1
|
Lin X, Jain P, Wu K, Hong D, Hung HC, O'Kelly MB, Li B, Zhang P, Yuan Z, Jiang S. Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1544-1551. [PMID: 30265550 PMCID: PMC6501560 DOI: 10.1021/acs.langmuir.8b02540] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Here, we report a simple yet effective surface-modification approach to imparting hydrophobic surfaces with superhydrophilicity using ultralow fouling/functionalizable carboxybetaine (CB) copolymers via a dip-coating technique. A new series of CB random copolymers with varying amphiphilicities were synthesized and coated on hydrophobic polypropylene (PP) and polystyrene (PS) surfaces. The nonfouling capability of each coating was screened by an enzyme-linked immunosorbent assay (ELISA) and further comprehensively assessed against 100% human serum by a Micro BCA protein assay kit. The random copolymer containing ∼30 mol % CB units showed superhydrophilicity with the highest air contact angle of more than 165° in DI water and the best nonfouling capability against 100% human blood serum. Surfaces of a 96-well plate coated with the optimal CB random copolymer had a significantly better nonfouling capability than those of a commercial 96-well plate with an ultralow attachment surface. The adhesion of mouse embryonic fibroblast cells (NIH3T3) was completely inhibited on surfaces coated with CB random copolymers. Furthermore, the optimal nonfouling CB copolymer surface was functionalized with an antigen via covalent bonding where its specific interactions with its antibody were verified. Thus, this CB random copolymer is capable of imparting both ultralow fouling and functionalizable capabilities to hydrophobic surfaces for blood-contacting devices.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
58 |
2
|
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters synthesized by bacteria. Similarly to the genome, transcriptome, and proteome (the entire array of nucleic acids and proteins present in a cell or population of cells at a given time), the PHA spectrum exhibits diverse and dynamic modifications - the 'PHAome' - reflecting not only by the diversity of monomers, homopolymers, random and block copolymers, functional and graft polymers, molecular weights, and combinations of the above, but also the ranges of PHAs with various molecular weights and monomer ratios that are present at a particular timepoint in a bacterial cell. Echoing the Materials Genome Initiative (MGI) launched in 2011 to develop an infrastructure to accelerate advanced materials discovery and deployment, understanding the PHAome and ensuring an ample supply of PHAs based on it will promote the discovery of new properties and applications of this family of advanced materials.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
43 |
3
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
|
|
4 |
26 |
4
|
Dutta K, Bochicchio D, Ribbe AE, Alfandari D, Mager J, Pavan GM, Thayumanavan S. Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24971-24983. [PMID: 31264399 DOI: 10.1021/acsami.9b04731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel "symbiotic self-assembly" strategy that integrates the advantages of biocompatible lipids with a structurally robust polymer to efficiently encapsulate and deliver siRNAs is reported. The assembly process is considered to be symbiotic because none of the assembling components are capable of self-assembly but can form well-defined nanostructures in the presence of others. The conditions of the self-assembly process are simple but have been chosen such that it offers the ability to arrive at a system that is noncationic for mitigating carrier-based cytotoxicity, efficiently encapsulate siRNA to minimize cargo loss, be effectively camouflaged to protect the siRNA from nuclease degradation, and efficiently escape the endosome to cause gene knockdown. The lipid-siRNA-polymer (L-siP) nanoassembly formation and its disassembly in the presence of an intracellular trigger have been extensively characterized experimentally and through computational modeling. The complexes have been evaluated for the delivery of four different siRNA molecules in six different cell lines, where an efficient gene knockdown is demonstrated. The reported generalized strategy has the potential to make an impact on the development of a safe and effective delivery agent for RNAi-mediated gene therapy that holds the promise of targeting several hard-to-cure diseases.
Collapse
|
|
6 |
15 |
5
|
Hossain I, Al Munsur AZ, Kim TH. A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer as Novel Polymer Membranes for CO 2 Separation. MEMBRANES 2019; 9:E113. [PMID: 31480478 PMCID: PMC6780089 DOI: 10.3390/membranes9090113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 11/20/2022]
Abstract
Random copolymers made of both (PIM-polyimide) and (6FDA-durene-PI) were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and high thermomechanical properties of PI (polyimide), the membranes obtained from these random copolymers [(PIM-PI)-(6FDA-durene-PI)] showed high CO2 permeability (>1047 Barrer) with moderate CO2/N2 (> 16.5) and CO2/CH4 (> 18) selectivity, together with excellent thermal and mechanical properties. The membranes prepared from three different compositions of two comonomers (1:4, 1:6 and 1:10 of x:y), all showed similar morphological and physical properties, and gas separating performance, indicating ease of synthesis and practicability for production in large scale. The gas separation performance of these membranes at various pressure ranges (100-1500 torr) was also investigated.
Collapse
|
research-article |
6 |
13 |
6
|
Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. 13% Single-Component Organic Solar Cells based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300629. [PMID: 36814317 DOI: 10.1002/adma.202300629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Indexed: 05/05/2023]
Abstract
Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.
Collapse
|
|
2 |
11 |
7
|
Giammaria TJ, Ferrarese Lupi F, Seguini G, Sparnacci K, Antonioli D, Gianotti V, Laus M, Perego M. Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31215-31223. [PMID: 28195457 DOI: 10.1021/acsami.6b14332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.
Collapse
|
|
8 |
11 |
8
|
Schawe JEK, Wrana C. Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers. Polymers (Basel) 2020; 12:polym12081778. [PMID: 32784476 PMCID: PMC7465651 DOI: 10.3390/polym12081778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Structural relaxation in polymers occurs at temperatures in the glass transition range and below. At these temperatures, crystallization is controlled by diffusion and nucleation. A sequential occurrence of structural relaxation, nucleation, and crystallization was observed for several homopolymers during annealing in the range of the glass transition. It is known from the literature that all of these processes are strongly influenced by geometrical confinements. The focus of our work is copolymers, in which the confinements are caused by the random sequence of monomer units in the polymer chain. We characterize the influence of these confinements on structure formation and relaxation in the vicinity of the glass transition. The measurements were performed with a hydrogenated nitrile-butadiene copolymer (HNBR). The kinetics of the structural relaxation and the crystallization was measured using fast differential scanning calorimetry (FDSC). This technique was selected because of the high sensitivity, the fast cooling rates, and the high time resolution. Crystallization in HNBR causes a segregation of non-crystallizable segments in the macromolecule. This yields a reduction in mobility in the vicinity of the formed crystals and as a consequence an increased amount of so-called "rigid amorphous fraction" (RAF). The RAF can be interpreted as self-assembled confinements, which limit and control the crystallization. An analysis of the crystallization and the relaxation shows that the kinetic of both is identical. This means that the Kohlrausch exponent of relaxation and the Avrami exponent of crystallization are identical. Therefore, the crystallization is not controlled by nucleation but by diffusion and is terminated by the formation of RAF.
Collapse
|
|
5 |
10 |
9
|
Hernández-Fernández J, Ortega-Toro R, Castro-Suarez JR. Theoretical-Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler-Natta Catalyst and the Synthesis of an Ethylene-Propylene Copolymer. Polymers (Basel) 2023; 15:polym15051098. [PMID: 36904338 PMCID: PMC10007541 DOI: 10.3390/polym15051098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The copolymer synthesis process can be affected by failures in the production process or by contaminating compounds such as ketones, thiols, and gases, among others. These impurities act as an inhibiting agent of the Ziegler-Natta (ZN) catalyst affecting its productivity and disturbing the polymerization reaction. In this work, the effect of formaldehyde, propionaldehyde, and butyraldehyde on the ZN catalyst and the way in which it affects the final properties of the ethylene-propylene copolymer is presented by analyzing 30 samples with different concentrations of the mentioned aldehydes along with three control samples. It was determined that the presence of formaldehyde 26 ppm, propionaldehyde 65.2 ppm, and butyraldehyde 181.2 ppm considerably affect the productivity levels of the ZN catalyst; this effect increases as the concentration of aldehydes is higher in the process; likewise, these impurities affect the properties of the final product, such as the fluidity index (MFI), thermogravimetric analysis (TGA), bending, tension, and impact, which leads to a polymer with low-quality standards and less resistance to breakage. The computational analysis showed that the complexes formed by formaldehyde, propionaldehyde, and butyraldehyde with the active center of the catalyst are more stable than those obtained by the ethylene-Ti and propylene-Ti complexes, presenting values of -40.5, -47.22, -47.5, -5.2 and -1.3 kcal mol-1 respectively.
Collapse
|
research-article |
2 |
9 |
10
|
Ashraf AR, Ryan JJ, Satkowski MM, Smith SD, Spontak RJ. Effect of Systematic Hydrogenation on the Phase Behavior and Nanostructural Dimensions of Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3186-3190. [PMID: 29356497 DOI: 10.1021/acsami.7b19433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unsaturated polydienes are frequently hydrogenated to yield polyolefins that are more chemically stable. Here, the effects of partial hydrogenation on the phase behavior and nanostructure of polyisoprene-containing block copolymers are investigated. To ensure access to the order-disorder transition temperature (TODT) over a wide temperature range, we examine copolymers with at least one random block. Dynamic rheological and scattering measurements indicate that TODT increases linearly with increasing hydrogenation. Small-angle scattering reveals that the temperature-dependence of the Flory-Huggins parameter changes and the microdomain period increases, while the interfacial thickness decreases. The influence of hydrogenation becomes less pronounced in more constrained multiblock copolymers.
Collapse
|
|
7 |
8 |
11
|
Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents. Polymers (Basel) 2015; 8:polym8010004. [PMID: 30979101 PMCID: PMC6432537 DOI: 10.3390/polym8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/20/2015] [Accepted: 12/24/2015] [Indexed: 11/30/2022] Open
Abstract
A novel random copolymer based on donor–acceptor type polymers containing benzodithiophene and dithienosilole as donors and benzothiazole and diketopyrrolopyrrole as acceptors was designed and synthesized by Stille copolymerization, and their optical, electrochemical, charge transport, and photovoltaic properties were investigated. This copolymer with high molecular weight exhibited broad and strong absorption covering the spectra range from 500 to 800 nm with absorption maxima at around 750 nm, which would be very conducive to obtaining large short-circuits current densities. Unlike the general approach using single solvent to prepare the active layer film, mixed solvents were introduced to change the film feature and improve the morphology of the active layer, which lead to a significant improvement of the power conversion efficiency. These results indicate that constructing random copolymer with multiple donor and acceptor monomers and choosing proper mixed solvents to change the characteristics of the film is a very promising way for manufacturing organic solar cells with large current density and high power conversion efficiency.
Collapse
|
|
10 |
7 |
12
|
Peponi L, Marcos-Fernández A, Kenny JM. Nanostructured morphology of a random P(DLLA-co-CL) copolymer. NANOSCALE RESEARCH LETTERS 2012; 7:103. [PMID: 22304962 PMCID: PMC3311081 DOI: 10.1186/1556-276x-7-103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
The random architecture of a commercial copolymer of poly(DL-lactic acid) and poly(ε-caprolactone), poly(DL-lactide-co-caprolactone), has been characterized by chemical structure analysis from hydrogen-1 nuclear magnetic resonance results. Moreover, spherical nanodomains have been detected in the thin films of this copolymer obtained after solvent evaporation. These nanodomains studied by atomic force microscopy and transmission elecron microscopy grow progressively under annealing until they collapse and form a homogenous disordered structure. This is the first time that the nanostructure of random poly(DL-lactic acid)/poly-(ε-caprolactone) copolymers is revealed, representing one of few experimental evidences on the possible nanostructuration of random copolymers.
Collapse
|
research-article |
13 |
6 |
13
|
Tsuji S, Aoki T, Ushio S, Tanaka T. Synthesis and Aggregation Behavior of Temperature- and pH-Responsive Glycopolymers as Sugar-Displaying Conjugates. Polymers (Basel) 2020; 12:E956. [PMID: 32326017 PMCID: PMC7240394 DOI: 10.3390/polym12040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Stimuli-responsive polymers have attracted significant interest in the fields of advanced materials and biomaterials. Herein, temperature- and pH-responsive glycopolymers, which are composed of N-isopropylacrylamide, methacrylic acid, and an acrylamide derivative bearing a lactose moiety, were synthesized via radical copolymerization. The series of resulting glycopolymers had different degrees of substitution of the lactose moieties, were responsive to temperatures between 26.6 °C and 47.6 °C, and formed aggregates above the lower critical solution temperature limit in mild acidic aqueous media (pH 4-6). The temperature-responsive behavior was dependent on the prevailing pH conditions, as no aggregation was observed in neutral and basic aqueous media (pH > 7). The aggregates had saccharide moieties on the surface in aqueous media. The number of saccharide moieties on the surface depended on the saccharide-containing unit ratio in the glycopolymer. The ratio was determined via enzymatic hydrolysis of the lactose moieties using β-galactosidase and the subsequent detection of the released galactose.
Collapse
|
research-article |
5 |
5 |
14
|
Chen D, Liu S, Oh J, Huang B, Lv R, Liu J, Yang C, Chen L. Novel High-Efficiency Polymer Acceptors via Random Ternary Copolymerization Engineering Enables All-Polymer Solar Cells with Excellent Performance and Stability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17892-17901. [PMID: 33834752 DOI: 10.1021/acsami.1c03739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Continuous breakthroughs have been achieved in improving the efficiency of all-polymer solar cells (all-PSCs) using diimide-based polymer acceptors, and their easy-to-synthesize, low-cost, and high stability attributes make them potential candidates for use in commercial all-PSCs. However, their low light absorption coefficient, strong aggregation, and poor adaptability with high-efficient polymer donors still limit further improvements in the device performance. Here, we combine the advantages of fluorinated bithiophene and rhodanine dye molecules to create low-cost diimide-based polymer acceptors, PNDI-2FT-TR10 and PNDI-2FT-TR20, by random copolymerization for achieving highly efficient and stable all-PSCs. The synergistic effects of fluorine atoms and rhodanine dye molecules not only significantly improve the absorption coefficient but also enable enhanced miscibility and stability of the blend film. When blended with a PM6 donor, the PNDI-2FT-TR10-based device exhibits a notable power conversion efficiency (PCE) of 10.71% with a short-circuit current (JSC) of 17.32 mA cm-2. Note that both the PCE and JSC show outstanding values for diimide-based all-PSCs, and this is the first report on blending diimide-based polymer acceptors with the PM6 donor to achieve high-performance all-PSCs. Moreover, the favorable morphology of the active layer enables the device to have good thickness tolerance and thermal stability. The results demonstrate that the absorption coefficients, blend morphology, and photovoltaic properties of all-PSCs could be rationally optimized by a random copolymer.
Collapse
|
|
4 |
3 |
15
|
Cationic Copolymerization of Isobutylene with 4-Vinylbenzenecyclobutylene: Characteristics and Mechanisms. Polymers (Basel) 2020; 12:polym12010201. [PMID: 31941043 PMCID: PMC7023408 DOI: 10.3390/polym12010201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
A random copolymer of isobutylene (IB) and 4-vinylbenzenecyclobutylene (4-VBCB) was synthesized by cationic polymerization at -80 °C using 2-chloro-2,4,4-trimethylpentane (TMPCl) as initiator. The laws of copolymerization were investigated by changing the feed quantities of 4-VBCB. The molecular weight of the copolymer decreased, and its molecular weight distribution (MWD) increased with increasing 4-VBCB content. We proposed a possible copolymerization mechanism behind the increase in the chain transfer reaction to 4-VBCB with increasing of feed quantities of 4-VBCB. The thermal properties of the copolymers were studied by solid-phase heating and crosslinking. After crosslinking, the decomposition and glass transition temperatures (Tg) of the copolymer increased, the network structure that formed did not break when reheated, and the mechanical properties remarkably improved.
Collapse
|
Journal Article |
5 |
3 |
16
|
Laysandra L, Fan YJ, Adena C, Lee YT, Au-Duong AN, Chen LY, Chiu YC. Improving the Lifetime of CsPbBr 3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix. Front Chem 2020; 8:766. [PMID: 33134258 PMCID: PMC7573164 DOI: 10.3389/fchem.2020.00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022] Open
Abstract
This study developed a simple and efficient strategy to stabilize inorganic halide perovskite CsPbX3 at high relative humidity by embedding it into the matrix with elastic and self-healing features. The polymer matrix has a naturally hydrophobic characteristic of n-butyl acrylate segment (n-BA) and cross-linkable and healable moiety from N-(hydroxymethyl) acrylamide segment (NMA). It was chosen due to the provisions of both a surrounding protective layer for inorganic perovskite and elastic, as well as healing ability to the whole organic-inorganic composite. This fabricated CsPbBr3/PBA-co-PNMA composite was demonstrated to stably persist against the suffering from hydrolysis of perovskites when exposed to a high moisture environment. The PL intensity of the composite after crosslinking was found to be relatively stable after 30 days of exposure to air. Upon water immersion, the PL intensity of composite only showed a decrease of 32% after the first 6 h, then remained stable for 6 h afterward. Furthermore, this fabricated composite was not only flexible and relatively transparent but also exhibited excellent self-healing capability in ambient conditions (T = 25°C), in which the self-healing efficiency after 24 h was above 40%. The tensile strength and stretching ability of 5 wt% perovskite content in the random copolymer were observed to be 3.8 MPa and 553.5% respectively. Overall, flexible and self-healing properties combining with high luminescence characteristics are very promising materials for next-generation soft optical devices.
Collapse
|
|
5 |
1 |
17
|
Guo H, Guo Q, Lan T, Luo Y, Pan X, Yao Y, Li Y, Feng Y, Liu Y, Tao L, Shen X. Amphiphilic block versus random copolymer nanoparticles with reactive oxygen species responsiveness as berberine vehicles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1657-1677. [PMID: 34024257 DOI: 10.1080/09205063.2021.1932356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
A series of amphiphilic block and random copolymers based on phenylboronic acid pinacol ester were synthesized via reversible addition-fragmentation chain transfer polymerization. The obtained copolymers can self-assemble in aqueous solution into stable block copolymer nanoparticles and random nanoparticles with sizes of 116.1-158.6 and 126.3-187.0 nm, respectively. All nanoparticles showed hydrogen peroxide (H2O2) sensitivity, and the random copolymer nanoparticles presented faster responsiveness to H2O2 than did those derived from block copolymers. Berberine (BBR) can be effectively encapsulated into block and random copolymer nanoparticles with loading capacity of 7.6%-9.1% and 7.3%-8.9%, respectively. The BBR release can be controlled in an H2O2 medium. For the random copolymer nanoparticles, the release rate of BBR was faster and the cumulative release amounts in response to H2O2 were higher over 48 h. The BBR cumulative release amount in the H2O2 medium for the block and random copolymer nanoparticles was 62.2%-70.2% and 68.6%-80.4%, respectively. Moreover, good biocompatibility was observed for the BBR-loaded block and random copolymer nanoparticles. BBR and BBR-loaded nanoparticles can improve Glut4 translocation to the cell membrane and promote glucose transport into cells. BBR-loaded nanoparticles can decrease the blood glucose levels in diabetic rats over 15 days. These results imply that the different chain formulation of block and random copolymers affects the H2O2 responsiveness and that the two kinds of nanoparticles exhibit potential application as novel vehicles for BBR delivery to regulate blood glucose levels.
Collapse
|
|
4 |
0 |
18
|
Wang Z, Ma Y, Zhang J, Liu S, Li Z. Binary Catalyst Manipulating the Sequences of Poly(ester-carbonate) Copolymers in Metal-Free Terpolymerization of Epoxide, Anhydride, and CO 2. PRECISION CHEMISTRY 2025; 3:35-42. [PMID: 39886379 PMCID: PMC11775850 DOI: 10.1021/prechem.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 02/01/2025]
Abstract
The one-pot terpolymerization of epoxide (EP), anhydride (AH), and CO2 to synthesize polyester-polycarbonate copolymers with precise sequences remains a significant challenge in polymer chemistry. In this study, promising progress was achieved by utilizing a cyclic trimeric phosphazene base (CTPB) and triethylboron (TEB) as a binary catalyst, enabling the synthesis of both well-defined block and truly random poly(ester-carbonate) copolymers through the one-pot terpolymerization of EP/AH/CO2. By adjusting the molar ratio of CTPB/TEB to 1/0.5, remarkable chemoselectivity for ring-opening alternating copolymerization (ROAC) of propylene oxide (PO) and phthalic anhydride (PA) was achieved, followed by the ROAC of PO/CO2. This sequential control allowed for the synthesis of well-defined block poly(ester-carbonate) copolymers, containing three possible sequences, ester-ester sequence (EE)/ester-carbonate sequence (EC)/carbonate-carbonate sequence (CC) = 59/4/37, from a mixture of PO, PA, and CO2. Moreover, the versatility of this CTPB/TEB catalyst in regulating chemoselectivity was demonstrated, with a ratio of 1/3 facilitating the simultaneous ROAC of PO/PA and PO/CO2 with compatible rates, resulting in the production of random poly(ester-carbonate) copolymers, in which three possible sequences (EE/EC/CC = 26/50/24) are very close to theoretical values. This metal-free catalytic system and its flexible chemoselectivity regulation strategy proved to be applicable to a wide range of epoxides (PO, cyclohexene oxide (CHO)) and anhydrides (PA, diglycolic anhydride (DGA), and succinic anhydride (SA)), enabling the successful synthesis of poly(ester-carbonate) copolymers with diverse sequences and compositions.
Collapse
|
research-article |
1 |
|
19
|
Gerardos AM, Forys A, Trzebicka B, Pispas S. One-Pot Synthesis of Amphiphilic Linear and Hyperbranched Polyelectrolytes and Their Stimuli-Responsive Self-Assembly in Aqueous Solutions. Polymers (Basel) 2025; 17:701. [PMID: 40076192 PMCID: PMC11902553 DOI: 10.3390/polym17050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Stimuli-responsive polymeric nanostructures are compelling vectors for a wide range of application opportunities. The objective we sought was to broaden the array of self-assembling amphiphilic copolymers with stimuli-responsive characteristics by introducing a hydrophilic tunable monomer, (2-dimethylamino)ethyl methacrylate (DMAEMA), together with a hydrophilic one, lauryl methacrylate (LMA), within linear and branched copolymer topologies. Size exclusion chromatography was used to evaluate the resultant linear and hyperbranched copolymers' molecular weight and dispersity, and FT-IR and 1H-NMR spectroscopy techniques were used to delineate their chemical structure. The structural changes in the obtained self-organized supramolecular structures were thoroughly investigated using aqueous media with varying pH and salinity by dynamic light scattering (DLS), fluorescence spectroscopy (FS), and transmission electron microscopy (TEM). The nanoscale assemblies formed by the amphiphiles indicate significant potential for applications within the field of nanotechnology.
Collapse
|
research-article |
1 |
|
20
|
Bai S, Wang X, Vapaavuori J, He X. Fast formation of a supramolecular ion gel/solvoplastic elastomer with excellent stretchability. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180271. [PMID: 30110403 PMCID: PMC6030259 DOI: 10.1098/rsos.180271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
This study describes a simple yet efficient approach for the preparation of an ionic gel that is also elastomeric in its solid-state bulk form. A series of poly(2-(diethylamino)ethyl methacrylate-co-lauryl methacrylate) P(DMAEMA-co-LMA) copolymers were synthesized first by radical polymerization. Quaternization of the PDMAEMA component in tetrahydrofuran enables the formation of supramolecular network, giving rise to an ion gel. An elastomer with an elongation at break of over 600% was obtained from the gel. The elastomer, connected by supramolecular ionic cross-links, is solvoplastic in certain solvents. The simple yet efficient approach of the formation of ion-gel and the dried elastomer allows fast preparation of both gel-like and solid-state elastic materials for various applications where recyclability is required.
Collapse
|
research-article |
7 |
|
21
|
Hernández-Fernández J, Puello-Polo E, Márquez E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene-Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers (Basel) 2023; 15:polym15102264. [PMID: 37242839 DOI: 10.3390/polym15102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of impurities such as H2S, thiols, ketones, and permanent gases in propylene of fossil origin and their use in the polypropylene production process affect the efficiency of the synthesis and the mechanical properties of the polymer and generate millions of losses worldwide. This creates an urgent need to know the families of inhibitors and their concentration levels. This article uses ethylene green to synthesize an ethylene-propylene copolymer. It describes the impact of trace impurities of furan in ethylene green and how this furan influences the loss of properties such as thermal and mechanical properties of the random copolymer. For the development of the investigation, 12 runs were carried out, each in triplicate. The results show an evident influence of furan on the productivity of the Ziegler-Natta catalyst (ZN); productivity losses of 10, 20, and 41% were obtained for the copolymers synthesized with ethylene rich in 6, 12, and 25 ppm of furan, respectively. PP0 (without furan) did not present losses. Likewise, as the concentration of furan increased, it was observed that the melt flow index (MFI), thermal (TGA), and mechanical properties (tensile, bending, and impact) decreased significantly. Therefore, it can be affirmed that furan should be a substance to be controlled in the purification processes of green ethylene.
Collapse
|
|
2 |
|
22
|
Hachisuka SI, Iguchi A, Kikukawa H, Tomita H, Ooi T, Matsumoto K. Microbial degradation of the artificial polyhydroxyalkanoate poly(2-hydroxybutyrate-co-3-hydroxybutyrate) with random and block sequences using soil bacteria. J Appl Microbiol 2025:lxaf123. [PMID: 40392676 DOI: 10.1093/jambio/lxaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
AIMS This study aimed to examine whether microorganisms capable of degrading the artificial polyhydroxyalkanoate (PHA) copolymer poly(2-hydroxybutyrate-co-3-hydroxybutyrate) [P(2HB-co-3HB)], with random and block sequences, are present in natural environments. Previously isolated PHA-degrading soil bacteria was tested using 2HB-rich copolymers, P(2HB-ran-3HB) and P(2HB)-b-P(3HB), as a major carbon source. The assimilation of 2HB and 3HB fractions in these copolymers and the effect of monomer sequence on degradability were investigated. METHODS AND RESULTS Acidovorax sp. YM1609, Cupriavidus sp. T1, and Variovorax spp. A25i and A60i2 were tested in clear zone analysis to determine the depolymerization of the polymer and GC analysis to assess the assimilation of the monomer component following depolymerization. Strains YM1609, A25i, and A60i2 depolymerized emulsified P(2HB-ran-3HB) and assimilated both components. For emulsified P(2HB)-b-P(3HB), all the strains depolymerized and assimilated the 3HB component but hardly did the 2HB component within two weeks. CONCLUSIONS This study revealed that both P(2HB-ran-3HB) and P(2HB)-b-P(3HB) can be degraded to some extent by soil bacteria. 2HB components were more susceptible to degradation in random sequence than in block sequence; in contrast, the opposite trend was rather applied for 3HB components.
Collapse
|
|
1 |
|
23
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/ Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
|
|
1 |
|
24
|
Guazzelli E, Pisano G, Turriani M, Biver T, Kriechbaum M, Uhlig F, Galli G, Martinelli E. The Nanostructured Self-Assembly and Thermoresponsiveness in Water of Amphiphilic Copolymers Carrying Oligoethylene Glycol and Polysiloxane Side Chains. Pharmaceutics 2023; 15:1703. [PMID: 37376151 DOI: 10.3390/pharmaceutics15061703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.
Collapse
|
|
2 |
|
25
|
Zhang W, Wen G, Li H. Dewetting Behavior of Random Copolymer Films Induced by Solvent Vapor Annealing. Chemphyschem 2023; 24:e202200655. [PMID: 36414541 DOI: 10.1002/cphc.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
In recent years, the dewetting behavior of block copolymer films has been studied a lot, but that of random copolymer films was rarely studied. In this study, effects of film thickness and solvent vapor annealing duration (0 s-24 h) on the dewetting behavior of the spin-coated poly(styrene-co-acrylonitrile) (SAN) random copolymer films were mainly investigated by atomic force microscopy and contact angle method for the first time. The film thicknesses of the SAN films prepared at different concentrations were characterized by X-ray reflectometry to be 6-34 nm. With the annealing of acetone vapor, the SAN films first appear holes and then rupture into droplets which fuse and break periodically. The periodic evolutions of the droplets are due to the preferred affinity of acetone molecules with the AN segments and the change of surface energy. This phenomenon is different from the single evolutions in the spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. This illustrates the interactions between AN segments and the substrate are stronger than those between PMMA segments and the substrate in the spin-coated films.
Collapse
|
|
2 |
|