1
|
Fu D, Holtom G, Freudiger C, Zhang X, Xie XS. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J Phys Chem B 2013; 117:4634-40. [PMID: 23256635 PMCID: PMC3637845 DOI: 10.1021/jp308938t] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition speed of Raman based label-free imaging by a few orders of magnitude, at the expense of reduced spectroscopic information. On the basis of a spectral focusing approach, we present a fast SRS hyperspectral imaging system using chirped femtosecond lasers to achieve rapid Raman spectra acquisition while retaining the full speed and image quality of narrowband SRS imaging. We demonstrate that quantitative concentration determination of cholesterol in the presence of interfering chemical species can be achieved with sensitivity down to 4 mM. For imaging purposes, hyperspectral imaging data in the C-H stretching region is obtained within a minute. We show that mammalian cell SRS hyperspectral imaging reveals the spatially inhomogeneous distribution of saturated lipids, unsaturated lipids, cholesterol, and protein. The combination of fast spectroscopy and label-free chemical imaging will enable new applications in studying biological systems and material systems.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
177 |
2
|
van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013; 11 Suppl 1:36-45. [PMID: 23809109 DOI: 10.1111/jth.12254] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-derived or extracellular vesicles, including microparticles and exosomes, are abundantly present in body fluids such as blood. Although such vesicles have gained strong clinical and scientific interest, their detection is difficult because many vesicles are extremely small with a diameter of less than 100 nm, and, moreover, these vesicles have a low refractive index and are heterogeneous in both size and composition. In this review, we focus on the relatively high throughput detection of vesicles in suspension by flow cytometry, resistive pulse sensing, and nanoparticle tracking analysis, and we will discuss their applicability and limitations. Finally, we discuss four methods that are not commercially available: Raman microspectroscopy, micro nuclear magnetic resonance, small-angle X-ray scattering (SAXS), and anomalous SAXS. These methods are currently being explored to study vesicles and are likely to offer novel information for future developments.
Collapse
|
Review |
12 |
177 |
3
|
Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond) 2010; 5:1535-46. [PMID: 21143032 PMCID: PMC3175610 DOI: 10.2217/nnm.10.90] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. MATERIALS & METHODS PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. RESULTS & DISCUSSION PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. CONCLUSIONS PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
132 |
4
|
Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care. Mol Oncol 2012; 6:182-95. [PMID: 22469618 PMCID: PMC5528375 DOI: 10.1016/j.molonc.2012.02.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/19/2022] Open
Abstract
Molecular imaging is rapidly gaining recognition as a tool with the capacity to improve every facet of cancer care. Molecular imaging in oncology can be defined as in vivo characterization and measurement of the key biomolecules and molecularly based events that are fundamental to the malignant state. This article outlines the basic principles of molecular imaging as applied in oncology with both established and emerging techniques. It provides examples of the advantages that current molecular imaging techniques offer for improving clinical cancer care as well as drug development. It also discusses the importance of molecular imaging for the emerging field of theranostics and offers a vision of how molecular imaging may one day be integrated with other diagnostic techniques to dramatically increase the efficiency and effectiveness of cancer care.
Collapse
|
Review |
13 |
129 |
5
|
Crow P, Stone N, Kendall CA, Uff JS, Farmer JAM, Barr H, Wright MPJ. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer 2003; 89:106-8. [PMID: 12838309 PMCID: PMC2394218 DOI: 10.1038/sj.bjc.6601059] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopy is an optical technique, which provides a measure of the molecular composition of tissue. Raman spectra were recorded in vitro from both benign and malignant prostate biopsies, and used to construct a diagnostic algorithm. The algorithm was able to correctly identify each pathological group studied with an overall accuracy of 89%. The technique shows promise as a method for objectively grading prostate cancer.
Collapse
|
research-article |
22 |
122 |
6
|
Selvaganesh SV, Mathiyarasu J, Phani KLN, Yegnaraman V. Chemical Synthesis of PEDOT–Au Nanocomposite. NANOSCALE RESEARCH LETTERS 2007; 2:546. [PMCID: PMC3246611 DOI: 10.1007/s11671-007-9100-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/05/2007] [Indexed: 05/21/2023]
Abstract
In this work, gold-incorporated polyethylenedioxythiophene nanocomposite material has been synthesized chemically, employing reverse emulsion polymerization method. Infrared and Raman spectroscopic studies revealed that the polymerization of ethylenedioxythiophene leads to the formation of polymer polyethylenedioxythiophene incorporating gold nanoparticles. Scanning electron microscope studies showed the formation of polymer nanorods of 50–100 nm diameter and the X-ray diffraction analysis clearly indicates the presence of gold nanoparticles of 50 nm in size.
Collapse
|
research-article |
18 |
116 |
7
|
Kneipp J, Kneipp H, Kneipp K. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc Natl Acad Sci U S A 2006; 103:17149-53. [PMID: 17088534 PMCID: PMC1634837 DOI: 10.1073/pnas.0608262103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Indexed: 11/18/2022] Open
Abstract
Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10(-46) to 10(-45) cm4 x s, similar to or higher than the best "action" cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles.
Collapse
|
research-article |
19 |
115 |
8
|
Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S. The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. APPLIED SPECTROSCOPY 2008; 62:1285-94. [PMID: 19094386 PMCID: PMC2701203 DOI: 10.1366/000370208786822179] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We applied Raman spectroscopy to monitor the distribution of mineral and the degree of mineralization across the tendon-bone insertion site in the shoulders of five rats. We acquired Raman spectra from 100 to 4,000 Deltacm(-1) on individual 1 microm points across the 120 microm wide transition zone of each tissue sample and identified all the peaks detected in pure tendon and in pure bone, as well as in the transition zone. The intensity of the 960 Deltacm(-1) P-O stretch for apatite (normalized to either the 2,940 Deltacm(-1) C-H stretch or the 1,003 Deltacm(-1) C-C stretch for collagen) was used as an indicator of the abundance of mineral. We relate the observed histological morphology in the tissue thin section with the observed Raman peaks for both the organic component (mostly collagen) and the inorganic component (a carbonated form of the mineral apatite) and discuss spectroscopic issues related to peak deconvolution and quantification of overlapping Raman peaks. We show that the mineral-to-collagen ratio at the insertion site increases linearly (R(2) = 0.8 for five samples) over the distance of 120 microm from tendon to bone, rather than abruptly, as previously inferred from histological observations. In addition, narrowing of the 960 Deltacm(-1) band across the traverse indicates that the crystalline ordering within the apatite increases concomitantly with the degree of mineralization. This finding of mineral gradation has important clinical implications and may explain why the uninjured tendon-to-bone connection of the rotator cuff can sustain very high loads without failure. Our finding is also consistent with recent mechanical models and calculations developed to better understand the materials properties of this unusually strong interface.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
100 |
9
|
Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:054023. [PMID: 19895125 PMCID: PMC2774977 DOI: 10.1117/1.3247154] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/02/2009] [Accepted: 08/05/2009] [Indexed: 05/18/2023]
Abstract
We present the first prospective test of Raman spectroscopy in diagnosing normal, benign, and malignant human breast tissues. Prospective testing of spectral diagnostic algorithms allows clinicians to accurately assess the diagnostic information contained in, and any bias of, the spectroscopic measurement. In previous work, we developed an accurate, internally validated algorithm for breast cancer diagnosis based on analysis of Raman spectra acquired from fresh-frozen in vitro tissue samples. We currently evaluate the performance of this algorithm prospectively on a large ex vivo clinical data set that closely mimics the in vivo environment. Spectroscopic data were collected from freshly excised surgical specimens, and 129 tissue sites from 21 patients were examined. Prospective application of the algorithm to the clinical data set resulted in a sensitivity of 83%, a specificity of 93%, a positive predictive value of 36%, and a negative predictive value of 99% for distinguishing cancerous from normal and benign tissues. The performance of the algorithm in different patient populations is discussed. Sources of bias in the in vitro calibration and ex vivo prospective data sets, including disease prevalence and disease spectrum, are examined and analytical methods for comparison provided.
Collapse
|
Evaluation Study |
16 |
92 |
10
|
Gu Y, He C, Zhang Y, Lin L, Thackray BD, Ye J. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat Commun 2020; 11:516. [PMID: 31980613 PMCID: PMC6981139 DOI: 10.1038/s41467-019-14070-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Anticounterfeiting labels based on physical unclonable functions (PUFs), as one of the powerful tools against counterfeiting, are easy to generate but difficult to duplicate due to inherent randomness. Gap-enhanced Raman tags (GERTs) with embedded Raman reporters show strong intensity enhancement and ultra-high photostability suitable for fast and repeated readout of PUF labels. Herein, we demonstrate a PUF label fabricated by drop-casting aqueous GERTs, high-speed read using a confocal Raman system, digitized through coarse-grained coding methods, and authenticated via pixel-by-pixel comparison. A three-dimensional encoding capacity of over 3 × 1015051 can be achieved for the labels composed of ten types of GERTs with a mapping resolution of 2500 pixels and quaternary encoding of Raman intensity levels at each pixel. Authentication experiments have ensured the robustness and security of the PUF system, and the practical viability is demonstrated. Such PUF labels could provide a potential platform to realize unbreakable anticounterfeiting.
Collapse
|
research-article |
5 |
90 |
11
|
Ermakov IV, Sharifzadeh M, Ermakova M, Gellermann W. Resonance Raman detection of carotenoid antioxidants in living human tissue. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:064028. [PMID: 16409093 PMCID: PMC3086339 DOI: 10.1117/1.2139974] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with increasing age. Other carotenoids, such as lycopene and beta-carotene, play an important role as well in the protection of skin from UV and short-wavelength visible radiation. Lutein and lycopene may also have protective function for cardiovascular health, and lycopene may play a role in the prevention of prostate cancer. Motivated by the growing importance of carotenoids in health and disease, and recognizing the lack of any accepted noninvasive technology for the detection of carotenoids in living human tissue, we explore resonance Raman spectroscopy as a novel approach for noninvasive, laser optical carotenoid detection. We review the main results achieved recently with the Raman detection approach. Initially we applied the method to the detection of macular carotenoid pigments, and more recently to the detection of carotenoids in human skin and mucosal tissues. Using skin carotenoid Raman instruments, we measure the carotenoid response from the stratum corneum layer of the palm of the hand for a population of 1375 subjects and develop a portable skin Raman scanner for field studies. These experiments reveal that carotenoids are a good indicator of antioxidant status. They show that people with high oxidative stress, like smokers, and subjects with high sunlight exposure, in general, have reduced skin carotenoid levels, independent of their dietary carotenoid consumption. We find the Raman technique to be precise, specific, sensitive, and well suitable for clinical as well as field studies. The noninvasive laser technique may become a useful method for the correlation between tissue carotenoid levels and risk for malignancies or other degenerative diseases associated with oxidative stress.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
90 |
12
|
Holt BD, Dahl KN, Islam MF. Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2348-55. [PMID: 21626688 DOI: 10.1002/smll.201100437] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Indexed: 05/16/2023]
Abstract
Single-wall carbon nanotubes (SWCNTs) possess many unique, inherent properties that make them attractive materials for application in medical and biological technologies. Development of concentrated SWCNT dispersions of isolated nanotubes that retain SWCNTs' inherent properties with minimal negative cellular effects is essential to fully realize the potential of SWCNTs in biotechnology. It is shown that bovine serum albumin (BSA), a common and well-characterized model blood serum protein, can individually disperse SWCNTs at concentrations of up to 0.3 mg mL(-1) while retaining SWCNTs' optical properties. Uptake into human mesenchymal stem cells (hMSC) and HeLa cells is quantified, revealing strikingly high concentrations of 86 ± 33 × 10(6) and 21 ± 13 × 10(6) SWCNTs per cell, respectively, without any apparent acute deleterious cellular effects. Through high-resolution confocal Raman spectroscopy and imaging, it is established that SWCNT-BSAs are preferentially localized intracellularly, especially in the cytoplasm of both hMSCs and HeLa cells. The uptake and localization results demonstrate the efficacy of BSA as a biocompatible dispersant and a mediator of bioactivity. BSA is widely available and inexpensive, which make these concentrated, highly-dispersed, noncovalently modified SWCNT-BSAs suitable for the development of SWCNT-based biotechnologies.
Collapse
|
|
14 |
86 |
13
|
Tuchin VV, Tárnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A 2011; 79:737-45. [PMID: 21915991 PMCID: PMC3663136 DOI: 10.1002/cyto.a.21143] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Flow cytometry (FCM) has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo FCM, which provides detection and imaging of circulating normal and abnormal cells directly in blood or lymph flow. The goal of this review is to provide a brief history, features, and challenges of this new generation of FCM methods and instruments. Spectrum of possibilities of in vivo FCM in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, and cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
85 |
14
|
Abstract
Nanoparticle-based molecular imaging has emerged as an interdisciplinary field which involves physics, chemistry, engineering, biology, and medicine. Single-walled carbon nanotubes (SWCNTs) have unique properties which make them suitable for applications in a variety of imaging modalities, such as magnetic resonance, near-infrared fluorescence, Raman spectroscopy, photoacoustic tomography, and radionuclide-based imaging. In this review, we will summarize the current state-of-the-art of SWCNTs in molecular imaging applications. Multifunctionality is the key advantage of nanoparticles over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoparticle to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. A multifunctional, SWCNT-based nanoplatform holds great potential for clinical applications in the future.
Collapse
|
research-article |
16 |
76 |
15
|
Lin HY, Huang CH, Hsieh WH, Liu LH, Lin YC, Chu CC, Wang ST, Kuo IT, Chau LK, Yang CY. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4700-10. [PMID: 25115777 DOI: 10.1002/smll.201401526] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/12/2014] [Indexed: 05/12/2023]
Abstract
The integration of novel surface-enhanced Raman scattering (SERS) nanoprobes and a microfluidic dielectrophoresis (DEP) device is developed for rapid on-line SERS detection of Salmonella enterica serotype Choleraesuis and Neisseria lactamica. The SERS nanoprobes are prepared by immobilization of specific antibody onto the surface of nanoaggregate-embedded beads (NAEBs), which are silica-coated, dye-induced aggregates of a small number of gold nanoparticles (AuNPs). Each NAEB gives highly enhanced Raman signals owing to the presence of well-defined plasmonic hot spots at junctions between AuNPs. Herein, the on-line SERS detection and accurate identification of suspended bacteria with a detection capability down to a single bacterium has been realized by the NAEB-DEP-Raman spectroscopy biosensing strategy. The practical detection limit with a measurement time of 10 min is estimated to be 70 CFU mL(-1) . In comparison with whole-cell enzyme-linked immunosorbent assay (ELISA), the SERS-nanoprobe-based biosensing method provides advantages of higher sensitivity and requiring lower amount of antibody in the assay (100-fold less). The total assay time including sample pretreatment is less than 2 h. Hence, this sensing strategy is promising for faster and effective on-line multiplex detection of single pathogenic bacterium by using different bioconjugated SERS nanoprobes.
Collapse
|
|
11 |
72 |
16
|
Peterson JR, Okagbare PI, De La Rosa S, Cilwa KE, Perosky JE, Eboda ON, Donneys A, Su GL, Buchman SR, Cederna PS, Wang SC, Kozloff KM, Morris MD, Levi B. Early detection of burn induced heterotopic ossification using transcutaneous Raman spectroscopy. Bone 2013; 54:28-34. [PMID: 23314070 PMCID: PMC3690323 DOI: 10.1016/j.bone.2013.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, occurs in over 60% of major burn injuries and blast traumas. A significant need exists to improve the current diagnostic modalities for HO which are inadequate to diagnose and intervene on HO at early time-points. Raman spectroscopy has been used in previous studies to report on changes in bone composition during bone development but has not yet been applied to burn induced HO. In this study, we validate transcutaneous, in-vivo Raman spectroscopy as a methodology for early diagnosis of HO in mice following a burn injury. METHODS An Achilles tenotomy model was used to study HO formation. Following tenotomy, mice were divided into burn and sham groups with exposure of 30% surface area on the dorsum to 60° water or 30° water for 18s respectively. In-vivo, transcutaneous Raman spectroscopy was performed at early time points (5 days, 2 and 3 weeks) and a late time point (3 months) on both the tenotomized and non-injured leg. These same samples were then dissected down to the bone and ex-vivo Raman measurements were performed on the excised tissue. Bone formation was verified with Micro CT and histology at corresponding time-points. RESULTS Our Raman probe allowed non-invasive, transcutaneous evaluation of heterotopic bone formation. Raman data showed significantly increased bone mineral signaling in the tenotomy compared to control leg at 5 days post injury, with the difference increasing over time whereas Micro CT did not demonstrate heterotopic bone until three weeks. Ex-vivo Raman measurements showed significant differences in the amount of HO in the burn compared to sham groups and also showed differences in the spectra of new, ectopic bone compared to pre-existing cortical bone. CONCLUSIONS Burn injury increases the likelihood of developing HO when combined with traumatic injury. In our in-vivo mouse model, Raman spectroscopy allowed for detection of HO formation as early as 5 days post injury. Changes in bone mineral and matrix composition of the new bone were also evidenced in the Raman spectra which could facilitate early identification of HO and allow more timely therapy decisions for HO patients.
Collapse
|
research-article |
12 |
68 |
17
|
Schulmerich MV, Cole JH, Kreider JM, Esmonde-White F, Dooley KA, Goldstein SA, Morris MD. Transcutaneous Raman spectroscopy of murine bone in vivo. APPLIED SPECTROSCOPY 2009; 63:286-95. [PMID: 19281644 PMCID: PMC2659467 DOI: 10.1366/000370209787599013] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raman spectroscopy can provide valuable information about bone tissue composition in studies of bone development, biomechanics, and health. In order to study the Raman spectra of bone in vivo, instrumentation that enhances the recovery of subsurface spectra must be developed and validated. Five fiber-optic probe configurations were considered for transcutaneous bone Raman spectroscopy of small animals. Measurements were obtained from the tibia of sacrificed mice, and the bone Raman signal was recovered for each probe configuration. The configuration with the optimal combination of bone signal intensity, signal variance, and power distribution was then evaluated under in vivo conditions. Multiple in vivo transcutaneous measurements were obtained from the left tibia of 32 anesthetized mice. After collecting the transcutaneous Raman signal, exposed bone measurements were collected and used as a validation reference. Multivariate analysis was used to recover bone spectra from transcutaneous measurements. To assess the validity of the transcutaneous bone measurements cross-correlations were calculated between standardized spectra from the recovered bone signal and the exposed bone measurements. Additionally, the carbonate-to-phosphate height ratios of the recovered bone signals were compared to the reference exposed bone measurements. The mean cross-correlation coefficient between the recovered and exposed measurements was 0.96, and the carbonate-to-phosphate ratios did not differ significantly between the two sets of spectra (p > 0.05). During these first systematic in vivo Raman measurements, we discovered that probe alignment and animal coat color influenced the results and thus should be considered in future probe and study designs. Nevertheless, our noninvasive Raman spectroscopic probe accurately assessed bone tissue composition through the skin in live mice.
Collapse
|
Evaluation Study |
16 |
67 |
18
|
Downes A, Mouras R, Bagnaninchi P, Elfick A. Raman spectroscopy and CARS microscopy of stem cells and their derivatives. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2011; 42:1864-1870. [PMID: 22319014 PMCID: PMC3272468 DOI: 10.1002/jrs.2975] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The characterisation of stem cells is of vital importance to regenerative medicine. Failure to separate out all stem cells from differentiated cells before therapies can result in teratomas - tumours of multiple cell types. Typically, characterisation is performed in a destructive manner with fluorescent assays. A truly non-invasive method of characterisation would be a major breakthrough in stem cell-based therapies. Raman spectroscopy has revealed that DNA and RNA levels drop when a stem cell differentiates into other cell types, which we link to a change in the relative sizes of the nucleus and cytoplasm. We also used Raman spectroscopy to investigate the biochemistry within an early embryo, or blastocyst, which differs greatly from colonies of embryonic stem cells. Certain cell types that differentiate from stem cells can be identified by directly imaging the biochemistry with CARS microscopy; examples presented are hydroxyapatite - a precursor to bone, and lipids in adipocytes.
Collapse
|
research-article |
14 |
62 |
19
|
Docoslis A, Huszarik KL, Papageorgiou GZ, Bikiaris D, Stergiou D, Georgarakis E. Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro- Raman spectroscopy and powder X-ray diffraction. AAPS J 2007; 9:E361-70. [PMID: 18170983 PMCID: PMC2751488 DOI: 10.1208/aapsj0903043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 10/23/2007] [Accepted: 10/23/2007] [Indexed: 11/30/2022] Open
Abstract
In the present study, a series of solid dispersions of the drug nimodipine using polyethylene glycol as carrier were prepared following the hot-melt method. Micro-Raman spectroscopy in conjunction with X-ray powder diffractometry was used for the characterization of the solid structure, including spatial distribution, physical state, and presence of polymorphs, as well as storage stability of nimodipine in its solid formulations. The effect of storage time on drug stability was investigated by examination of the samples 6 months and 18 months after preparation. Confocal micro-Raman mapping performed on the samples showed that the drug was not uniformly distributed on a microscopic level. The presence of crystals of nimodipine with sizes varying between one and several micrometers was detected, and the crystal size seemed to increase with overall drug content. In samples examined 6 months after preparation it was found that the crystals existed mainly as the racemic compound, whereas after 18 months of storage mainly crystal conglomerates were observed.
Collapse
|
research-article |
18 |
60 |
20
|
Alfonso-García A, Pfisterer SG, Riezman H, Ikonen E, Potma EO. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61003. [PMID: 26719944 PMCID: PMC4681884 DOI: 10.1117/1.jbo.21.6.061003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
57 |
21
|
Ilioaia C, Johnson MP, Liao PN, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B. Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 2011; 286:27247-54. [PMID: 21646360 PMCID: PMC3149318 DOI: 10.1074/jbc.m111.234617] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Indexed: 11/06/2022] Open
Abstract
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).
Collapse
|
research-article |
14 |
56 |
22
|
Hashimoto K, Badarla VR, Kawai A, Ideguchi T. Complementary vibrational spectroscopy. Nat Commun 2019; 10:4411. [PMID: 31562337 PMCID: PMC6764968 DOI: 10.1038/s41467-019-12442-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023] Open
Abstract
Vibrational spectroscopy, comprised of infrared absorption and Raman scattering spectroscopy, is widely used for label-free optical sensing and imaging in various scientific and industrial fields. The two molecular spectroscopy methods are sensitive to different types of vibrations and provide complementary vibrational spectra, but obtaining complete vibrational information with a single spectroscopic device is challenging due to the large wavelength discrepancy between the two methods. Here, we demonstrate simultaneous infrared absorption and Raman scattering spectroscopy that allows us to measure the complete broadband vibrational spectra in the molecular fingerprint region with a single instrument based on an ultrashort pulsed laser. The system is based on dual-modal Fourier-transform spectroscopy enabled by efficient use of nonlinear optical effects. Our proof-of-concept experiment demonstrates rapid, broadband and high spectral resolution measurements of complementary spectra of organic liquids for precise and accurate molecular analysis.
Collapse
|
research-article |
6 |
49 |
23
|
William Schopf J. The paleobiological record of photosynthesis. PHOTOSYNTHESIS RESEARCH 2011; 107:87-101. [PMID: 20607406 PMCID: PMC3021713 DOI: 10.1007/s11120-010-9577-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 06/17/2010] [Indexed: 05/21/2023]
Abstract
Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.
Collapse
|
Review |
14 |
48 |
24
|
Raghavan M, Sahar ND, Kohn DH, Morris MD. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone. Bone 2012; 50:942-53. [PMID: 22285889 PMCID: PMC3299845 DOI: 10.1016/j.bone.2011.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/22/2023]
Abstract
There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86-96% accuracy) as compared to using individual measures (59-79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single metric or a single technique.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
48 |
25
|
Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep 2014; 12:454-64. [PMID: 25240579 PMCID: PMC4638121 DOI: 10.1007/s11914-014-0238-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metabolic bone diseases manifesting fragility fractures (such as osteoporosis) are routinely diagnosed based on bone mineral density (BMD) measurements, and the effect of various therapies also evaluated based on the same outcome. Although useful, it is well recognized that this metric does not fully account for either fracture incidence or the effect of various therapies on fracture incidence, thus, the emergence of bone quality as a contributing factor in the determination of bone strength. Infrared and Raman vibrational spectroscopic techniques are particularly well-suited for the determination of bone quality as they provide quantitative and qualitative information of the mineral and organic matrix bone components, simultaneously. Through the use of microspectroscopic techniques, this information is available in a spatially resolved manner, thus, the outcomes may be easily correlated with outcomes from techniques such as histology, histomorphometry, and nanoindentation, linking metabolic status with material properties.
Collapse
|
Review |
11 |
47 |