteins (STRING) analysis of the protein targets of Sub5 showed ac-tin network with involvement of 15 protein targets. Along with actin-network, STRING analysis showed protein–protein interaction network in ribonucleoprotein, transcription and translation, chromosome, histone, and ubiquitin related, DNA repair, and chaperone. Multiple Expression motifs for Motif Elicitation (MEME) suite provided a consensus binding motif of [ED][ED]EEE[ED][ED][ED][ED][ED], in total of 75 protein targets of Sub5. This motif was present in 9 out of 15 actin-related proteins identified among protein targets of Sub5.
Collapse
|
Journal Article |
4 |
3 |
17
|
Kang S, Zhou L, Wang Y, Li H, Zhang H. Identification of Differential Expression Cytokines in Hemolysis, Elevated Liver Enzymes, and Low Platelet Syndrome by Proteome Microarray Analysis and Further Verification. Cell Transplant 2021; 30:963689720975398. [PMID: 33757334 PMCID: PMC7995311 DOI: 10.1177/0963689720975398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To screen the differential expression cytokines (DECs) in hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome, establish its differential cytokines spectra, and provide the clues for its diagnosis and pathogenic mechanism researches. Sera from four HELLP syndrome patients and four healthy controls were detected by proteome microarray. Then the analysis of Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) network were performed and possible hub proteins were selected out, further verified by Enzyme Linked Immunosorbent Assay (ELISA) in sera from 21 HELLP syndrome patients and 21 healthy controls. Thirty DECs were defined according to P-value and fold change between HELLP group and control group. GO enrichment analysis showed that DECs were mainly involved in the regulation of inflammatory response and have relationship to growth factor binding, transmembrane receptor protein kinase, and cytokine receptor activity. Seven possible hub proteins were defined by PPI analysis, including IGFBP-3/Follistatin-like 1/FLRG/Fetuin A and MMP-13/Thrombospondin-5/Aggrecan. ELISA showed higher serum levels of Fetuin A/IGFBP-3/FLGR/MMP-13/Thrombospondin-5 in HELLP group than those in controls, while the levels of Follistatin-like 1 and Aggrecan were lower in HELLP patients (all P < 0.05 or <0.01).The serological DECs spectra of HELLP syndrome was established and seven possible hub proteins that may be more closely related to the disease have been verified, providing new clues for its pathogenesis, diagnosis, and clinical treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
1 |
18
|
Clark LF, Kodadek T. And then there were two. eLife 2015; 4. [PMID: 26716612 PMCID: PMC4744185 DOI: 10.7554/elife.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022] Open
Abstract
A second enzyme that removes acetyl groups from lysine residues in E. coli been discovered and represents the founding member of a new enzyme family.
Collapse
|
Comment |
10 |
|
19
|
Wu M, Liu J, Wang X, Zhang X, Liang T, Chen L, Huang T, Li Y, Zheng C, Yang Y, Wang J, Yu X, Guo L, Yang J, Ren L. Profiling of SARS-CoV-2 neutralizing antibody-associated antigenic peptides signature using proteome microarray. MedComm (Beijing) 2023; 4:e361. [PMID: 37667740 PMCID: PMC10475218 DOI: 10.1002/mco2.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023] Open
Abstract
The profile of antibodies against antigenic epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during neutralizing antibody (NAb) decay has not been clarified. Using a SARS-CoV-2 proteome microarray that contained viral antigenic peptides, we analyzed the characteristics of the humoral response in patients with coronavirus disease 19 (COVID-19) in a longitudinal study. A total of 89 patients were recruited, and 226 plasma samples were serially collected in 2020. In the antigenic peptide microarray, the level of immunoglobulin G (IgG) antibodies against peptides within the S2 subunit (S-82) and a conserved gene region in variants of interest, open reading frame protein 10 (ORF10-3), were closely associated with the presence of SARS-CoV-2 NAbs. In an independent evaluation cohort of 232 plasma samples collected from 116 COVID-19 cases in 2020, S82-IgG titers were higher in NAbs-positive samples (p = 0.002) than in NAbs-negative samples using enzyme-linked immunosorbent assay. We further collected 66 plasma samples from another cohort infected by Omicron BA.1 virus in 2022. Compared with the samples with lower S82-IgG titers, NAb titers were significantly higher in the samples with higher S82-IgG titers (p = 0.04). Our findings provide insights into the understanding of the decay-associated signatures of SARS-CoV-2 NAbs.
Collapse
|
research-article |
2 |
|
20
|
Hao W, Zhao D, Meng Y, Yang M, Ma M, Hu J, Liu J, Qin X. Screening of Cancer-Specific Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma Based on a Proteome Microarray. Mol Cell Proteomics 2024; 23:100872. [PMID: 39489219 DOI: 10.1016/j.mcpro.2024.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with one of the highest mortality rates among cancers, rendering its early diagnosis clinically invaluable. Serum biomarkers, specifically alpha-fetoprotein (AFP), represent the most promising and widely used diagnostic biomarkers for HCC. However, its detection rate is low in the early stages of HCC progression, and distinguishing specific false positives for other liver-related diseases, such as cirrhosis and acute hepatitis, remains challenging. Therefore, this study was conducted to identify biomarkers for hepatitis B (HBV)-related liver diseases by screening differentially expressed autoantibodies against tumor-associated antigens (TAAbs). We designed a large-scale multistage investigation, encompassing initial screening, HCC-focused, and ELISA validation cohorts to identify potential TAAbs in HBV-related liver diseases, spanning from healthy control (HC) individuals to patients with chronic hepatitis B (CHB), hepatitis B-related cirrhosis (HBC), and HCC, using protein microarray technology. The differential biological characteristics of TAAbs were analyzed using bioinformatics analysis. Validation of tumor-specific biomarkers for HCC was performed using ELISA. In the screening cohort, 547 candidate TAAbs were identified in the HCC group compared to those in the HC group. In the HCC-focused cohort, 64, 61, and 65 candidate TAAbs were identified in the CHB, HBC, and HCC groups, respectively, compared to those in the HC group. Thirty-four proteins exhibited continuously elevated expression from HCs to patients with CHB, HBC, and HCC. Among these, nine were identified as cancer-specific proteins. In the validation cohort, UBE2Z, CNOT3, and EID3 were correlated with liver function indicators in patients with hepatitis B-related HCC. Overall, UBE2Z, CNOT3, and EID3 emerged as cancer-specific biomarkers for HBV-related liver disease, providing a scientific basis for clinical application.
Collapse
|
|
1 |
|
21
|
Sun G, Ye H, Yang Q, Zhu J, Qiu C, Shi J, Dai L, Wang K, Zhang J, Wang P. Using Proteome Microarray and Gene Expression Omnibus Database to Screen Tumour-Associated Antigens to Construct the Optimal Diagnostic Model of Oesophageal Squamous Cell Carcinoma. Clin Oncol (R Coll Radiol) 2023; 35:e582-e592. [PMID: 37433700 DOI: 10.1016/j.clon.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
AIMS Autoantibodies against tumour-associated antigens (TAAs) are promising biomarkers for early immunodiagnosis of cancers. This study was designed to screen and verify autoantibodies against TAAs in sera as diagnostic biomarkers for oesophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS The customised proteome microarray based on cancer driver genes and the Gene Expression Omnibus database were used to identify potential TAAs. The expression levels of the corresponding autoantibodies in serum samples obtained from 243 ESCC patients and 243 healthy controls were investigated by enzyme-linked immunosorbent assay (ELISA). In total, 486 serum samples were randomly divided into the training set and the validation set in the ratio of 2:1. Logistic regression analysis, recursive partition analysis and support vector machine were performed to establish different diagnostic models. RESULTS Five and nine candidate TAAs were screened out by proteome microarray and bioinformatics analysis, respectively. Among these 14 anti-TAAs autoantibodies, the expression level of nine (p53, PTEN, GNA11, SRSF2, CXCL8, MMP1, MSH6, LAMC2 and SLC2A1) anti-TAAs autoantibodies in the cancer patient group was higher than that in the healthy control group based on the results from ELISA. In the three constructed models, a logistic regression model including four anti-TAA autoantibodies (p53, SLC2A1, GNA11 and MMP1) was considered to be the optimal diagnosis model. The sensitivity and specificity of the model in the training set and the validation set were 70.4%, 72.8% and 67.9%, 67.9%, respectively. The area under the receiver operating characteristic curve for detecting early patients in the training set and the validation set were 0.84 and 0.85, respectively. CONCLUSIONS This approach to screen novel TAAs is feasible, and the model including four autoantibodies could pave the way for the diagnosis of ESCC.
Collapse
|
|
2 |
|
22
|
Lin CC, Chen CS. Bacterial proteome microarray technology in biomedical research. Trends Biotechnol 2025:S0167-7799(24)00361-5. [PMID: 39755450 DOI: 10.1016/j.tibtech.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs). This review highlights significant outcomes from recent studies, focusing on their diverse applications in biomedical research. Notable findings include the identification of novel antigens and diagnostic markers for gastrointestinal infections, autoimmune diseases, and mental health disorders. This technology promises to further elucidate the complex relationship between bacteria and their hosts, ultimately informing the development of new diagnostic, therapeutic, and preventive strategies.
Collapse
|
Review |
1 |
|