1
|
An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, Chen JZ, Leng CL, Sun Y, Chang D, Tong GZ. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg Infect Dis 2014; 19:1749-55. [PMID: 24188614 PMCID: PMC3837674 DOI: 10.3201/eid1911.130177] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The widely used pseudorabies virus (PRV) Bartha-K61 vaccine has played a key role in the eradication of PRV. Since late 2011, however, a disease characterized by neurologic symptoms and a high number of deaths among newborn piglets has occurred among Bartha-K61–vaccinated pigs on many farms in China. Clinical samples from pigs on 15 farms in 6 provinces were examined. The PRV gE gene was detectable by PCR in all samples, and sequence analysis of the gE gene showed that all isolates belonged to a relatively independent cluster and contained 2 amino acid insertions. A PRV (named HeN1) was isolated and caused transitional fever in pigs. In protection assays, Bartha-K61 vaccine provided 100% protection against lethal challenge with SC (a classical PRV) but only 50% protection against 4 challenges with strain HeN1. The findings suggest that Bartha-K61 vaccine does not provide effective protection against PRV HeN1 infection.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
285 |
2
|
Ye S, Shao K, Li Z, Guo N, Zuo Y, Li Q, Lu Z, Chen L, He Q, Han H. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21571-9. [PMID: 26370151 DOI: 10.1021/acsami.5b06876] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Graphene oxide and its derivatives have been widely explored for their antimicrobial properties due to their high surface-to-volume ratios and unique chemical and physical properties. However, little information is available on their effects on viruses. In this study, we report the broad-spectrum antiviral activity of GO against pseudorabies virus (PRV, a DNA virus) and porcine epidemic diarrhea virus (PEDV, an RNA virus). Our results showed that GO significantly suppressed the infection of PRV and PEDV for a 2 log reduction in virus titers at noncytotoxic concentrations. The potent antiviral activity of both GO and rGO can be attributed to the unique single-layer structure and negative charge. First, GO exhibited potent antiviral activity when conjugated with PVP, a nonionic polymer, but not when conjugated with PDDA, a cationic polymer. Additionally, the precursors Gt and GtO showed much weaker antiviral activity than monolayer GO and rGO, suggesting that the nanosheet structure is important for antiviral properties. Furthermore, GO inactivated both viruses by structural destruction prior to viral entry. The overall results suggest the potential of graphene oxide as a novel promising antiviral agent with a broad and potent antiviral activity.
Collapse
|
|
10 |
219 |
3
|
Liu Q, Wang X, Xie C, Ding S, Yang H, Guo S, Li J, Qin L, Ban F, Wang D, Wang C, Feng L, Ma H, Wu B, Zhang L, Dong C, Xing L, Zhang J, Chen H, Yan R, Wang X, Li W. A novel human acute encephalitis caused by pseudorabies virus variant strain. Clin Infect Dis 2020; 73:e3690-e3700. [PMID: 32667972 DOI: 10.1093/cid/ciaa987] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) is a common pathogen in multiple animal species particularly in pigs. However, PRV infection in humans is rare and to the best of knowledge, PRV has never been isolated from human cases before. METHODS Four acute encephalitis cases in humans were confirmed as PRV infection based on clinical symptoms, laboratory diagnosis, and metagenomic next-generation sequencing (mNGS). Cerebrospinal fluid (CSF) samples were collected and applied for virus isolation. Etiological and genetic characteristics of this PRV human isolate were further determined. RESULTS The patients manifested respiratory dysfunction and acute neurological symptoms. The mNGS revealed PRV specific nucleotide sequences in patients' CSF samples (7-6198 reads and 0.2446%-80.58% coverage). The PRV envelope glycoprotein B antibody, glycoprotein E antibody, and neutralizing antibody were positively detected. For the first time, a PRV strain, designated hSD-1/2019, was isolated and identified from one CSF sample, and transmission electron microscopy revealed hSD-1/2019 had typical morphology similar to swine PRV. Phylogenetic analysis illustrated that hSD-1/2019 was genetically closest to those PRV variant strains currently circulating in pigs in China, and this strain showed similar etiological characteristics to Chinese PRV variant strains, while different from Chinese classical strain. Moreover, hSD-1/2019 showed high pathogenicity and induced acute neurological symptoms in pigs. CONCLUSIONS A PRV strain was isolated from an acute human encephalitis case. This isolate showed close phylogenetic relationships and similar etiological characteristics to Chinese PRV variant strains, implying the great risk of PRV transmission from pigs to humans.
Collapse
|
Journal Article |
5 |
188 |
4
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
|
Review |
10 |
150 |
5
|
Lane MA, White TE, Coutts MA, Jones AL, Sandhu MS, Bloom DC, Bolser DC, Yates BJ, Fuller DD, Reier PJ. Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J Comp Neurol 2008; 511:692-709. [PMID: 18924146 PMCID: PMC2597676 DOI: 10.1002/cne.21864] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although monosynaptic bulbospinal projections to phrenic motoneurons have been extensively described, little is known about the organization of phrenic premotor neurons in the adult rat spinal cord. Because interneurons may play an important role in normal breathing and recovery following spinal cord injury, the present study has used anterograde and transneuronal retrograde tracing to study their distribution and synaptic relations. Exclusive unilateral, first-order labeling of the phrenic motoneuron pool with pseudorabies virus demonstrated a substantial number of second-order, bilaterally distributed cervical interneurons predominantly in the dorsal horn and around the central canal. Combined transneuronal and anterograde tracing revealed ventral respiratory column projections to prephrenic interneurons, suggesting that some propriospinal relays exist between medullary neurons and the phrenic nucleus. Dual-labeling studies with pseudorabies virus recombinants also showed prephrenic interneurons integrated with either contralateral phrenic or intercostal motoneuron pools. The stability of interneuronal pseudorabies virus labeling patterns following lateral cervical hemisection was then addressed. Except for fewer infected contralateral interneurons at the level of the central canal, the number and distribution of phrenic-associated interneurons was not significantly altered 2 weeks posthemisection (i.e., the point at which the earliest postinjury recovery of phrenic activity has been reported). These results demonstrate a heterogeneous population of phrenic-related interneurons. Their connectivity and relative stability after cervical hemisection raise speculation for potentially diverse roles in modulating phrenic function normally and postinjury.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
145 |
6
|
Wu R, Bai C, Sun J, Chang S, Zhang X. Emergence of virulent pseudorabies virus infection in northern China. J Vet Sci 2013; 14:363-5. [PMID: 23820207 PMCID: PMC3788163 DOI: 10.4142/jvs.2013.14.3.363] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022] Open
Abstract
Our investigation was conducted in order to verify a recent severe epidemic at several swine farms in northern China that indicated a newly emerging disease. Evidence confirmed that the epidemic was caused by a virulent Pseudorabies virus infection in swine herds.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
110 |
7
|
Luo AH, Aston-Jones G. Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 2009; 29:748-60. [PMID: 19200068 PMCID: PMC3649071 DOI: 10.1111/j.1460-9568.2008.06606.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a circadian pacemaker that synchronizes a number of vital processes. Although a great deal of research has focused on input pathways to SCN and on the central clock itself, relatively little is known about SCN output signaling pathways. The ventral tegmental area (VTA) has been extensively studied for its influence in motivated learning and, recently, for a potential role in arousal and sleep-wake regulation. Here we present data that SCN indirectly projects to VTA via the medial preoptic nucleus (MPON). Microinjection of the retrograde, transynaptic tracer pseudorabies virus (PRV) in rat VTA consistently labeled SCN neurons at time points indicative of an indirect circuit projection. To specify intermediate relay nuclei between SCN and VTA, putative relays were lesioned 1 week prior to PRV injections in VTA. Unilateral lesions of MPON reduced PRV labeling in SCN by 81.6% in the ipsilateral hemisphere and 75.8% in the contralateral hemisphere. Bilateral lesions of the caudal-dorsal lateral septum, another putative relay nucleus and dorsal injection control, did not significantly reduce PRV labeling in the SCN. Single-unit extracellular recordings under halothane anesthesia revealed a novel population of VTA neurons that selectively fired during the active circadian phase. These results show that SCN provides an indirect circuit pathway to VTA via MPON, and that VTA neurons exhibit a circadian rhythm in their impulse activity. This pathway may function in the circadian regulation of numerous behavioral processes including arousal and motivation.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
89 |
8
|
Yang H, Han H, Wang H, Cui Y, Liu H, Ding S. A Case of Human Viral Encephalitis Caused by Pseudorabies Virus Infection in China. Front Neurol 2019; 10:534. [PMID: 31214104 PMCID: PMC6558170 DOI: 10.3389/fneur.2019.00534] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/03/2019] [Indexed: 11/29/2022] Open
Abstract
We report a human case of viral encephalitis caused by pseudorabies virus (PRV) in China. A 43-year-old man with no previous medical history presented with high-grade fever, headache and tonic-clonic seizures as well as coma. Plain computer tomography (CT) brain imaging showed hypo-density in the bilateral basal ganglia, bilateral occipital lobe, bilateral limbic lobe, and left thalamic. Next-generation sequencing (NGS) confirmed the presence of PRV in cerebral spinal fluid (CSF). Regular polymerase chain reaction (PCR) was applied to confirm the presence of PRV in the CSF and blood. In addition, serological (immunological) tests were used to further validate the presence of PRV in the peripheral blood. This case suggested that it was possible for PRV to result in human central nervous system (CNS) infection, and it is necessary for people to increase awareness of self-protection when contacting animals.
Collapse
|
Case Reports |
6 |
80 |
9
|
Abstract
Brown adipose tissue (BAT) is an important source of thermogenesis which is nearly exclusively dependent on its sympathetic nervous system (SNS) innervation. We previously demonstrated the SNS outflow from brain to BAT using the retrograde SNS-specific transneuronal viral tract tracer, pseudorabies virus (PRV152) and demonstrated the sensory system (SS) inflow from BAT to brain using the anterograde SS-specific transneuronal viral tract tracer, H129 strain of herpes simplex virus-1. Several brain areas were part of both the SNS outflow to, and receive SS inflow from, interscapular BAT (IBAT) in these separate studies suggesting SNS-SS feedback loops. Therefore, we tested whether individual neurons participated in SNS-SS crosstalk by injecting both PRV152 and H129 into IBAT of Siberian hamsters. To define which dorsal root ganglia (DRG) are activated by BAT SNS stimulation, indicated by c-Fos immunoreactivity (IR), we prelabeled IBAT DRG innervating neurons by injecting the retrograde tracer Fast Blue (FB) followed 1 week later by intra-BAT injections of the specific β3-adrenoceptor agonist CL316,243 in one pad and the vehicle in the contralateral pad. There were PRV152+H129 dually infected neurons across the neuroaxis with highest densities in the raphe pallidus nucleus, nucleus of the solitary tract, periaqueductal gray, hypothalamic paraventricular nucleus, and medial preoptic area, sites strongly implicated in the control of BAT thermogenesis. CL316,243 significantly increased IBAT temperature, afferent nerve activity, and c-Fos-IR in C2-C4 DRG neurons ipsilateral to the CL316,243 injections versus the contralateral side. The neuroanatomical reality of the SNS-SS feedback loops suggests coordinated and/or multiple redundant control of BAT thermogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
79 |
10
|
Nguyen NLT, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2014; 306:R375-86. [PMID: 24452544 DOI: 10.1152/ajpregu.00552.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Collapse
|
Research Support, N.I.H., Extramural |
11 |
71 |
11
|
Comparative Pathology of Pseudorabies in Different Naturally and Experimentally Infected Species-A Review. Pathogens 2020; 9:pathogens9080633. [PMID: 32759704 PMCID: PMC7460128 DOI: 10.3390/pathogens9080633] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The pseudorabies virus (PRV) is an alphaherpesvirus and the causative agent of Aujeszky’s disease (AD). PRV infects a wide range of animal species including swine as the natural host as well as ruminants, carnivores, rodents and lagomorphs. In these species, except for the pig, PRV infection causes acute, severe disease, characterized by insatiable itching, and is always lethal. Horses, chickens and non-human primates have been shown to be largely resistant to PRV infection, while disease in humans is still controversial. PRV is a pantropic virus, which preferably invades neural tissue, but also infects epithelia of various organs, whereupon multisystemic lesions may result. Although AD is mainly associated with severe pruritus, also known as “mad itch”, there are notable differences regarding infection route, clinical signs, viral distribution and lesion patterns in different animal species. In this comprehensive review, we will present clinico-pathologic findings from different species, which have been either shown to be susceptible to PRV infection or have been tested experimentally.
Collapse
|
Review |
5 |
58 |
12
|
Virulent Pseudorabies Virus Infection Induces a Specific and Lethal Systemic Inflammatory Response in Mice. J Virol 2018; 92:JVI.01614-18. [PMID: 30258005 DOI: 10.1128/jvi.01614-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus that infects the peripheral nervous system (PNS). The natural host of PRV is the swine, but it can infect most mammals, including cattle, rodents, and dogs. In these nonnatural hosts, PRV always causes a severe acute and lethal neuropathy called the "mad itch," which is uncommon in swine. Thus far, the pathophysiological and immunological processes leading to the development of the neuropathic itch and the death of the animal are unclear. Using a footpad inoculation model, we established that mice inoculated with PRV-Becker (virulent strain) develop a severe pruritus in the foot and become moribund at 82 h postinoculation (hpi). We found necrosis and inflammation with a massive neutrophil infiltration only in the footpad and dorsal root ganglia (DRGs) by hematoxylin and eosin staining. PRV load was detected in the foot, PNS, and central nervous system tissues by quantitative reverse transcription-PCR. Infected mice had elevated plasma levels of proinflammatory cytokines (interleukin-6 [IL-6] and granulocyte colony-stimulating factor [G-CSF]) and chemokines (Gro-1 and monocyte chemoattractant protein 1). Significant IL-6 and G-CSF levels were detected in several tissues at 82 hpi. High plasma levels of C-reactive protein confirmed the acute inflammatory response to PRV-Becker infection. Moreover, mice inoculated with PRV-Bartha (attenuated, live vaccine strain) did not develop pruritus at 82 hpi. PRV-Bartha also replicated in the PNS, and the infection spread further in the brain than PRV-Becker. PRV-Bartha infection did not induce the specific and lethal systemic inflammatory response seen with PRV-Becker. Overall, we demonstrated the importance of inflammation in the clinical outcome of PRV infection in mice and provide new insights into the process of PRV-induced neuroinflammation.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens such as herpes simplex virus 1 and varicella-zoster virus (VZV). The natural host of PRV is the swine, but it can infect most mammals. In susceptible animals other than pigs, PRV infection always causes a characteristic lethal pruritus known as the "mad itch." The role of the immune response in the clinical outcome of PRV infection is still poorly understood. Here, we show that a systemic host inflammatory response is responsible for the severe pruritus and acute death of mice infected with virulent PRV-Becker but not mice infected with attenuated strain PRV-Bartha. In addition, we identified IL-6 and G-CSF as two main cytokines that play crucial roles in the regulation of this process. Our findings give new insights into neuroinflammatory diseases and strengthen further the similarities between VZV and PRV infections at the level of innate immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
57 |
13
|
Sparta DR, Jennings JH, Ung RL, Stuber GD. Optogenetic strategies to investigate neural circuitry engaged by stress. Behav Brain Res 2013; 255:19-25. [PMID: 23684554 PMCID: PMC4415682 DOI: 10.1016/j.bbr.2013.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/24/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
Optogenetic techniques have given researchers unprecedented access to the function of discrete neural circuit elements and have been instrumental in the identification of novel brain pathways that become dysregulated in neuropsychiatric diseases. For example, stress is integrally linked to the manifestation and pathophysiology of neuropsychiatric illness, including anxiety, addiction and depression. Due to the heterogeneous populations of genetically and neurochemically distinct neurons in areas such as the bed nucleus of the stria terminalis (BNST), as well as their substantial number of projections, our understanding of how neural circuits become disturbed after stress has been limited. Using optogenetic tools, we are now able to selectively isolate distinct neural circuits that contribute to these disorders and perturb these circuits in vivo, which in turn may lead to the normalization of maladaptive behavior. This review will focus on current optogenetic strategies to identify, manipulate, and record from discrete neural circuit elements in vivo as well as highlight recent optogenetic studies that have been utilized to parcel out BNST function.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
56 |
14
|
Campbell RE, Herbison AE. Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using conditional viral tract tracing. Endocrinology 2007; 148:5884-90. [PMID: 17823269 PMCID: PMC6101187 DOI: 10.1210/en.2007-0854] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brainstem monoamines have long been considered to play a role in regulating the activity of GnRH neurons, although their neuroanatomical relationship with these cells has remained unclear. Using a Cre-dependent pseudorabies virus (Ba2001) technique that permits retrograde tracing selectively from GnRH neurons in the mouse, we have examined the organization of brainstem inputs to rostral preoptic area (rPOA) GnRH neurons. Two days after injection of Ba2001 into the rPOA of adult female GnRH-Cre transgenic mice, five to nine GnRH neurons located immediately adjacent to the injection site were found to express green fluorescent protein (GFP), the marker of virus infection, with no GFP expression anywhere else in the brain. In mice killed 24 h later (3 d after injection), GFP-expressing cells were identified (in order of density) in the raphe nuclei, periaqueductal grey, locus coeruleus, nucleus tractus solitarius, and area postrema. This time course is compatible with these neurons representing primary afferent inputs to the GnRH neurons. Four and 6 d after Ba2001 injection, GFP-expressing cells were found in additional brain regions. Dual-label immunofluorescence experiments in 3-d postinjection mice demonstrated that 100% of GFP-expressing neurons in the raphe were positive for tryptophan hydroxylase, whereas 100% and approximately 50% of GFP neurons in the locus coeruleus and nucleus tractus solitarius, respectively, expressed tyrosine hydroxylase. These observations demonstrate that rPOA GnRH neurons receive direct projections from brainstem A2 and A6 noradrenergic neurons and that, surprisingly, the largest afferent input from the brainstem originates from raphe serotonin neurons in the mouse.
Collapse
|
research-article |
18 |
52 |
15
|
Nguyen NLT, Barr CL, Ryu V, Cao Q, Xue B, Bartness TJ. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am J Physiol Regul Integr Comp Physiol 2016; 312:R132-R145. [PMID: 27881398 DOI: 10.1152/ajpregu.00344.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Accepted: 11/05/2016] [Indexed: 11/22/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16-24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30-40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
50 |
16
|
Moldován N, Tombácz D, Szűcs A, Csabai Z, Snyder M, Boldogkői Z. Multi-Platform Sequencing Approach Reveals a Novel Transcriptome Profile in Pseudorabies Virus. Front Microbiol 2018; 8:2708. [PMID: 29403453 PMCID: PMC5786565 DOI: 10.3389/fmicb.2017.02708] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Third-generation sequencing is an emerging technology that is capable of solving several problems that earlier approaches were not able to, including the identification of transcripts isoforms and overlapping transcripts. In this study, we used long-read sequencing for the analysis of pseudorabies virus (PRV) transcriptome, including Oxford Nanopore Technologies MinION, PacBio RS-II, and Illumina HiScanSQ platforms. We also used data from our previous short-read and long-read sequencing studies for the comparison of the results and in order to confirm the obtained data. Our investigations identified 19 formerly unknown putative protein-coding genes, all of which are 5' truncated forms of earlier annotated longer PRV genes. Additionally, we detected 19 non-coding RNAs, including 5' and 3' truncated transcripts without in-frame ORFs, antisense RNAs, as well as RNA molecules encoded by those parts of the viral genome where no transcription had been detected before. This study has also led to the identification of three complex transcripts and 50 distinct length isoforms, including transcription start and end variants. We also detected 121 novel transcript overlaps, and two transcripts that overlap the replication origins of PRV. Furthermore, in silico analysis revealed 145 upstream ORFs, many of which are located on the longer 5' isoforms of the transcripts.
Collapse
|
Journal Article |
7 |
50 |
17
|
Abstract
Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications.
Collapse
|
Review |
7 |
49 |
18
|
Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication. J Virol 2017; 91:JVI.00749-17. [PMID: 28747498 DOI: 10.1128/jvi.00749-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023] Open
Abstract
Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread.IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication.
Collapse
|
Journal Article |
8 |
48 |
19
|
Ryu V, Bartness TJ. Short and long sympathetic-sensory feedback loops in white fat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R886-900. [PMID: 24717676 PMCID: PMC4159734 DOI: 10.1152/ajpregu.00060.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
47 |
20
|
Pseudorabies Virus dUTPase UL50 Induces Lysosomal Degradation of Type I Interferon Receptor 1 and Antagonizes the Alpha Interferon Response. J Virol 2017; 91:JVI.01148-17. [PMID: 28794045 DOI: 10.1128/jvi.01148-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses that establish persistent infections rely partly on their ability to evade host antiviral responses, notably the type I interferon (IFN) response. However, the mechanisms employed by alphaherpesviruses to avoid this response are not well understood. Pseudorabies virus (PRV) is an economically important pathogen and a useful model system for studying alphaherpesvirus biology. To identify PRV proteins that antagonize type I IFN signaling, we performed a screen by using an IFN-stimulated response element reporter in the swine cell line CRL. Unexpectedly, we identified the dUTPase UL50 as a strong inhibitor. We confirmed that UL50 has the ability to inhibit type I IFN signaling by performing ectopic expression of UL50 in cells and deletion of UL50 in PRV. Mechanistically, UL50 impeded type I IFN-induced STAT1 phosphorylation, likely by accelerating lysosomal degradation of IFN receptor 1 (IFNAR1). In addition, this UL50 activity was independent of its dUTPase activity and required amino acids 225 to 253 in the C-terminal region. The UL50 encoded by herpes simplex virus 1 (HSV-1) also possessed similar activity. Moreover, UL50-deleted PRV was more susceptible to IFN than UL50-proficient PRV. Our results suggest that in addition to its dUTPase activity, the UL50 protein of alphaherpesviruses possesses the ability to suppress type I IFN signaling by promoting lysosomal degradation of IFNAR1, thereby contributing to immune evasion. This finding reveals UL50 as a potential antiviral target.IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals. Pseudorabies virus (PRV) is a swine alphaherpesvirus that threatens pig production. Using PRV as a model, we found that this alphaherpesvirus could utilize its encoded dUTPase UL50 to induce IFNAR1 degradation and inhibit type I IFN signaling in an enzymatic activity-independent manner. Our finding reveals a mechanism employed by an alphaherpesvirus to evade the immune response and indicates that UL50 is an important viral protein in pathogenesis and is a potential target for antiviral drug development.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
42 |
21
|
Bo Z, Miao Y, Xi R, Zhong Q, Bao C, Chen H, Sun L, Qian Y, Jung YS, Dai J. PRV UL13 inhibits cGAS-STING-mediated IFN-β production by phosphorylating IRF3. Vet Res 2020; 51:118. [PMID: 32933581 PMCID: PMC7493860 DOI: 10.1186/s13567-020-00843-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is an intracellular sensor of cytoplasmic viral DNA created during virus infection, which subsequently activates the stimulator of interferon gene (STING)-dependent type I interferon response to eliminate pathogens. In contrast, viruses have developed different strategies to modulate this signalling pathway. Pseudorabies virus (PRV), an alphaherpesvirus, is the causative agent of Aujeszky's disease (AD), a notable disease that causes substantial economic loss to the swine industry globally. Previous reports have shown that PRV infection induces cGAS-dependent IFN-β production, conversely hydrolysing cGAMP, a second messenger synthesized by cGAS, and attenuates PRV-induced IRF3 activation and IFN-β secretion. However, it is not clear whether PRV open reading frames (ORFs) modulate the cGAS-STING-IRF3 pathway. Here, 50 PRV ORFs were screened, showing that PRV UL13 serine/threonine kinase blocks the cGAS-STING-IRF3-, poly(I:C)- or VSV-mediated transcriptional activation of the IFN-β gene. Importantly, it was discovered that UL13 phosphorylates IRF3, and its kinase activity is indispensable for such an inhibitory effect. Moreover, UL13 does not affect IRF3 dimerization, nuclear translocation or association with CREB-binding protein (CBP) but attenuates the binding of IRF3 to the IRF3-responsive promoter. Consistent with this, it was discovered that UL13 inhibits the expression of multiple interferon-stimulated genes (ISGs) induced by cGAS-STING or poly(I:C). Finally, it was determined that PRV infection can activate IRF3 by recruiting it to the nucleus, and PRVΔUL13 mutants enhance the transactivation level of the IFN-β gene. Taken together, the data from the present study demonstrated that PRV UL13 inhibits cGAS-STING-mediated IFN-β production by phosphorylating IRF3.
Collapse
|
Journal Article |
5 |
42 |
22
|
Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci 2017; 37:4128-4144. [PMID: 28283558 DOI: 10.1523/jneurosci.3193-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
42 |
23
|
Vallbracht M, Brun D, Tassinari M, Vaney MC, Pehau-Arnaudet G, Guardado-Calvo P, Haouz A, Klupp BG, Mettenleiter TC, Rey FA, Backovic M. Structure-Function Dissection of Pseudorabies Virus Glycoprotein B Fusion Loops. J Virol 2018; 92:e01203-17. [PMID: 29046441 PMCID: PMC5730762 DOI: 10.1128/jvi.01203-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Conserved across the family Herpesviridae, glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomains of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the pseudorabies virus (PrV) gB ectodomain, revealing a typical class III postfusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner. Mutagenesis of FL residues allowed us to dissect those interacting with distinct subregions of the lipid bilayer and their roles in membrane interactions. We tested 15 gB variants for the ability to bind to liposomes and further investigated a subset of them in functional assays. We found that PrV gB FL residues Trp187, Tyr192, Phe275, and Tyr276, which were essential for liposome binding and for fusion in cellular and viral contexts, form a continuous hydrophobic patch at the gB trimer surface. Together with results reported for other alphaherpesvirus gBs, our data suggest a model in which Phe275 from the tip of FL2 protrudes deeper into the hydrocarbon core of the lipid bilayer, while the side chains of Trp187, Tyr192, and Tyr276 form a rim that inserts into the more superficial interfacial region of the membrane to catalyze the fusion process. Comparative analysis with gBs from beta- and gamma-herpesviruses suggests that this membrane interaction model is valid for gBs from all herpesviruses.IMPORTANCE Herpesviruses are common human and animal pathogens that infect cells by entering via fusion of viral and cellular membranes. Central to the membrane fusion event is glycoprotein B (gB), which is the most conserved envelope protein across the herpesvirus family. Like other viral fusion proteins, gB anchors itself in the target membrane via two polypeptide segments called fusion loops (FLs). The molecular details of how gB FLs insert into the lipid bilayer have not been described. Here, we provide structural and functional data regarding key FL residues of gB from pseudorabies virus, a porcine herpesvirus of veterinary concern, which allows us to propose, for the first time, a molecular model to understand how the initial interactions by gBs from all herpesviruses with target membranes are established.
Collapse
|
research-article |
7 |
41 |
24
|
François M, Torres H, Huesing C, Zhang R, Saurage C, Lee N, Qualls-Creekmore E, Yu S, Morrison CD, Burk D, Berthoud HR, Münzberg H. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci 2019; 1454:3-13. [PMID: 31184376 PMCID: PMC6810755 DOI: 10.1111/nyas.14119] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
The recent discovery of significant brown fat depots in adult humans has revived discussion of exploiting brown fat thermogenesis in the control of energy balance and body weight. The sympathetic nervous system (SNS) has a key role in the activation of brown fat and functional mapping of its components will be crucial for the development of specific neuromodulation techniques. The mouse is an important species used for molecular genetic modulations, but its small size is not ideal for anatomical dissections, thus brown fat innervation studies are mostly available in larger rodents such as rats and hamsters. Here, we use pseudorabies virus retrograde tracing, whole tissue clearing, and confocal/light sheet microscopy to show the location of pre- and postganglionic neurons selectively innervating the interscapular brown adipose tissue (iBAT) in the mouse. Using iDISCO whole tissue clearing, we identified iBAT projecting postganglionic neurons in the caudal parts of the ipsilateral fused stellate/T1, as well as the T2-T5 sympathetic chain ganglia and preganglionic neurons between levels T2 and T6 of the ipsilateral spinal cord. The methodology enabled high-resolution imaging and 3D rendering of the specific SNS innervation of iBAT and will be helpful to discern peripheral nervous system innervation of other organs and tissues.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
40 |
25
|
Oyibo HK, Znamenskiy P, Oviedo HV, Enquist LW, Zador AM. Long-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus. Front Neuroanat 2014; 8:86. [PMID: 25232307 PMCID: PMC4153299 DOI: 10.3389/fnana.2014.00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022] Open
Abstract
Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC) shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre) efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP). These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.
Collapse
|
Journal Article |
11 |
37 |