Yang H, Wang B, Niu X, Guo GP. Growth of h-BN/graphene heterostructure using
proximity catalysis.
NANOTECHNOLOGY 2021;
32:275602. [PMID:
33761483 DOI:
10.1088/1361-6528/abf196]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this study, a proximity catalysis route was developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils, which shows much improved synthesis efficiency (500 times faster than other routes) and good crystalline quality graphene (large single crystalline length up to 10μm). The key advantage of our synthesis route is the introduction of fresh Cu foil (or Cu foam) into the high-temperature zone using a turntable. At high temperatures, Cu vapor acts as a gaseous catalyst, which can reduce the energy barrier of graphene growth and promote the decomposition of carbon sources. Therefore, after the first layer of hexagonal boron nitride is grown on the Cu substrate, another layer of graphene can be grown by introducing a fresh catalyst. Our calculations have revealed the catalytic effect and graphene growth contribution of Cu vapor evaporated by the suspended catalyst. We also investigated the growth sequence of graphene from 1 to 24 carbon atoms on h-BN/Cu and determined the morphology evolution of these carbon clusters. In this regard, multilayer stacked heterogeneous structures can be synthesized, thus increasing their potential applications in high performance electronic devices and energy harvesting/transition directions.
Collapse